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Abstract

A unified theory of quantum symmetric pairs is applied to q-special functions. Previous

work characterized certain left coideal subalgebras in the quantized enveloping algebra and

established an appropriate framework for quantum zonal spherical functions. Here a

distinguished family of such functions, invariant under the Weyl group associated to the

restricted roots, is shown to be a family of Macdonald polynomials, as conjectured by

Koornwinder and Macdonald. Our results place earlier work for Lie algebras of classical type

in a general context and extend to the exceptional cases.
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0. Introduction

A beautiful classical result shows that the zonal spherical functions associated to
real compact symmetric spaces can be realized as Jacobi polynomials. An analogous
result was proved for zonal spherical functions of p-adic symmetric spaces [22]. In
the late 1980s, Macdonald [23] introduced his two-parameter family of orthogonal
polynomials which provided a unified context for the polynomial families used in
these parallel theories. With the discovery of quantum groups, also in the 1980s, both
Koornwinder [15, Section 6.4] and Macdonald [23] asked whether one could obtain a
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similar description of quantum zonal spherical functions. This conjecture was
investigated extensively in the 1990s by Noumi, Sugitani, Dijkhuizen, Stokman and
others when the underlying Lie algebra is of classical type. Quantum zonal spherical
functions are realized as particular q special functions in [24–26,28,3,4] using case-
by-case computations. The main result of this paper is an answer to Macdonald and
Koornwinder’s question for all quantum symmetric pairs with reduced restricted
root systems, thus generalizing this earlier work to include Lie algebras of
exceptional type. Our methods are new and do not involve extensive case work.
Instead, we rely on the unified theory of quantum symmetric pairs developed in [19–
21]. As a consequence, we provide simple, uniform, formulas for the parameters
which appear in the Macdonald polynomials corresponding to quantum zonal
spherical functions.

The first problem faced in the quantum case was the actual definition of quantum
symmetric spaces. Classically, a symmetric pair of Lie algebras is a pair g; gy where g

is a complex Lie algebra and y is a Lie algebra involution. The initial breakthrough
was made by Koornwinder [14], who constructed quantum 2 spheres and computed
their zonal spherical functions by inventing quantum analogs of the symmetric pair
sl 2; so 2: Noumi [24] extended Koornwinder’s approach to two families of
symmetric pairs for g of type An; using two-sided coideal analogs of gy inside the
quantized enveloping algebra UqðgÞ: He showed that the corresponding zonal
spherical functions were, indeed, Macdonald polynomials. In [26], Noumi and
Sugitani introduced one-sided coideal analogs of UðgyÞ inside of UqðgÞ for other
cases when g is of classical type; analysis of the corresponding zonal spherical
functions can be found in [26,28,3,25,4]. In his comprehensive survey of the early
history of quantum symmetric spaces, Dijkhuizen [2] conjectures that coideals are
the correct objects to use in order to develop a general theory of quantum symmetric
pairs, the corresponding symmetric spaces, and their zonal spherical functions. In
[19,20], a universal method was developed for constructing left coideal subalgebras
of UqðgÞ; which are quantum analogs of UðgyÞ: These analogs are further
characterized as the appropriately unique maximal left coideal subalgebras of
UqðgÞ which specialize to UðgyÞ as q goes to 1. A complete list of the generators and
relations of the coideal subalgebras for all possible symmetric pairs g; gy is given in
[21]. Furthermore, although the symmetric pairs used in [24,26] are formally defined
differently, it turns out that these examples are subsumed by this new theory (see [19,
Section 6] and the last paragraph of [20]).

Using the new quantum analogs of UðgyÞ inside of UqðgÞ; one can define and study
quantum symmetric spaces and their zonal spherical functions (see [20, Section 7]
and [21]). In particular, fix an irreducible symmetric pair g; gy: Let By denote the
orbit of the analogs of UðgyÞ in UqðgÞ under the group H of Hopf algebra
automorphisms of UqðgÞ fixing the Cartan part. For each pair B;B0 in B; one can
associate the space B0HB of left B0 and right B invariants inside the quantized
function algebra Rq½G� corresponding to g: Using the interpretation of elements of
Rq½G� as functions on UqðgÞ; restriction to the Cartan part of UqðgÞ yields an algebra
homomorphism U from B0HB into the character group ring associated to the
restricted root system [21, Theorem 4.2]. Zonal spherical functions are joint
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eigenvectors in B0HB with respect to the action of the center of UqðgÞ: A zonal
spherical family associated to By is the image of a specially chosen basis of B0HB

consisting of zonal spherical functions for some B;B0 in By: Let WY denote the Weyl
group associated to the restricted roots. In [21, Theorem 6.5], it is shown that each
H�H orbit of By �By contains a virtually unique WY invariant zonal spherical
family. Moreover, the natural map from By �By to the set of zonal spherical
functions associated to By �By is H�H equivariant [21, Theorem 6.3]. In this
context, the action of an element of H�H on a zonal spherical family corresponds
to the image of this family under an automorphism of the restricted character group
ring. Thus in order to compute the zonal spherical families associated toBy; it is only
necessary to analyze the unique WY invariant representative for each H�H orbit.

The setBy contains a distinguished H orbit corresponding to the standard analogs
of UðgyÞ in UqðgÞ: It follows from [21, Theorem 6.5 and subsequent discussion] (see
Theorem 1.1 below) that there is a unique family of WY invariant quantum zonal
spherical functions associated to the standard analogs of UðgyÞ: We further assume
here that the restricted root space associated to g; gy is reduced. Our goal in this work
is to show that this family of WY invariant quantum zonal spherical functions is
precisely a family of Macdonald polynomials where both parameters are equal to
powers of q: Moreover, Theorem 8.2 provides a simple formula involving the
multiplicity of restricted roots which relates one parameter to another. (We should
mention that for most pairs g; gy; the standard analogs are the only possible analogs.
However, under special circumstances, there is a one parameter family of analogs of
UðgyÞ; the standard analogs appear when the parameter is set equal to zero. See [20,
Section 7, Variation 2] for more information.)

Our overall method of determining the zonal spherical functions is inspired by the
work of [24,26,2]. Indeed, we show that the radial components of certain central
elements correspond to the difference operators, which then define Macdonald
polynomials. However, the strategy we employ is quite different. We do not use L

operators as in [24,26,2] to express the Casimir elements because, in part, this cannot
be done for the exceptional Lie algebras. Moreover, our argument avoids an explicit
expression of central elements inside UqðgÞ for g larger than sl 2; thus making a
detour around difficult computations and extensive case work. Instead, we rely on a
variety of representation theory techniques and draw upon the description of the
center and the locally finite part of UqðgÞ developed in [11,12].

It should be noted that many of the techniques of this paper extend to the case
when S is not reduced and to the nonstandard analogs. In a future paper, we adapt
the methods used here to identify the zonal spherical functions of these other cases as
q hypergeometric functions. Ultimately, this will generalize work of [25,4] on
nonstandard analogs of type AIII and work of [26,28,3,25,4] when the restricted root
system is not reduced.

Since this paper is long, we present a detailed description of its organization. The
first section sets notation and recalls background on the author’s theory of quantum
symmetric pairs and their zonal spherical functions. Section 2 presents four versions
of an Iwasawa type tensor product decomposition (Theorem 2.2). Let B denote a
quantum analog of UðgyÞ inside UqðgÞ and write Bþ for the augmentation ideal of
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UqðgÞ: Further analysis of projections of UqðgÞ modulo BþUqðgÞ and UqðgÞBþ are
obtained in Theorem 2.3. These maps are used in Section 3 (Theorem 3.2) to
construct a function X from UqðgÞ to the ring of endomorphisms of the restricted
character group ring which corresponds to the action of UqðgÞ on the quantum zonal
spherical functions. Upon restriction to the center of UqðgÞ; X is exactly the
function which computes the quantum radial components. Radial components of
central elements, and more generally, radial components of elements in the
centralizer of B in UqðgÞ; are shown to be invariant under the action of the
restricted Weyl group WY in Theorems 3.4 and 3.6.

Section 4 is devoted to analyzing the rank one radial components of central
elements. We first prove that in the rank one case, the center of UqðgÞ has a Casimir-
like central element which looks remarkably like the Casimir element in the center of
Uqðsl 2Þ (Theorem 4.5). The radial component of this special central element is then
computed using a straightforward Uqðsl 2Þ calculation (Theorem 4.7).

In Section 5, a filtration, similar to the ad invariant filtration of UqðgÞ studied in
[12] and [8, Chapter 7], is introduced. The filtration used here is carefully chosen so
that the algebra B lies in degree zero. In particular, the resulting graded algebra,
grUqðgÞ; contains B as a subalgebra. A theory of graded zonal spherical functions is
presented. It is shown that up to a shift of weight, the graded zonal spherical
functions are all equal to each other (Lemma 5.7). Furthermore, the action of the
graded image of a central element of UqðgÞ on a graded zonal spherical function
agrees with the action of the top degree of the corresponding radial component.
This allows us to write the top degree terms of radial components in a simple form
using the graded zonal spherical functions and the Harish-Chandra projection
(Theorem 5.8). The resulting expression is similar to Harish-Chandra’s formula and
its generalizations for the radial components of central elements in UðgÞ with
respect to the adjoint action of the corresponding Lie group on g (see [29, 7.A.2.9
and 7.A.3.7]).

In Section 6, the graded zonal spherical functions, and thus the top degree terms of
radial components, are determined first in the rank one case using Section 4 (see
Lemma 6.6). This information is then glued together using the Weyl invariance of
radial components in Theorem 6.7 and Corollary 6.8. The argument is delicate since
the graded zonal spherical functions are elements of the formal power series ring
corresponding to the restricted character group ring. Unfortunately, the restricted
Weyl group does not act on this ring. We overcome this obstacle by finding the
possible weights of highest weight vectors with respect to rank one subalgebras of
gr UqðgÞ inside Verma-like gr UqðgÞ modules. This allows one to express the graded
zonal spherical function as the product of all the rank one formulas times a WY

invariant term. Taking into account the highest weight summand of the graded zonal
spherical function yields that this WY invariant term must be 1: In the end, we show
that the formula for the graded zonal spherical function is just the inverse of the
element in the restricted character group ring used to define Macdonald’s inner
product (Theorem 6.7). It should be noted that the proof here is remarkably similar
to an argument used in a completely different setting, the factorization of the affine
PRV determinant [13]. The product formula combined with the rank one reduction
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used here is also reminiscent of Gindikin and Karpelevic’s well known computation
of Harish-Chandra’s c function [6, Chapter IV, Section 6].

It is sometimes necessary to pass to the slightly larger simply connected quantized
enveloping algebra Ǔ (which is just a small extension of UqðgÞ). By construction, the
Cartan subalgebra of Ǔ is just the group algebra of the torus corresponding to the
weight lattice. In Section 7, one finds an element in the centralizer CǓðBÞ of B in Ǔ

whose top degree term with respect to the Harish-Chandra projection corresponds to
a minuscule or pseudominuscule restricted weight. In most cases this element is in the
center of Ǔ and is easily determined using the description of the image of central
elements under the Harish-Chandra map [11]. For a few exceptional irreducible
symmetric pairs, the central elements turn out to be too ‘‘large’’ to correspond to
minuscule or pseudominuscule restricted weights. This failure is related to the
classical fact that the map from the center of UðgÞ to the set of invariant differential
operators on the symmetric space corresponding to the pair g; gy is not always
surjective [5]. An analysis of the locally finite part of Ǔ is used in order to locate the
suitable element in CǓðBÞ in the problematic cases. The radial components of these
‘‘small’’ elements in CǓðBÞ are then determined (Theorem 7.7) by taking the sum of
the terms in the WY orbit of the top degree part (found in Section 6) plus a possible
zero degree term.

Section 8 recalls basic facts about Macdonald polynomials. The radial
components studied in Section 7 are identified with difference operators associated
to minuscule and pseudominuscule weights. This in turn establishes our main result
that zonal spherical functions are particular Macdonald polynomials. We conclude
the paper with two appendices. The first lists all irreducible symmetric pairs g; gy

with reduced root system and the values of the parameters in the Macdonald
polynomials corresponding to the quantum zonal spherical functions. The second
appendix is an index of commonly used notation including definitions for objects not
defined in Section 1.

1. Background and notation

Let C denote the complex numbers, Q denote the rational numbers, Z denote the
integers, and N denote the nonnegative integers. If G is a multiplicative monoid and
F is a field, then we write F½G� for the corresponding monoid algebra over F: (This is
the obvious generalization of ‘‘group algebra’’.) Unfortunately many monoids come
to us additively. In the special case of the additive monoid Q; we invent the symbol q

and temporarily identify Q with the multiplicative monoid fqr j rAQg where qrqs ¼
qrþs: Let C be the algebraic closure of the field of fractions for C½Q�: We write C� for
the nonzero elements of C:

Given a root system F; let Fþ denote the positive roots, QðFÞ denote the root
lattice, PðFÞ denote the weight lattice, QþðFÞ denote the N span of the elements in
Fþ; and PþðFÞ denote the set of dominant integral weights. (Sometimes we will
replace F with the symbol representing the subset of simple positive roots in the
notation for the root and weight lattice and their subsets.) Write 2F for the root
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system f2a j aAFg given the same inner product as F: If H is an additive submonoid
of CF; we invent the formal variable z; so that C½H� consists of the C linear
combinations of the basis elements zl for lAH:

Let g denote a semisimple Lie algebra over the complex numbers C with a chosen
triangular decomposition g ¼ n�"h"nþ: Let D be the set of roots for g and let
p ¼ fa1;y; ang be the set of (positive) simple roots in D corresponding to the root
vectors in nþ: Write ð ; Þ for the Cartan inner product on h with respect to the root
system D: Let W denote the Weyl group associated to the root system D: Set r equal
to the half sum of the positive roots in D:

Let y be a maximally split involution with respect to the fixed Cartan subalgebra h

of g and triangular decomposition (see [20, (7.1), (7.2), and (7.3)]). We assume
throughout the paper that g; gy is an irreducible pair in the sense of [1] (see also [21,
Section 7]). Recall that a complex semisimple Lie algebra g0 with maximally split
involution y0 can be written as a direct sum of semisimple Lie subalgebras ri such
that each ri; r

y0
i is an irreducible pair. Using such a direct sum decomposition, the

results of this paper easily extend to arbitrary symmetric pairs.
The involution y on g induces an involution on h which we refer to as Y:

Furthermore, Y restricts to an involution on D: Set pY ¼ faiAp jYðaiÞ ¼ aig: Recall
[20, Section 7, (7.5)] that there is a permutation p on 1;y; n such that

�YðaiÞAapðiÞ þ QþðpYÞ:

Set p ¼ faiAp\pY j ippðiÞg:
Given aAh; set *a ¼ ða�YðaÞÞ=2: The subset

S ¼ f*a j aAD and YðaÞaag ð1:1Þ

of h is the restricted root system associated to the pair g; gy: Note that the set of
(positive) simple restricted roots is just f*ai j aiApg; while Sþ ¼ f*a j aADþ and
YðaÞaag: Let WY denote the Weyl group associated to S:

We make the following assumption throughout this paper:

S is a reduced root system:

A complete list of the possible irreducible pairs g; gy with S reduced using Araki’s
classification [1] can be found in the appendix of this paper.

Let U ¼ UqðgÞ be the quantized enveloping algebra generated by x1;y; xn;
y1;y; yn; t71

1 ;y; t71
n over C: Recall that U is a Hopf algebra with coproduct,

counit, and antipode. (See [8, 3.2.9] or [20, Section 1,(1.4)–(1.10)] for relations and
Hopf algebra structure.) We write Uþ for the subalgebra of U generated by
x1;y; xn and U� for the subalgebra of U generated by y1;y; yn: Let Uþ denote the
augmentation ideal of U :Given a subalgebra S of U and a U module V ; we write Sþ
for S-Uþ and set VS ¼ fvAV j sv ¼ 0 for all sASþg:

Let T denote the group generated by the ti for 1pipn: Set U0 equal to the group
algebra C½T �:Recall that there is an isomorphism t : QðpÞ-T such that tðaiÞ ¼ ti for
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each i: Given a T module N and a weight gAh; the g weight subspace of N is just
the set

fmAN j tðbÞm ¼ qðb;gÞm for all tðbÞATg:

Note that U is a module over itself via the (left) adjoint action denoted by ad (see for
example [8, 1.3.1]). If N is a subspace of U ; then Ng is the g weight space of N as an
ad T module.

Consider a vector subspace F and a subset S of an algebra over C: Note
that products of the form as and sa for aAF and sAS exist and are elements of
this C algebra. Set FS equal to the C span of the set fas j aAF ; sASg: Similarly,
write SF for the vector space over C spanned by the set fsa j aAF ; sASg: Now
suppose that S is a submonoid of T and F is both a subalgebra and ad S submodule
of U : Note that the subalgebra of U generated by F and S is equal to the vector
space FS:

Set TY ¼ ftðbÞ j bAQðpÞ and YðbÞ ¼ bg: Let M be the subalgebra of UqðgÞ
generated by xi; yi; t71

i for aiApY: By [20, Theorem 7.1], we can lift y to a C algebra
automorphism *y of U which sends q to q�1: For each aiAp\pY; set

Bi ¼ yiti þ *yðyiÞti: ð1:2Þ

Let By denote the subalgebra of U generated by the Bi; aiAp\pY; M; and TY: By [20,
Theorem 7.2 and the discussion following the proof of Theorem 7.4], By is a left
coideal subalgebra which specializes to UðgyÞ as q goes to 1.

Let H denote the group of Hopf algebra automorphisms of U which fix elements
of T : Note that H acts on the set of left coideal subalgebras of U : Set B equal to the
orbit of By under the action of H: Of course, B depends on the choice of pair g; gy;
but this will be understood from context. For most irreducible pairs g; gy; the orbitB
equals the set By defined in [21, Section 2] and is just the orbit under the action of H
of the quantum analogs of UðgyÞ inside of UqðgÞ: There are, however, a few cases of
irreducible pairs for which the set By is strictly larger than B: Since we are assuming
that S is reduced, this occurs when UðgyÞ has nonstandard analogs—also referred to
as analogs of Variation 2 see ([20, Section 7, Variation 2]). We only consider the
standard analogs in this paper. A complete list of the quantum analogs of UðgyÞ in U

associated to all possible irreducible symmetric pairs can be found in [21, Section 7].
(In the notation of [21], let S be the subset of p consisting of those ai such that
YðaiÞ ¼ �ai and 2ðai; ajÞ=ðaj; ajÞ is even for all aj such that YðajÞ ¼ �aj: By [21,
Sections 2 and 7], since g; gy is irreducible, S is either empty or consists of exactly
one root aiAp: When this happens, the orbits of By are parametrized by one
variable, si; and B is the H orbit in By associated to si ¼ 0:)

Given lAPþðpÞ; let LðlÞ denote the finite dimensional simple U module with
highest weight l: Write LðlÞ for the dual of LðlÞ given its natural right module
structure. Recall the quantum Peter–Weyl theorem [8, 9.1.1 and 1.4.13], see also [20,
(3.1)]: the quantized function algebra Rq½G� is isomorphic as a U bimodule to a direct
sum of the LðlÞ#LðlÞ as l varies over the dominant integral weights PþðpÞ: As

ARTICLE IN PRESS
G. Letzter / Advances in Mathematics 189 (2004) 88–14794



explained in [21, Section 4], elements of LðlÞ#LðlÞ; and thus of Rq½G�; can be
thought of as functions on U : Restriction to the torus T yields an algebra
homomorphism, denoted by U ; from Rq½G� into C½PðpÞ�:

Let G denote the connected, simply connected Lie group with Lie algebra g and
let K be the compact Lie group corresponding to the Lie algebra gy: In the
classical case, zonal spherical functions are K invariant functions on the symmetric
space G=K which are also eigenfunctions for the action of the center of UðgÞ:
The quantum symmetric space Rq½G=K �B0 ; or more precisely, quantum analog
of the ring of regular functions on G=K associated to B0AB; is the algebra of
left B0 invariants inside the quantized function algebra (see [20, Section 7 and
Theorem 7.8]). Thus quantum zonal spherical functions at the pair ðB;B0Þ in B�B
are right B invariant elements of Rq½G=K�B0 which are eigenfunctions for the action
of the center of U on Rq½G�: In particular, quantum zonal spherical functions live
inside the space B0HB of left B0 and right B invariants of Rq½G�: Moreover, the
eigenspaces in Rq½G� for the action of the center of U are just the subspaces
LðlÞ#LðlÞ for l dominant integral. Hence the quantum zonal spherical functions
at l associated to the pair ðB;B0Þ are the nonzero elements in the space B0HBðlÞ
defined by

B0HBðlÞ ¼ f fALðlÞ#LðlÞ j B0
þf ¼ fBþ ¼ 0g:

By [21, Theorem 3.4 and Section 4], B0HBðlÞ is one dimensional if lAPþð2SÞ and
zero otherwise. In particular, B0HB is a direct sum of the subspaces B0HBðlÞ as l
runs over the elements in Pþð2SÞ [21, (4.2)]. By [21, Theorem 4.2], the map U from
Rq½G� into C½PðpÞ� restricts to an injective algebra homomorphism from B0HB into
C½Pð2SÞ�: Furthermore, [21, Lemma 4.1] ensures that U ðB0HBÞ contains a
distinguished basis fjl

B;B0 j lAPþð2SÞg such that jl
B;B0AU ðB0HBðlÞÞ and

jl
B;B0Azl þ

X
bol

Czb ð1:3Þ

for all lAPþð2SÞ:
We recall the notion of zonal spherical families introduced in [21, Section 6]. In

particular, a function l/cl from Pþð2SÞ to C½Pð2SÞ� is called a zonal spherical
family associated to B if there exists B and B0 in B such that cl ¼ jl

B;B0 for all
lAPþð2SÞ: With a slight abuse of notation, we generally identify the zonal spherical
family above with its image, fcl j lAPþð2SÞg: We have the following modification
of [21, Theorem 6.5].

Theorem 1.1. Let lAPþð2SÞ: There exists a unique WY invariant zonal spherical

family fjl j lAPþð2SÞg associated to B:

Proof. In the case when UðgyÞ does not admit a nonstandard analog, then this is
a consequence of [21, Theorem 4.2 and Theorem 6.5] as explained in the
discussion following the proof of the [21, Theorem 6.5]. (This case corresponds to
(i) of [21].) Now assume that UðgyÞ does admit nonstandard analogs and in
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particular, S ¼ faig: Let BAB: Set

N ¼ Z*ai þ
X

ajAp\S

Z2*aj:

Consider a spherical vector xlALðlÞ with respect to B: By [21, Theorem 3.6 and its
proof], xl is a sum of weight vectors of weight l� b where bAN-QþðSÞ: Now B is
the image under an element in H of the analog in By associated to si ¼ 0: Hence the
proof of [21, Theorem 3.6] actually shows that xl is a sum of weight vectors of weight
l� b where b is in the smaller set Qþð2SÞ: Thus arguing as in [21, Lemma 4.1], the
space B0HBðlÞ is a subspace of zlC½Qð2SÞ� for all pairs B and B0 in B:

Recall thatB is the single orbit of By under the action ofH: ThusB�B is a single
H�H orbit contained in By �By: Note that elements of HomðN;C�Þ act on C½N�
as linear transformations where gðzbÞ ¼ gðbÞzb for all bAN and gAHomðN;C�Þ: Set
Zl equal to the set of WY invariant zonal spherical functions at l associated to B
with top degree term equal to zl: By [21, Theorem 6.5] there exists a WY invariant
zonal spherical family fjl j lAPþð2SÞg associated to B such that the

Zl ¼ fzlgðz�ljlÞ j gAHomðN;C�Þ and g acts trivially on Qð2SÞg:

However, by the previous paragraph, z�ljlAC½Qð2SÞ�: Hence Zl contains exactly
one element jl: Therefore fjl j lAPþð2SÞg is the unique WY invariant zonal
spherical family associated to B: &

Using Theorem 1.1, we write fjl j lAPþð2SÞg for the unique WY invariant zonal
spherical family associated to B: Of course this family depends on the choice of g; gy;
but this will be understood from context. As an immediate consequence of Theorem
1.1, if U ðB0HBÞ is WY invariant then jl

B;B0 ¼ jl for all lAPþð2SÞ: By [21, Corollary
5.4], we can choose B0

yAB such that U ðB0
y
HByÞ is WY invariant. We drop the

subscript y and abbreviate By as B and B0
y as B0 after Section 2 is completed.

2. Decompositions and related projections

In this section, we present tensor product decompositions of U with respect to a
subalgebra BABy similar to the quantum Iwasawa decomposition of [18,19]. This, in
turn, is used to analyze various projections of elements in U modulo BþU and UBþ:

Let T 0 be the subgroup of T generated by fti j aiApg: Note that TY � T 0 ¼ T and
so the multiplication map defines a vector space isomorphism

U0DC½TY�#C½T 0�: ð2:1Þ

Let G� be the subalgebra of U generated by yiti; 1pipn: Set M� ¼ M-G� and
Mþ ¼ M-Uþ: Let N� be the subalgebra of G� generated by the ðadM�Þ module
ðadM�ÞC½yiti j aiepY�: Similarly, let Nþ be the subalgebra of Uþ generated by the
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ðadMþÞmodule ðadMþÞC½xi j aiepY�:Note that both N� and Nþ can be written as
a direct sum of weight spaces.

Given a subset S of U and a weight bAQðpÞ; we write Sb;r for the restricted weight
space of S corresponding to b: In particular,

Sb;r ¼
X

fb0 j *b0¼ *bg

Sb0 :

Recall the standard partial ordering on h: For all distinct pairs of elements a and
b in h; apb provided that b� aAQþðpÞ:Now suppose a and b are in h and *ao *b: It
follows that *b� *a is an element of QþðpÞ-ð

P
aApC*aÞ: This latter set is contained in

QþðSÞ: In particular, the partial ordering on h restricts to the standard partial
ordering on the restricted weights.

Set T 0
X
equal to the multiplicative monoid generated by the t2i for aiAp: Note that

C½T 0
X
� is just the polynomial ring C½t2i j aiAp�:

Lemma 2.1. For each BAB; all b; gAQþðpÞ; and YAUþ
g G�

�b; we have

YANþ
bþg;rB þ

X
*b0o *bþ*g

Nþ
b0;rT

0
X

B ð2:2Þ

and
YABN�

�b�g;r þ
X

*b0o *bþ*g

BT 0
X

N�
�b0;r: ð2:3Þ

Proof. Let BAB: Note that any Hopf algebra automorphism which fixes T restricts
to the identity on T 0

X
and an automorphism of N� and Nþ: Hence, without loss of

generality, we may assume that B ¼ By:
Choose bAQþðpÞ: By construction, Nþ is an adMþ module. Note that

ðad xiÞa ¼ xia � tiat�1
i xi ð2:4Þ

for all i and for all aAU : Hence

MþNþ
b CNþ

b;rM
þ:

Now if aiepY; it follows that xiANþ: Hence

Uþ
g Nþ

b CNþ
bþg;rM

þ

for all gAQþðpÞ: Thus it is sufficient to prove (2.2) for YAG�
�b:

It follows from the defining relations of U that

G�
�bxiCxiG

�
�b þ G�

�bþai
þ G�

�bþai
t2i

for each 1pipn: If aiApY then t2i ATY: If aiAp then t2i AT 0
X
: Finally, if aiepY,p;

then t2i ¼ t2pðiÞðt2i t�2
pðiÞÞ: In particular, t2i is an element of T 0

X
TY for each i; 1pipn:
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Hence

G�
�bxiCxiG

�
�b þ G�

�bþai
T 0
X

TY ð2:5Þ

for all aiAp:
Now consider a weight vector Y of weight �b in G�: Without loss of generality,

we may assume that Y is a monomial in the yiti; say yi1 ti1?yim tim : Note that if the
restricted weight of Y is zero, or if m ¼ 0; then Y is an element of M�; and hence of
B: Thus (2.2) holds in these cases. We proceed by induction on both m and the
restricted weight of Y : In particular, we assume that (2.2) holds for all monomials in
the yiti of length strictly smaller than m as well as for all elements in Uþ

g G�
�l with

gAQþðpÞ and *lo *b:
Note that if aimApY then yim timABþ: By the inductive hypothesis (2.2) holds for

yi1 ti1?yim�1
tim�1

: It follows that (2.2) holds whenever aimApY: Thus, we may assume
that aimepY:

Recall the definition of Bi (1.2) and note that BiABþ (see for example [21, (2.1)
and (2.2)]). Hence

yi1ti1?yim tim þ yi1 ti1?yim�1
tim�1

*yðyimÞtimAyi1 ti1?yim�1
tim�1

Bþ:

Applying the inductive hypothesis again to yi1ti1?yim�1
tim�1

shows that Y is an
element of

�yi1ti1?yim�1
tim�1

*yðyimÞtim þ
X

*gp *b�*aim

Nþ
g;rT

0
X

B:

By [21, (2.1) and (2.2)], *yðyimÞtimAMþxpðimÞM
þTY: Note that *b ¼ 0 for all bAQðpYÞ:

Thus by (2.5), Y is contained in

MþxpðimÞM
þTYG�

�bþaim ;r þMþT 0
X

TYG�
�bþ2aim ;r

þ
X

*gp *b�*aim

Nþ
g;rT

0
X

B:

Note that both *b� *aim and *b� 2*aim are strictly smaller than *b: The result (2.2)
now follows by induction on *b: It follows from [21, Theorem 3.1] (see also [21, (3.3)
and the proof of Theorem 3.4]) that B contains elements xi þ Yi; for aiepY; where
YiAG�TY is a weight vector of weight YðaiÞ: The proof of (2.3) is similar to that of
(2.2) using the elements xi þ Yi instead of Bi: &

Using the above lemma, we obtain four tensor product decompositions of U :

Theorem 2.2. For all BAB; there are isomorphisms of vector spaces via the

multiplication map

(i) Nþ#C½T 0�#BDU ;
(ii) B#C½T 0�#NþDU ;
(iii) N�#C½T 0�#BDU ;
(iv) B#C½T 0�#N�DU :
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Proof. We prove the theorem for B ¼ By: The general result follows from the fact
that Nþ; N�; C½T 0� and U are all preserved by Hopf algebra automorphisms in H:

Recall that U admits a triangular decomposition [27] or equivalently, an
isomorphism of vector spaces via the multiplication map:

UDG�#U0#Uþ: ð2:6Þ

By [16], (see also [20, Section 6 and (6.2)]),

UþDMþ#Nþ ð2:7Þ

as vector spaces using the multiplication map. Combining (2.6) and (2.7) with (2.1)
yields the following vector space isomorphism

UDG�#Mþ#C½TY�#C½T 0�#Nþ ð2:8Þ

induced by the multiplication map.
Set Bi ¼ yiti for aiApY: Give an m-tuple J ¼ ð j1;y; jmÞ; set yJ ¼ yj1tj1?yjm tjm and

BJ ¼ Bj1?Bjm : Let J be a set of m-tuples, where m varies, such that the set
fyJ j JAJg is a basis for G�: By the proof of [20, Theorem 7.4], we have

B ¼
M

JAJ

ðBJM
þTYÞ: ð2:9Þ

Note that when BJ is written as a direct sum of weight vectors, the lowest weight
term is just yJ : Hence (2.9) ensures the lowest weight term of an element of B is
contained in G�MþTY: It follows from (2.8) that Bv-Bv0 ¼ 0 for any two linearly
independent elements of T 0Nþ: This forces the map induced by multiplication from
B#C½T 0�#Nþ to U to be injective.

Let i denote the C algebra antiautomorphism of U defined by iðxiÞ ¼ xi; iðyiÞ ¼
yi; iðtiÞ ¼ ti; and iðqÞ ¼ q�1: We use D to denote the coproduct of U : It is
straightforward to check using the Hopf algebra relations of U that ði#iÞ3DðaÞ ¼
DðiðaÞÞ for all aAU : Hence iðBÞ is also a left coideal subalgebra of U : We recall
briefly the notion of specialization at q ¼ 1 (see [20, Section 1]). Let Û denote the

C½q; q�1�ðq�1Þ subalgebra of U generated by xi; yi; t71
i ; and ðti � 1Þ=ðq � 1Þ for

1pipn: Recall that Û=ðq � 1ÞÛ is isomorphic to UðgÞ: Note that iðaÞ ¼ a þ ðq �
1ÞÛ and hence the images of iðaÞ and a are equal in Û=ðq � 1ÞÛ for all aAÛ: It

follows that both B and iðBÞ specializes at q ¼ 1 to the same subalgebra, UðgyÞ; of
UðgÞ: Now the algebra iðBÞ cannot be an analog of UðgÞ of Variation 1 [20, Section
7] since S is reduced. A check of the generators of iðBÞ shows that iðBÞ cannot be an
analog of UðgÞ of Variation 2 [20, Section 7]. Hence, by [20, Theorem 7.5], iðBÞAB:
In particular, there exists a Hopf algebra automorphism cAH such that ciðBÞ ¼ B:
Set i0 ¼ ci: Now i; and hence i0; restricts to an antiautomorphism of C½T 0�:
Furthermore, a straightforward computation yields that i0ððad xiÞxjÞ is a scalar

ARTICLE IN PRESS
G. Letzter / Advances in Mathematics 189 (2004) 88–147 99



multiple of ðad xiÞxj for all i and j: It follows that i0ðNþÞ ¼ Nþ: Similarly i0ðN�Þ ¼
N�: Hence applying i0 to U and using the previous paragraph, we obtain that

multiplication induces an injection from Nþ#C½T 0�#B to U :
Using the triangular decomposition (2.6) and the relations of U ; we have that

U ¼ U0UþG�: By assertion (2.2) of Lemma 2.1, any element of UþG� is contained
in NþT 0B: This fact combined with (2.1) yields

U ¼ U0UþG�DNþT 0BDU :

Hence U ¼ NþT 0B: Furthermore, U ¼ i0ðUÞ ¼ i0ðNþT 0BÞ ¼ BT 0Nþ: Thus the
multiplication map induces a surjection from B#C½T 0�#Nþ onto U and a
surjection Nþ#C½T 0�#B onto U which proves (i) and (ii).

By [21, Theorem 3.1], there is a C algebra anti-involution k of U which fixes
elements of T ; sends each xi to ciyiti and yi to c�1

i t�1
i xi for some nonzero scalar ci;

and restricts to a C algebra antiautomorphism of B: It follows that kððad yiÞbÞ ¼
�c�1

i ðad xiÞkðbÞ for all bAU : In particular, kðNþÞ ¼ N�: Thus assertion (iii)
follows from applying k to (ii). Similarly, assertion (iv) follows from applying k
to (i). &

Let A denote the subgroup of T generated by tð2*aÞ as a ranges over p:
Alternatively, we can view A as the image under t of the group Qð2SÞ: Let AX be
the semigroup generated by the tð2*aiÞ for aiAp: Note that for aiAp;

t2i ¼ tð2*aiÞtðai þYðaiÞÞAAXTY:

Hence

C½T 0
X
�DC½AX�C½TY� ¼ C½AX� þ C½AX�C½TY�þ: ð2:10Þ

The following direct sum decompositions of vector spaces follow immediately
from Theorem 2.2:

U ¼ ðUBþ þ UC½T 0�þÞ"Nþ ð2:11Þ

and

U ¼ ðBþU þ C½T 0�þUÞ"N� ð2:12Þ

for all B in B: Given BAB; let PB be the projection of U onto Nþ using (2.11) and
RB be the projection of U onto N� using (2.12). In the next theorem, the projections
PB and RB are used to construct particular linear isomorphisms between the
restricted weight spaces of Nþ and N�:

Theorem 2.3. For each BAB and each *b; with bAQþðpÞ; there exist linear

isomorphisms

P *b;B : N�
�b;r-Nþ

b;r
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and

R *b;B : Nþ
b;r-N�

�b;r

such that

Y � P *b;BðY ÞANþ
b;rBþ þ

X
*go *b

Nþ
g;rAXB ð2:13Þ

and

X � R *b;BðXÞABþN�
�b;r þ

X
*go *b

BAXN�
�g;r

for all YAN�
�b;r and XANþ

b;r:

Proof. Let BAB: Fix bAQþðpÞ: By Lemma 2.1,

PB

X
*go *b

N�
�g;r

0@ 1AD
X
*go *b

Nþ
g;r:

Theorem 2.2(iii) ensures that N�-UBþ ¼ 0: Thus PB is injective. Let n�
Y be the Lie

algebra generated by the root vectors in g corresponding to the set
f�g j gADþ

\QðpYÞg: By [20, Section 6], we have the equality of formal characters:
ch N� ¼ ch Uðn�

YÞ: Similarly, ch Nþ ¼ chUðnþ
YÞ where nþ

Y is the Lie algebra
generated by the root vectors in g corresponding to the set fg j gADþ

\QðpYÞg: Hence
both

P
*go *b N�

�g;r and
P

*go *b Nþ
g;r are finite-dimensional and have the same dimension.

It follows that PB restricted to the former subspace is a bijection. Thus

PB

X
*go *b

N�
�g;r

0@ 1A ¼
X
*go *b

Nþ
g;r: ð2:14Þ

Note that there is a projection of Nþ onto Nþ
b;r with respect to the direct sum

decomposition of Nþ into restricted weight spaces. Set P *b;B equal to the composition

of PB with this projection. By (2.14), P *b;B is an isomorphism of N�
� *b

onto Nþ
*b
:

Furthermore, Lemma 2.1 ensures that Y � P *b;BðYÞANþ
b;rBþ þ

P
*go *b Nþ

g;rAXB:

Thus (2.13) follows. A similar argument constructs R *b;B: &

3. Action of the center on spherical functions

Set QS ¼ QðSÞ: Note that QS is a subset of PðSÞ and hence C½QS� is a subring of
C½PðSÞ�: Thus C½PðSÞ� is a right C½QS� module where elements of C½QS� act as right
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multiplication. It follows that we may embed C½QS� into the (right) endomorphism
ring Endr C½PðSÞ� of C½PðSÞ�:

Note that C½PðSÞ� is also a right C½A� module where

zl  tðmÞ ¼ qðl;mÞzl

for all zlAC½PðSÞ� and tðmÞAA: Since the Cartan inner product restricts to a
nondegenerate bilinear form on PðSÞ � QS; it follows that the action of C½A� on
C½PðSÞ� is faithful. Hence C½A� also embeds in Endr C½PðSÞ�: Let C½QS�A denote
the subring of Endr C½PðSÞ� generated by C½QS� and A: Note that

zltðmÞ ¼ qðl;mÞtðmÞzl ð3:1Þ

for all lAQS and tðmÞAA: Furthermore (3.1) implies that the nonzero elements of
C½QS� form an Ore set in C½QS�A: Write CðQSÞ for the quotient ring of C½QS� and
set CðQSÞA equal to the localization of C½QS�A at the Ore set C½QS�\f0g: In this
section, we obtain a homomorphism of the center ZðUÞ of U into CðQSÞ½A� which
corresponds to the action of ZðUÞ on the zonal spherical functions.

We give C½A� the structure of a left C½QS�Amodule as follows. Elements ofA act
by left multiplication while

zl � tðmÞ ¼ qðl;mÞtðmÞ

for each lAQS and tðmÞAA: In particular, we may also view C½QS�A as the subring
of the (left) endomorphism ring Endl C½A� of C½A� generated by C½QS� and A:

The action of C½QS�A on C½A� can be extended to an action of elements in
CðQSÞA on certain elements of A as long as we avoid denominator problems.
In particular, consider fAC½QS�A and gAC½QS�: Suppose that tðmÞAA such
that g � tðmÞa0: Note that ðg � tðmÞÞtðmÞ�1 is just an element of C: We denote
ð f � tðmÞÞðg � tðmÞtðmÞ�1Þ�1 by ð fg�1Þ � tðmÞ:

Note that the algebra C½Pð2SÞ� can be identified with a subspace of the dual of
C½A� where

zlðtðmÞÞ ¼ qðl;mÞ

for all zlAC½Pð2SÞ� and tðmÞAC½A�: Moreover, the above two actions C½QS�A are
compatible with the pairing between C½Pð2SÞ� and C½A�: In particular, given
a0AC½Pð2SÞ�; aAC½A�; and bACðQSÞA; we obtain

a0ðb � aÞ ¼ ða0  bÞðaÞ:

Recall that B0
yAB has been chosen so that the image of B0

y
HBy in C½Pð2SÞ� is WY

invariant (see the end of Section 1). For the remainder of the paper, we will drop the
y subscript, setting B ¼ By and B0 ¼ B0

y:
Let CðQSÞAX denote the subalgebra of CðQSÞA generated by CðQSÞ and AX:

Set UX ¼ UþG�AX:
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Lemma 3.1. For each tðgÞAA and XAUþG�tðgÞ; there exists pXACðQSÞAXtðgÞ
such that

XtðlÞ � ðpX � tðlÞÞABþðUXtðgþ lÞÞ þ ðUXtðgþ lÞÞB0
þ ð3:2Þ

for all tðlÞAA such that pX � tðlÞ is defined.

Proof. Given bAQþðpÞ; set P *b;B0 ¼ P *b and R *b;B ¼ R *b: By Lemma 2.1 and (2.10), we

may reduce to the case when XANþAXtðgÞ: Note that if X and X 0 both satisfy

(3.2), then so does X þ X 0: Hence we may assume that there exists a bAQþðpÞ such
that XANþ

b;rtðg0Þ for some tðg0ÞAAXtðgÞ:
Given aAQþðpÞ; set htrðaÞ ¼

P
aiAp mi

a where *a ¼
P

aiAp mi
a *ai: We prove the

lemma by induction on htrðbÞ: In particular, assume first that htrðbÞ ¼ 0: Hence
*b ¼ 0: Since NþT-MT ¼ T ; it further follows that XAT and (3.2) holds with
pX ¼ 1: Now assume that htrð *bÞ40 and (3.2) is true for all elements in Nþ

g;rT with
htrðgÞohtrðbÞ:

By Theorem 2.3, P *b3R *b is an isomorphism of Nþ
b;r onto itself. Let Xi; 1pipm; be a

basis for Nþ
b;r considered as a vector space over C so that P *b3R *b is an upper

triangular m � m matrix. The fact that P *b3R *b is an isomorphism ensures that the

diagonal entries of this matrix, say cii; are nonzero.
By Theorem 2.3, Xitðg0Þ is an element of

R *bðXiÞtðg0Þ þ
X
*xo *b

N�
�x;rAXtðgÞ þ BþUXtðgÞ:

Note that *xo *b implies that htrðx0ÞohtrðbÞ for all x0AQþðpÞ satisfying *x0 ¼ *x: Thus
by the inductive hypothesis, there exists p1ACðQSÞAXtðgÞ such that Xitðg0ÞtðlÞ is an
element of

R *bðXiÞtðg0ÞtðlÞ þ p1 � tðlÞ þ BþUXtðgþ lÞ þ UXtðgþ lÞB0
þ ð3:3Þ

for all l such that p1 � tðlÞ is defined. Since R *bðXiÞAN�
�b;r; we further have that

tðg0ÞR *bðXiÞAtðg0ÞP *bðR *bðXiÞÞ þ
X
*xo *b

AXNþ
x;rtðgÞ þ UXtðgÞB0

þ:

Applying induction to elements of Nþ
x;r; we can find p2ACðQSÞAXtðgÞ such that

tðlÞtðg0ÞR *bðXiÞ � tðlÞtðg0ÞP *bðR *bðXiÞÞ � p2 � tðlÞ

ABþUXtðgþ lÞ þ UXtðgþ lÞB0
þ ð3:4Þ
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for all l such that p2 � tðlÞ is defined. Set p0
2 ¼ qðg0; *bÞz

*bp2: Combining (3.3) and (3.4)
yields

Xitðg0ÞtðlÞ � qð2g0þ2l; *bÞP *b3R *bðXiÞtðlÞtðg0Þ � ðp1 þ p0
2Þ � tðlÞ

ABþUXtðgþ lÞ þ UXtðgþ lÞB0
þ

for all l such that ðp1 þ p0
2Þ � tðlÞ is defined.

By the choice of the fXig; it follows that

P *bðR *bðXiÞÞAciiXi þ
X
joi

CXj:

Hence

Xitðg0Þð1� ciiz
2 *bqð2g0; *bÞÞ � tðlÞ � ðp1 þ p0

2Þ � tðlÞ

A
X
joi

CXjtðg0 þ lÞ þ BþUXtðgþ lÞ þ UXtðgþ lÞB0
þ:

By induction on i; there exist sj in C and p3ACðQSÞAXtðgÞ such that

Xitðg0Þ
Y

1pjpi

ð1� sjz
2 *bÞ � tðlÞ � p3 � tðlÞABþUXtðgþ lÞ þ UXtðgþ lÞB0

þ

for all l such that p3 � tðlÞ is defined. The lemma follows by setting pXi
¼

p3

Q
1pjpi ð1� sjz

2 *bÞ�1 and noting that pX is a linear combination of the pXi
: &

Let Ǔ denote the simply connected quantized enveloping algebra corresponding to
g [8, Section 3.2.10]. Recall that Ǔ is generated by U and the torus Ť ¼
ftðlÞ j lAPðpÞg corresponding to the weight lattice. Set

$A ¼ ftð *mÞ j mAPðpÞg:

The ring CðQSÞ $A is defined in an analogous way to CðQSÞA using the fact that the
right action of A on C½PðSÞ� extends to $A:

Let Ǔ0 denote the group algebra C½Ť� and set ŤY ¼ ftðmÞ j tðmÞAŤ andYðmÞ ¼ mg:
The definition of $A and ŤY yields the following inclusion:

Ǔ0CC½ $A�"Ǔ0C½ŤY�þ: ð3:5Þ

Hence

tðgÞ ¼ tð*gÞ þ tð*gÞ tð1
2
ðgþYðgÞÞ � 1


 �
Atð*gÞ þ U0C½ŤY�þ

for all tðgÞAŤ: It follows that Lemma 3.1 extends to elements XAUþG�tðgÞ for any
tðgÞAŤ; where CðQSÞAXtðgÞ is replaced by CðQSÞAXtð*gÞ; Bþ is replaced by
ðBŤYÞþ; and B0

þ is replaced by ðB0ŤYÞþ:
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Set TX equal to the submonoid of T generated by t2i ; for i ¼ 1;y; n: Consider X

and pX defined as in the previous lemma. Let gl be the zonal spherical function in

B0HBðlÞ with image jlAC½Pð2SÞ� where jl is chosen as in the end of Section 1.
Assume further that pX � tðbÞ is defined. Then

glðXtðbÞÞ ¼ glðpX � tðbÞÞ ¼ jlðpX � tðbÞÞ:

Hence ðjl  pX ÞðtðbÞÞ ¼ glðXtðbÞÞ for all b such that pX � tðbÞ is defined. We have
established the following result.

Theorem 3.2. There is a linear map X : Ǔ-CðQSÞ $A such that

glðutðbÞÞ ¼ ðjl XðuÞÞðtðbÞÞ

for all uAǓ; lAPþð2SÞ and tðbÞAA such that XðuÞ � tðbÞ is defined. Furthermore, if

uAUþG�TXtðgÞ; then XðuÞACðQSÞAXtð*gÞ:

Let ZðǓÞ denote the center of Ǔ: The restriction of X to ZðǓÞ is particularly nice.
Recall that Ǔ admits a direct sum decomposition

Ǔ ¼ Ǔ0"ðG�
þǓ þ ǓUþ

þ Þ:

Let P denote the quantum Harish-Chandra projection of Ǔ onto Ǔ0 using this
decomposition. A central element c acts on elements of LðlÞ; and hence on the zonal
spherical function gl; as multiplication by the scalar zlðPðcÞÞ: In particular

glðctðgÞÞ ¼ zlðPðcÞÞðjlðtðgÞÞÞ

for all cAZðǓÞ and tðgÞAA: It follows that

ðjl XðcÞ � zlðPðcÞÞjlÞ � tðgÞ ¼ 0 ð3:6Þ

for all tðgÞ such that XðcÞ � tðgÞ is defined. The next result shows that (3.6) holds for
all tðgÞ:

Corollary 3.3. The restriction of X to ZðǓÞ is an algebra homomorphism from ZðǓÞ
to CðQSÞ $A such that

jl XðcÞ ¼ zlðPðcÞÞjl ð3:7Þ

and thus

glðctðbÞÞ ¼ ðjl XðcÞÞðtðbÞÞ ð3:8Þ

for all cAZðǓÞ; lAPþð2SÞ; and tðbÞAA: Furthermore, if zAZðǓÞ and

zAUþG�TXtðgÞ; then XðzÞACðQSÞAXtð*gÞ:
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Proof. Let cAZðǓÞ: Note that we can find a nonzero element p ¼
P

pbzb in C½QS�
such that pXðcÞ is in the subring of CðQSÞ $A generated by C½QS� and $A: It follows
that there exists f ¼

P
fbzb in C½QS� such that p�1f ¼ jl XðcÞ � zlðPðcÞÞjl:

Hence
P

fbqðb;gÞ ¼ 0 for all g such that
P

b pbqðb;gÞa0:
Assume that fa0: Choose g such that ðg; bÞa0 for at least one b with fba0 and

ðg; b0Þa0 for at least one b0 with pb0a0: A standard Vandermonde determinant
argument shows that there exists NX0 such that

P
b fbqðb;mgÞa0 for all mXN: By

the previous paragraph,
P

pbqðb;mgÞ ¼ 0 for all mXN: Another application of the
Vandermonde determinant argument yields p ¼ 0; a contradiction. Hence f ¼ 0:
This proves (3.7) and (3.8) immediately follows. The last assertion of the corollary is
a direct consequence of Theorem 3.2. &

The restricted Weyl group WY acts on CðQSÞ $A by

s � tðmÞ ¼ tðsmÞ

and

s � zm ¼ zsm

for any sAWY and tðmÞA $A: In the classical case, elements of the center of the
classical enveloping algebra of UðgÞ can be realized as WY invariant elements of the
classical analog of CðQSÞ $A with respect to their action on spherical functions. The
next theorem is a quantum version of this result.

The group algebra C½QS� is just the Laurent polynomial ring corresponding to the
polynomial ring C½z�*ai j aiAp�: Let CððQSÞÞ denote the formal Laurent series ring
Cððz�*ai j aiApÞÞ: In particular, the ring CððQSÞÞ consists of finite linear combina-
tions of possibly infinite sums of the form

P
gpb agz

g where g and b are elements of
QS and each agAC: Note that $A embeds inside EndrCððQSÞÞ whereX

gpb

agz
g  tðnÞ ¼

X
gpb

agq
ðg;nÞzg ð3:9Þ

for all
P

gpb agz
gACððQSÞÞ and tðnÞA $A: Let CððQSÞÞ $A denote the subring of

EndrCððQSÞÞ generated by CððQSÞÞ and $A: The quotient ring CðQSÞ embeds inside
of CððQSÞÞ in a standard way. It follows that CðQSÞ $A is a subring of CððQSÞÞ $A:

The relations in (3.9) ensures that the multiplication map yields vector space
isomorphisms

CððQSÞÞ $ADCððQSÞÞ#C½ $A�DC½ $A�#CððQSÞÞ: ð3:10Þ

In particular, elements of CððQSÞÞ $A are finite sums of the form
P

i aibi where
aiAC½ $A� and biACððQSÞÞ: Grouping together the coefficients of each zb; we can
write any element in CððQSÞÞ $A as a finite linear combination of possibly infinite
sums of the form

P
gob agz

g where g and b are in QS and each agAC½ $A�: However,
the reader should be aware that not all such sums are elements of CððQSÞÞ $A:
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Let o0
i be the fundamental weight in PþðSÞ corresponding to the restricted root *ai:

Since QðSÞ is a subset of PðSÞ; it follows that CððQSÞÞ is a subring of the Laurent
power series ring Cððz�o0

i j aiApÞÞ: Thus we may view CððQSÞÞ $A as a subring of
EndrCððz�o0

i j aiApÞÞ: This interpretation will be needed in the proof below where
elements of CððQSÞÞ $A act on zonal spherical functions.

Theorem 3.4. The image of ZðǓÞ under X is contained in ðCðQSÞ $AÞWY :

Proof. Let aAZðǓÞ and s ¼ sa be the reflection in WY corresponding to a simple
root aAS: Assume that XðaÞas �XðaÞ: We can think of XðaÞ � s �XðaÞ as an
element of CððQSÞÞ $A: It follows from (3.10) that there exists a finite set fg1;y; grg
of noncomparable elements in QS and elements abi

AC½ $A� for bipgi and 1pipr

such that

XðaÞ � s �XðaÞ ¼
X

i

X
bipgi

abi
zbi :

We may further assume that agi
a0 for each 1pipr:

Recall that the zonal spherical function jl can be written as a sum of the form

zl þ
X
bol

ybzb;

where each bAQS and each ybAC (see (1.3)). Hence

0 ¼ jl  ðXðaÞ � s �XðaÞÞA
X

i

ðzlðagi
ÞÞzlþgi þ

X
i

X
bolþgi

Czb:

Hence zlðagi
Þ ¼ 0 for all 1pipr and all lAPþð2SÞ: This forces each agi

¼ 0; a
contradiction. &

We wish to extend Corollary 3.3 and Theorem 3.4 to B invariant elements of Ǔ: In
particular, let ǓB denote the subalgebra of Ǔ consisting of adrB invariant elements,
where adr refers to the right adjoint action. (For more information about the right
adjoint action, see [21, (1.1) and (1.2)].) Since B is not a Hopf subalgebra of U ; it is
not obvious that the centralizer CǓðBÞ ¼ fcAǓ j bc ¼ cb for all bABg of B in Ǔ is
equal to the set ǓB: Nevertheless, the next lemma shows that this is indeed true.

Lemma 3.5. ǓB ¼ CǓðBÞ: In particular, ZðǓÞ is a subset of ǓB:

Proof. Note that the second assertion is an immediate consequence of the first. It is
straightforward to check that CǓðBÞDǓB: (The argument follows as in [8, Lemma
1.3.3] using the right adjoint action instead of the left adjoint action.)

Recall that
P

sðað1ÞÞað2Þ ¼ eðaÞ for all aAU where e is the counit for U and the
coproduct is given in Sweedler notation, DðaÞ ¼

P
að1Þ#að2Þ: Recall further that B is
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a left coideal and so DðBÞCU#B: Suppose that cAǓB: Then

ac ¼
X

að1Þeðað2ÞÞc ¼
X

að1Þsðað2ÞÞcað3Þ

¼
X

eðað1ÞÞcað2Þ ¼ c
X

eðað1ÞÞað2Þ ¼ ca

for all aAB: Hence cACǓðBÞ and ǓBDCǓðBÞ: &

Theorem 2.2(ii) and (3.5) imply the following inclusion

ǓDððBŤYÞþǓ þ Nþ
þ
$AÞ"C½ $A�: ð3:11Þ

Let PA denote the projection of Ǔ onto C½ $A� using this decomposition.
Let lAPþð2SÞ: Recall [21, Theorem 3.2] that ðLðlÞÞB is one dimensional. Choose

a nonzero generating vector vl of weight l for LðlÞ: By [21, Lemma 3.3], we can

choose a nonzero vector xl in ðLðlÞÞB such that xl ¼ vl þ vlNþ
þ : Suppose that

cAǓB: By the previous lemma, xlcu ¼ xluc ¼ 0 for all uABþ: Hence xlc is a scalar

multiple of xl: It follows from (3.11) and the definition of PA that

xlcAxlðPAðcÞ þ Nþ
þÞDzlðPAðcÞÞvl þ vlN

þ
þ :

Hence xlc ¼ zlðPAðcÞÞxl:
Consider the special case when c is an element in ZðǓÞ: Now xlAvl þ vlBþ (see

the proof of [20, Theorem 7.7]). In particular, we can find a b such that b � 1ABþ
and xl ¼ vlb: It follows that vlbc ¼ vlcb: Therefore, xlc ¼ zlðPðcÞÞxl: By the

previous paragraph, we see that zlðPAðcÞÞ ¼ zlðPðcÞÞ for all cAZðǓÞ: In particular,

PAðcÞ agrees with the image of PðcÞ under projection onto C½ $A� using (3.5). Thus
arguing as in Corollary 3.3 and Theorem 3.4, we have the following generalization of
Theorem 3.4.

Theorem 3.6. The restriction of X to ǓB is an algebra homomorphism from ǓB to

ðCðQSÞ $AÞWY such that

jl XðcÞ ¼ zlðPAðcÞÞjl

and

glðctðbÞÞ ¼ ðjl XðcÞÞðtðbÞÞ

for all cAǓB; lAPþð2SÞ; and tðbÞAA:

Consider cAǓB: As in the classical case, we refer to the image XðcÞ in
ðCðQSÞ $AÞWY as the radial component of c:
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4. Central elements: the rank one case

In this section, we study certain central elements of Ǔ and compute their radial
components when the restricted root system has rank one. In particular, we assume
that p contains a single root ai and so Sþ ¼ f*aig: Assume for the moment that
p ¼ p and so YðaiÞ ¼ �ai: Then U is just Uqðsl 2Þ and is generated by xi; yi; ti; t�1

i :
Set qi ¼ qðai ;aiÞ=2: Note that

ðqiti þ q�1
i t�1

i Þ þ ðqi � q�1
i Þ2yixi ð4:1Þ

is central in U : We show that the other rank one cases contain a similar central
element.

Note that *ai � gYðaiÞYðaiÞ ¼ 2*ai: Since we are assuming that S is reduced, it follows that
ai þYð�aiÞ is not a root in D:Hence ðai;Yð�aiÞÞ ¼ 0:Using Araki’s classification of
irreducible symmetric pairs, we have the following possibilities for YðaiÞ:

g is of type A1 with p ¼ faig and YðaiÞ ¼ �ai; ð4:2Þ

g is of type A1 � A1 with p ¼ fai; apðiÞg and YðaiÞ ¼ �apðiÞ; ð4:3Þ

g is of type A3 with p ¼ fa1; a2; a3g; ai ¼ a2; and ð4:4Þ

Yða2Þ ¼ �a1 � a3 � a2;

g is of type Br with p ¼ fa1;y; arg; ai ¼ a1; and ð4:5Þ

Yða1Þ ¼ �a1 � 2a2 �?� 2ar;

g is of type Dr with p ¼ fa1;y; arg; ai ¼ a1; and ð4:6Þ

Yða1Þ ¼ �a1 � 2a2 �?� 2ar�2 � ar�1 � ar:

Recall that the ðad UÞ module ðad UÞtð�2mÞ for mAPþðpÞ contains a one-
dimensional subspace of ZðǓÞ: (See [8, 7.1.16–7.19 and 7.1.25] or [11] for more
information about ZðǓÞ:) Moreover, there exists a (unique) nonzero vector cm in
ðad UÞtð�2mÞ-ZðǓÞ such that

cmAtð�2mÞ þ ðad UþÞtð�2mÞ:

We find a ‘‘small’’ weight mAPþðpÞ such that cm looks like (4.1) modulo ðMŤYÞþǓ þ
ǓðMŤYÞþ: In particular, m will satisfy the conditions of the following lemma. Let w0

denote the longest element of the Weyl group W associated to the root system of g:
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Lemma 4.1. There exists mAPþðpÞ such that

Yðm� ai=2Þ ¼ m� ai=2 and Yð�w0m� ai=2Þ ¼ �w0m� ai=2: ð4:7Þ

Proof. Suppose first that g satisfies the conditions of (4.2) or (4.3) above. Then ai=2
is in PþðpÞ and w0ai=2 ¼ �ai=2: Hence we set m ¼ ai=2 in these cases.

Let oj be the fundamental weight corresponding to aj; for each j: The remaining
cases are handled below.

Case (4.4): Set m ¼ o1: We have o1 ¼ 1=4ða1 þ 2a2 þ 3a3Þ while �woo1 ¼ o3 ¼
1=4ð3a1 þ 2a2 þ a3Þ: Thus (4.7) follows since i ¼ 2:

Case (4.5): Set m ¼ or: In this case or ¼ �w0or ¼ 1=2ðrar þ ðr � 1Þar�1 þ?þ
3a3 þ 2a2 þ a1Þ: Thus (4.7) follows since i ¼ 1:

Case (4.6): In this case, m can be either or or or�1: Note that or ¼ 1=2ðr
2
ar þ

ðr�2Þ
2

ar�1 þ ðr � 2Þar�2 þ?2a2 þ a1Þ and or�1 ¼ 1=2ðr
2
ar�1 þ ðr�2Þ

2
ar þ ðr � 2Þar�2 þ

?2a2 þ a1Þ: Furthermore, �woðorÞ ¼ or�1 and i ¼ 1: &

Recall the definition of the Harish-Chandra projection P given in Section 3. We
have the following description of the Harish-Chandra projection of central elements
cm of Ǔ [8, 7.1.19 and 7.1.25]: up to a nonzero scalar,

PðcmÞ ¼
X

nAPþðpÞ
#tð�2nÞdim LðmÞn ð4:8Þ

where

#tðbÞ ¼
X

wAW

tðwbÞqðr;wbÞ:

The next result is the first step in understanding the central element cm when m
satisfies the conditions of Lemma 4.1.

Proposition 4.2. Suppose that mAPþðpÞ is chosen as in Lemma 4.1 to satisfy condition

(4.7). Then

cmAyiM
�Mþxi þPðcmÞ þ ðMŤYÞþǓ þ ǓðMŤYÞþ:

Moreover, PðcmÞAC½TX�tð�2mÞ:

Proof. The last statement is an immediate consequence of (4.8). Note that cm is a
sum of zero weight vectors in ðad UÞtð�2mÞ: By [10, Theorem 3.3], we can construct
a basis for the zero weight space of ðad UÞtð�2mÞ consisting of vectors in sets of the
form

a�bbbtð�2mÞ þ
X

gAQþðpÞ

X
0og0ob�g

G�
�g0U

þ
g0 tð�2mþ 2gÞ;
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where a�b is a weight vector of weight �b in ðad U�Þtð�2mÞ and bb is a weight vector
of weight b in ðad UþÞtð�2mÞ: It further follows from [8, 7.1.20], that the weights b
appearing in the above expression satisfy bpm� w0m: Hence

cmA
X

gAQþðpYÞ
G�

�mþw0mþgU
þ
m�w0m�gTYtð�2mÞ

þ
X

fb j 0p *bo *m�fw0mw0mg

G�
�bUþ

b TXtð�2mÞ: ð4:9Þ

By choice of m; we have that m� w0m� aiAQðpYÞ: Hence 0p *bo *m�gw0mw0m forces
bAQþðpYÞ: Thus (4.9) implies that

cmAyitiM
�MþxiTYtð�2mÞ þPðcmÞ þMþǓ þ ǓMþ: ð4:10Þ

The assumption on m further implies that titð�2mÞ ¼ tð�2mþ aiÞAŤY: Hence

titð�2mÞ ¼ 1þ ðtitð�2mÞ � 1ÞACþ UC½ŤY�þ:

The lemma now follows from this expression and (4.10). &

The next lemma simplifies the component of cm coming from yiM
�Mþxi:

Lemma 4.3. yiM
�MþxiDCyixi þMþU þ UMþ:

Proof. Consider an element yibcxi of U where bAM� and cAMþ: Using the
relations of U ; we can rewrite this element as a sum of terms of the form yic

0b0d 0xi

where c0AMþ; b0AM-U0; and d 0AM�: Since aiepY; we have yic
0b0d 0xi ¼ c0yib

0xid
0

up to a nonzero scalar. So if either c0 is in Mþ
þ or d 0 is in M�

þ; then
yic

0b0d 0xiAMþ
þU þ UM�

þDMþU þ UMþ: If neither of these conditions hold, we
may assume that c0b0d 0 ¼ b0 which is an element of M-U0: Then
yib

0xiACyixi þ yixiðM-U0ÞþDCyixi þMþU þ UMþ: &

The tensor product decomposition (2.1) implies the following direct sum
decomposition:

U0 ¼ C½T 0�"U0C½TY�þ: ð4:11Þ

Recall the direct sum decomposition (3.5) using $A instead of T 0: Let P0
A denote the

map from Ǔ to C½ $A� defined by composing the Harish-Chandra map P with the
projection of Ǔ0 into C½ $A� using (3.5). Similarly, let P0 denote the map from U onto
C½T 0� which is the composition ofP with the projection onto C½T 0� using (4.11). Note
that

P0
AðaÞ ¼

X
m

amtð*aiÞm if and only if P0ðaÞ ¼
X

m

amtm
i ð4:12Þ

for all aAU :
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Recall the dotted Weyl group action on Ť defined by

w:tðmÞqðr;mÞ ¼ tðwmÞqðr;wmÞ ð4:13Þ

for all tðmÞAŤ and wAW : By [8, 7.1.17 and 7.1.25], the image of ZðǓÞ under P is
contained in C½Ť�W ::Define the dotted action of WY on $A using the same formula as
in (4.13) where now w is an element of WY and tðmÞA $A:

Lemma 4.4. For all mAPþð2SÞ; the image of cm under P0
A is invariant under the dotted

action of WY: Moreover, if m satisfies the conditions of (4.7) then P0ðcmÞ is a scalar

multiple of qðr;*aiÞti þ q�ðr;*aiÞt�1
i :

Proof. Recall that w0 is the longest element of W and let w0
0 denote the longest

element of the Weyl group /sa j aApYS: Set w ¼ w0
0w0: By [20, Section 7] or

checking (4.2)–(4.6) directly, we see that w0
0ai ¼ Yð�aiÞ and w0

0YðaiÞ ¼ �ai: Further
checking the possibilities for w0 in (4.2)–(4.6) yields that wai ¼ YðaiÞ and wYðaiÞ ¼
ai: Hence w*ai ¼ �*ai and we may identify WY with the subgroup /wS of W :

It is straightforward to check using (4.2) through (4.6) that w0 sends ai to �ai:
Furthermore, w0 sends a simple root in pY to the negative of a simple root in pY: It
follows that w permutes the elements of pY: Thus qðr;gÞ ¼ qðr;wgÞ for all g such that
YðgÞ ¼ g: Hence w:tðmÞ ¼ tðwmÞ for all m such that YðmÞ ¼ m: It follows that C½ŤY�þ
is invariant under the dotted action of WY: Thus

P0
AðC½Ť�W :ÞDC½ $A�WY:

which proves the first assertion of the lemma.
Now assume that m satisfies (4.7). It follows that P0

Aðtð�2mÞÞ ¼ tð�*aiÞ: By
Proposition 4.2, PðcmÞAC½TX�tð�2mÞ: Hence (2.1) and (2.10) imply that
P0

AðcmÞAC½AX�tð�*aiÞ: The second assertion now follows from (4.12) and the fact
that the only elements of C½AX�tð�*aiÞ invariant under the dotted action of WY are
scalar multiples of qðr;*aiÞtð*aiÞ þ q�ðr;*aiÞtð�*aiÞ: &

An immediate consequence of (4.8) is that zlðPðcmÞÞa0; and more importantly,
P0ðcmÞa0 for any choice of l and m: This fact is used in the next result. In particular,
we show that when m is chosen as in Lemma 4.1, then cm looks like the central
element of Uqðsl 2Þ described in (4.1).

Theorem 4.5. Assume that m satisfies the conditions of (4.7). Let a be the nonzero

scalar guaranteed by Lemma 4.4 (and the above comments) such that P0ðcmÞ ¼
aðqðr;*aiÞti þ q�ðr;*aiÞt�1

i Þ: Then

cmAa½qðr;*aiÞti þ q�ðr;*aiÞt�1
i þ ðqi � q�1

i Þðqðr;*aiÞ � q�ðr;*aiÞÞyixi�

þ ðMŤYÞþǓ þ ǓðMŤYÞþ:
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Proof. By Proposition 4.2 and Lemmas 4.3 and 4.4, there exists cAC such that

cm � ðcyixi þ bÞAðMŤYÞþǓ þ ǓðMŤYÞþ; ð4:14Þ

where

b ¼ aðqðr;*aiÞti þ q�ðr;*aiÞt�1
i Þ: ð4:15Þ

Let ǓCðqÞ denote the CðqÞ subalgebra of Ǔ generated by xi; yi; for 1pipn and Ť:
Write UCðqÞ for ǓCðqÞ-U :Note that UCðqÞ and ǓCðqÞ are the versions of the quantized
enveloping algebra and the simply quantized enveloping algebra studied in [8,11,12].
Thus cm is actually an element of ðad UCðqÞÞtð�2mÞ; and so both a and c are elements
of CðqÞ:

Consider the C algebra automorphism c of ǓCðqÞ defined by cðxjÞ ¼ yjtj; cðyjÞ ¼
t�1
j xj; cðtÞ ¼ t and cðqÞ ¼ q�1 for all 1pjpn and tAŤ: A straightforward check
shows that cððad xiÞbÞ ¼ ðad yitiÞcðbÞ and cððad yiÞbÞ ¼ ðad t�1

i xiÞcðbÞ for all
bAǓCðqÞ: In particular, if xAðad ðUCðqÞÞþÞtðmÞ; then so is cðxÞ:

Recall that cm has been scaled so that cmAtð�2mÞ þ ðad UþÞtð�2mÞ: Hence
cðcmÞAtð�2mÞ þ ðad UþÞtð�2mÞ: Since ðad UþÞǓ-ZðǓÞ ¼ 0; it follows that
cðcmÞ ¼ cm: Therefore, applying c to (4.14) using the form of b given in (4.15)
yields cm is an element of

cðaÞðq�ðr;*aiÞti þ qðr;*aiÞt�1
i Þ þ cðcÞt�1

i xiyiti þ ðMŤYÞþǓ þ ǓðMŤYÞþ:

Thus

cmAcðaÞðq�ðr;*aiÞti þ qðr;*aiÞt�1
i Þ þ cðcÞðqi � qiÞ�1ðti � t�1

i Þ þ cðcÞyixi

þ ðMŤYÞþǓ þ ǓðMŤYÞþ:

A comparison with (4.14) yields cðcÞ ¼ c: Note that q�ðr;*aiÞti þ qðr;*aiÞt�1
i is not

invariant with respect to the dotted WY action. Hence c must be nonzero. Moreover,
in order for cðaÞðq�ðr;*aiÞti þ qðr;*aiÞt�1

i Þ þ cðqi � qiÞ�1ðti � t�1
i Þ to be invariant under

the dotted WY action, we must have c ¼ ðqi � q�1
i Þðqðr;*aiÞ � q�ðr;*aiÞÞcðaÞ: The fact

that cðcÞ ¼ c and cððqi � q�1
i Þðqðr;*aiÞ � q�ðr;*aiÞÞÞ ¼ ðqi � q�1

i Þðqðr;*aiÞ � q�ðr;*aiÞÞ now
forces cðaÞ ¼ a: &

Let w be the Hopf algebra automorphism (which restricts to the identity on MT)
defined by

wðxiÞ ¼ q�1=2ðr;YðaiÞ�aiÞxi

and

wðyiÞ ¼ q1=2ðr;YðaiÞ�aiÞyi:

By [21, Section 5], we may assume that B0 ¼ wðBÞ:
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Note that Bþ contains

Bi ¼ yiti þ *yðyiÞti

and B0
þ contains

B0
i ¼ yiti þ q�ðr;YðaiÞ�aiÞ *yðyiÞti:

By [21, Lemma 5.1], we have

qðr;YðaiÞþaiÞ *yðypðiÞÞt�1
pðiÞxpðiÞAt�1

i xi
*yðyiÞ þMþ

þU þ UMþ
þ:

When i ¼ pðiÞ; it follows that

qðr;YðaiÞþaiÞ *yðyiÞt�1
i xiAt�1

i xi
*yðyiÞ þMþ

þU þ UMþ
þ: ð4:16Þ

Assume for the moment that iapðiÞ: The assumption that S is reduced ensures
that YðaiÞ ¼ �apðiÞ and ðai; apðiÞÞ ¼ 0: Moreover, checking cases (4.2)–(4.6) yields

that *yðyiÞ ¼ t�1
pðiÞxpðiÞ: Hence t�1

i xi
*yðyiÞ ¼ t�1

i xit
�1
pðiÞxpðiÞ ¼ t�1

pðiÞxpðiÞt
�1
i xi ¼ *yðyiÞt�1

i xi:

It follows that (4.16) holds when iapðiÞ as well.
The next lemma will allow us to compute XðyixiÞ: This, in turn, will be used to

compute the image of cm under X where m satisfies the conditions of (4.7).

Lemma 4.6. Let tðlÞAT such that 2s ¼ ðl; aiÞ ¼ ðl;Yð�aiÞÞa0: Then

yixitðlÞ þ q�4s ðti � t�1
i Þ

ðq�4s � 1Þðqi � q�1
i Þ tðlÞ

is an element in BþU þ UB0
þ:

Proof. Set ai ¼ ðr;YðaiÞ � aiÞ: Note that

Bit
�1
i xitðlÞ ¼ yixitðlÞ þ *yðyiÞtit

�1
i xitðlÞ:

Now ðr;YðaiÞ þ aiÞ ¼ ðai; aiÞ þ ai: Hence by (4.16),

yixitðlÞ þ q�ai t�1
i xi

*yðyiÞtitðlÞ � Bit
�1
i xitðlÞAMþU þ UMþ:

On the other hand

t�1
i xitðlÞB0

i ¼ q�2sxiyitðlÞ þ q2s�ai t�1
i xi

*yðyiÞtitðlÞ

¼ q�2syixitðlÞ þ q�2s ðti � t�1
i Þ

ðqi � q�1
i Þ tðlÞ þ q2s�ai t�1

i xi
*yðyiÞtitðlÞ:
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Thus

ðq�4s � 1ÞyixitðlÞ þ q�4s ðti � t�1
i Þ

ðqi � q�1
i Þ

tðlÞABþU þ UB0
þ: &

Set t̃i ¼ tð*aiÞ: We are now ready to compute the radial components of the central
elements described in Theorem 4.5.

Theorem 4.7. Let m satisfy the conditions of (4.7). Let a be the nonzero scalar such that

P0ðcmÞ ¼ aðqðr;*aiÞti þ q�ðr;*aiÞt�1
i Þ: Then

XðcmÞ ¼ a½q�ðr;*aiÞt̃iðq2ðr;*aiÞz2*ai � 1Þ þ qðr;*aiÞ t̃�1
i ðq�2ðr;*aiÞz2*ai � 1Þ�ðz2*ai � 1Þ�1:

Proof. By Theorem 4.5 and Lemma 4.6, a�1cmtðlÞ is an element in

ðqðr;*aiÞti þ q�ðr;*aiÞt�1
i ÞtðlÞ þ ðqðr;*aiÞ � q�ðr;*aiÞÞðti � t�1

i ÞtðlÞ
ðq2ðl;*aiÞ � 1Þ þ BþǓ þ ǓB0

þ

for all tðlÞAA: (Here ðl; *aiÞ corresponds to 2s in the notation of the previous
lemma.) This set simplifies to

ðq2ðl;*aiÞþ2ðr;*aiÞ � 1Þq�ðr;*aiÞt̃i þ ðq2ðl;*aiÞ�2ðr;*aiÞ � 1Þqðr;*aiÞt̃�1
i

ðq2ðl;*aiÞ � 1Þ tðlÞ þ BþǓ þ ǓB0
þ:

Set Y to be the right-hand expression in the statement of the theorem. The
desired formula now follows from the fact that Y is the unique element in CðQSÞ $A
such that

a�1Y � tðlÞ ¼ ðq2ðl;*aiÞþ2ðr;*aiÞ � 1Þq�ðr;*aiÞt̃i þ ðq2ðl;*aiÞ�2ðr;*aiÞ � 1Þqðr;*aiÞt̃�1
i

ðq2ðl;*aiÞ � 1Þ


 �
tðlÞ

for all tðlÞAA: &

5. Graded zonal spherical functions

Recall the ad U filtration on U defined in [8, 5.3.1] (see also [12, Section 2.2]). In
this section, we use a modified version of this filtration that is chosen so that the
associated graded ring of U contains B as a subalgebra.

Define a degree function on U by

deg xi ¼ deg yiti ¼ 0 for all i; 1pipn; ð5:1Þ

deg t�1
i ¼ 1 for all i such that aiAp\pY; ð5:2Þ

deg t ¼ 0 for all tATY: ð5:3Þ
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This can be made more precise as follows. Let tðmÞ be an element of T : By (2.1),
we can write m ¼ m1 þ m2 where m1AT 0 and m2ATY: Thus tðmÞ ¼ tðm1Þtðm2Þ with
degree of tðm2Þ ¼ 0: Furthermore, by the definition of T 0; there exist integers mi such
that

m1 ¼
X
aiepY

miai:

It follows that tðm1Þ; and hence tðmÞ; has degree m where m ¼
P

aiepY mi: Moreover,
by (5.1), every element of G�tðmÞUþ has degree m: Let F denote the filtration on U

defined by the above degree function. In particular, given uAU ; we can write u ¼
u1 þ?us where uiAG�tðZiÞUþ for each i: Then uAFrU provided that the degree of
tðZiÞ is less than or equal to r for each i; 1pips:

Write gr U for the associated graded algebra with respect to this filtration. Note
that elements of Uþ; G�; and M are all in degree zero. Moreover the relations
satisfied by the elements of Uþ (resp. G�; M) are homogeneous of degree 0.
Therefore, the map a/gr a defines an isomorphism between Uþ and gr Uþ;
between G� and gr G�; and between M and grM: Using this isomorphism, we
write Uþ for gr Uþ; G� for gr G�; and M for grM: Furthermore, if S is a
subset and a is an element of Uþ; G�; or M then we simply write a for gr a and S

for gr S:
The next lemma shows that a similar identification holds for B: In particular, we

may identify B with gr B as a subalgebra of gr U :

Lemma 5.1. For all bAB; deg b ¼ 0: Moreover, the filtration F restricts to the

trivial filtration on B and the map a/gr a defines an isomorphism between B

and gr B:

Proof. Let B̃ denote the algebra generated freely over MþTY by elements B̃i;
1pipn: By [20, Theorem 7.4], there is a homomorphism from B̃ onto B which is the
identity on MTY; sends B̃i to Bi for aiepY; and sends B̃i to yiti for aiApY:

By (5.1) and (5.3), we have that deg a ¼ 0 for all aAMTY: Consider Bi ¼
yiti þ *yðyiÞti for some aiepY:We have deg yiti ¼ 0: Recall that *y is a particular lift of
the involution y to a C algebra automorphism of U : It follows from the explicit
description of *y given in [20, Theorem 7.1] that *yðyiÞAUþtðYðaiÞÞ: Since
tðYðaiÞÞti ¼ tðYðaiÞ þ aiÞATY; we have that deg *yðyiÞti ¼ 0 as well. So the
generators of B are all in degree 0. By the previous paragraph, the relations
satisfied by these generators are all homogeneous of degree 0. Hence all the
elements of B are in degree 0 and the generators of gr B satisfy exactly the same
relations as B: &

Note that not all elements of C½T � are in degree 0: So C½T � does not naturally
identify with its graded image in the same way as the subalgebras discussed above.
However, the algebra map induced by ti/gr ti for 1pipn does define an
isomorphism from C½T � to grC½T �: Thus any gr T module inherits the structure of
a T module via this isomorphism.
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Set hY ¼ flA
P

1pipn Qai jYðlÞ ¼ �lg: Consider lAhY and let vl be a (left) T

weight vector of weight l: Note that tvl ¼ vl for all tATY: Make Cvl into a
grMTUþ module by insisting that Mþvl ¼ Uþ

þ vl ¼ 0: Define the left gr U module
%MðlÞ by

%MðlÞ ¼ gr U#ðgr MTUþÞvl:

By Lemma 2.1 and Theorem 2.2, %MðlÞ ¼ gr N�#vl as gr N� modules. Since N� is a
subalgebra of G�; N� can be identified with gr N� via the obvious map.

The algebra G� can be given the structure of a Uþ module as in [8, Sections 5.3
and 7.1]. In particular, let x0

i and x00
i be functions on G� such that

ðad xiÞm ¼ x0
iðmÞ þ x00

i ðmÞt2i

for all mAG� and for all i such that 1pipn: Given i such that 1pipn; the action of
xi on the element mAG� is defined by

xi  m ¼ x0
iðmÞ:

Lemma 5.2. N� is a Uþ submodule of G�: Moreover, %MðlÞDN� as Uþ modules for

all lAhY:

Proof. First, note that by [20, Section 6], N� is an adMþ module. In particular,
ðad xÞnAN� for all xAMþ and nAN�: It follows that x00

i ðnÞ ¼ 0 and xi  n ¼ ðad xiÞn
is an element of N� for all aiApY and nAN�: Thus Mþ  N�DN�:

Now N� is generated by elements of the form ðad yÞyjtj [20, Section 6] where
yAM� and ajepY: By the defining relations of U ; ðad xkÞððad yÞyjtjÞ ¼
ðad yÞðad xkÞyjtjÞ for all k such that akepY: It follows that

x0
kððad yÞyjtjÞ ¼ ðad yÞ �dkj

qj � q�1
j

 !
:

Thus x0
kððad yÞyjtjÞ ¼ 0 for yAM�

þ while x0
kðyjtjÞ is a scalar. Therefore x0

kðnÞAN� for
all nAN� and akepY: The fact that G� is generated by N� and M� [20, Section 6]
yields that N� is a Uþ submodule of G�:

Fix nAN�: By (2.4), ðgr xiÞðn#vlÞ ¼ gr ððad xiÞnÞ#vl since xivl ¼ 0: Further-
more, gr ðad xiÞn ¼ x0

iðnÞ for all aiepY by the definition of the filtration F: Now
consider aiApY: It follows that ðad xiÞn ¼ x0

iðnÞ and so ðgr xiÞðn#vlÞ ¼ x0
iðnÞ#vl in

this case as well. Thus, the map n/n#vl is an isomorphism of Uþ modules under
the identification of Uþ with gr Uþ: &

Recall that N� is an ad T module. Since vl is a T weight vector, it follows that
%MðlÞ is a direct sum of its T weight spaces with highest weight equal to l: Moreover,
suppose b is a weight vector in either G� or Uþ; and m is a weight vector in %MðlÞ:
Note that the weight of ðgr bÞm is equal to the sum of the weights of gr b and m:
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Lemma 5.3. %MðlÞ is a simple gr U module for each lAhY:

Proof. Observe that %MðlÞ is a cyclic gr U module generated by vl: So it is sufficient
to show that 1#vl is in the gr U module generated by n#vl for any weight vector
nAN�:

By the discussion preceding the lemma, ðgr bÞm has higher weight than m for any
nonzero weight vector gr b in gr Uþ

þ and nonzero weight vector m in %MðlÞ: Hence, it
is enough to show that the only vectors in %MðlÞ annihilated by Uþ

þ are scalar
multiples of 1#vl: This follows from Lemma 5.2 and the fact that the only Uþ

invariant vectors of G� are scalar multiples of 1 [12, Lemma 4.7(i)]. &

Now let vr
l be a right T weight vector of weight l: We can make Cvr

l into a right
gr U module as follows. Set vr

lMþ ¼ vr
lG

�
þ ¼ 0 and set

%MðlÞr ¼ Cvr
l#gr MTG�gr U :

Replacing xi with yiti and N� with Nþ; we can give Nþ a G� module structure
analogous to the Uþ module structure of N�: Furthermore, as in Lemma 5.2, %MðlÞr

is isomorphic to Nþ as a G� module. Moreover, as in Lemma 5.3, %MðlÞr is a simple
right gr U module.

Lemma 5.4. Let l and l0 be elements in hY: The map which sends

m#vl/m#vl0

for all mAN� defines an isomorphism from %MðlÞ onto %Mðl0Þ as Uþ modules, G�

modules, and B modules. Similarly, the map which sends

vr
l#m/vr

l0#m

for all mANþ defines an isomorphism from %MðlÞr
onto %Mðl0Þr

as Uþ modules, G�

modules, and B modules.

Proof. We prove the first assertion. The second follows in a similar fashion. The
proof of Lemma 5.2 shows that the map n/n#vl is a Uþ module isomorphism
from N� onto %MðlÞ: This isomorphism is independent of l: Hence %MðlÞ is
isomorphic to %Mðl0Þ as Uþ modules for all l; l0AhY:

Now N� is a C½TY� module via the adjoint action. Recall that tvl ¼ vl for all
tATY: Thus, ðgr tÞðn#vlÞ ¼ ðgr tnt�1Þ#vl for all tATY and nAN�: Hence
n/n#vl is an isomorphism of C½TY� modules. This isomorphism is independent
of the choice of lAhY: Therefore %MðlÞD %Mðl0Þ as C½TY� modules for all l; l0AhY:

Recall that %MðlÞ ¼ gr U#vl ¼ N�#vl as left N� modules. In particular, the
action of an element in N� on %MðlÞ just corresponds to left multiplication by that
element. Thus the action of N� on %MðlÞ is independent of l:
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Now consider yiti where aiApY: In particular, yiti is an element of M: Recall that
N� is ad yiti invariant while yitivl ¼ 0: Hence, given nAN�; we have

ðyitinÞ#vl ¼ ððad yitiÞnÞ#vl:

Thus the action of yiti on %MðlÞ corresponds to the action of ðad yitiÞ on N� for all
aiApY: As mentioned earlier [20, Section 6] G� is generated by M� and N�: It
follows that the action of G� on %MðlÞ is independent of l:

Recall the identification of B with gr B: It follows from the proof of Lemma 5.1
that gr B is contained in the subalgebra of gr U generated by gr Uþ; gr G�; and
grC½TY�: Thus the isomorphism of %MðlÞ to %Mðl0Þ as B modules follows from their
isomorphism as Uþ; G�; and C½TY� modules. &

Let %MðlÞ denote the dual of %MðlÞ given its natural right gr U module structure.
The locally finite T part, FTð %MðlÞÞ; of %MðlÞ is the direct sum of its T weight
spaces. Note further that the b weight space of FT ð %MðlÞÞ is the dual of the b weight
space of %MðlÞ: In particular,

dim FTð %MðlÞÞb ¼ %MðlÞb

for all b: Let vl be a nonzero vector in FT ð %MðlÞÞl: Then vl generates a simple gr U

module isomorphic to %MðlÞr: A comparison of the dimension of the weight spaces
yields FT ð %MðlÞÞ ¼ vl gr U :

Let M̂ðlÞr denote the completion of %MðlÞr consisting of possibly infinite sums of
distinct weight vectors

P
g ag for agAð %MðlÞrÞg: We can identify %MðlÞ with M̂ðlÞr:

Similar considerations allow us to identify %MðlÞr with the completion M̂ðlÞ
consisting of possibly infinite sums of distinct weight vectors in %MðlÞ:

For the remainder of the paper, given uAgr U we write uvl for the element
uð1#vlÞ of %MðlÞ and vr

lu for the element ðvr
l#1Þu of %MðlÞr: In light of the

isomorphisms of Lemma 5.4, we often abbreviate ðgr aÞw as aw and w0ðgr aÞ as w0a
for aAG�,B,Uþ; wA %MðlÞ; and w0A %MðlÞr:

Lemma 5.5. Let V be a finite dimensional simple right B-module and W be a finite

dimensional simple left B module. There are vector space isomorphisms

HomBðV ; %MðlÞÞDHomMðCvl;VÞ

and

HomBðW ; %MðlÞrÞDHomMðCvr
l;W Þ:

Proof. Given cAHomBðV ; %MðlÞÞ; define a linear map *c from Cvl to V by
*cðvlÞðwÞ ¼ cðwÞðvlÞ: Note that cðwÞðmvlÞ ¼ ðcðwÞmÞvl ¼ cðwmÞvl for all mAM:
Hence *cðmvlÞðwÞ ¼ *cðvlÞðwmÞ for mAM: Thus *cAHomMðCvl;V Þ:
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Using Lemma 2.1, we obtain a graded version of Theorem 2.2. In particular, there
is an isomorphism of vector spaces via the (graded) multiplication map:

gr UDB#grC½T 0�#N�:

It follows that %MðlÞ ¼ Bvl: Hence cðwÞ is completely determined by its action on vl:
Thus the map from c to *c is one-to-one. The first isomorphism now follows from the
fact that this map is clearly invertible. A similar argument verifies the second
isomorphism. &

Note that Lemmas 5.1, 5.4 and 5.5 hold when we replace B by any subalgebra in
B: In particular, these lemmas apply to B0: Let V1 denote the trivial one-dimensional
left B0 module. It follows that V1 is annihilated by B0

þ: Let Vr
1 denote the trivial one-

dimensional right B module. Then by Lemma 5.5,

dimHomB0 ðV1; M̂ðlÞÞ ¼ dimHomMðCvl;V1Þ ¼ 1:

Similarly, dimHomBðV r
1; M̂ðlÞrÞ ¼ 1: In particular, the space of B0 invariants in

M̂ðlÞ is one dimensional and the space of B invariants in M̂ðlÞr is one dimensional.

Let zr
l be a nonzero vector in ðM̂ðlÞrÞB and zl be a nonzero vector in M̂ðlÞB0

:
Let N̂� be the space consisting of possibly infinite sums of the form

P
gp0 ag where

ag is a weight vector of weight g in N�: Similarly, let N̂þ be the space consisting of

possibly infinite sums of the form
P

gX0 ag where ag is a weight vector of weight g in

Nþ: Note that M̂ðlÞr ¼ vr
lN̂þ and M̂ðlÞ ¼ N̂�vl:

Lemma 5.6. There exists bAN̂� and brAN̂þ such that zl ¼ bvl and zr
l ¼ vr

lb
r for all

lAhY: Moreover, both b and br have nonzero constant terms.

Proof. The fact that there is a universal element b which satisfies zl ¼ bvl for any
choice of lAhY follows immediately from Lemma 5.4. Similarly, Lemma 5.4 ensures
the existence of a unique element br satisfying zr

l ¼ vr
lbr for all lAhY: We prove the

last statement of the lemma. Fix lAhY and write b ¼
P

gpb bg where each bg is an
element of N̂� of weight g and bba0: If xjbgvla0; then xjbgvl has weight aj þ gþ l:
Hence

xjbvl ¼ xjbbvl þ terms of weight lower than aj þ bþ l:

Now if ajApY; then xjbvl ¼ 0: It follows that xjbbvl ¼ 0 for all ajApY: On the other
hand, as in the proof of Lemma 2.1, if aiepY; then Bþ contains an element of the
form xi þ Yi; where Yi is a weight vector in G�TY of weight YðaiÞ: In particular,
Yibgvl has weight strictly lower than g: So for aiepY; we have

0 ¼ ðxi þ YiÞbvl ¼ xibbvl þ terms of weight lower than ai þ bþ l:

Hence xibbvl ¼ 0 for all i such that 1pipn: Since the only highest weight vectors in
%MðlÞ are scalar multiples of vl; it follows that bb is a nonzero scalar. The same
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argument works for br using yiti þ *yðyiÞti instead of xi þ Yi and yjtj instead
of xj: &

Note that we can consider elements of %MðlÞ# %MðlÞ as functions on T where
ðm#mÞðtÞ ¼ mðtmÞ for all mA %MðlÞ; mA %MðlÞ; and tAT : This gives rise to a
linear map %U from %MðlÞ# %MðlÞ to C½PðpÞ� such that ð %U ðm#mÞÞðtÞ ¼
ðm#mÞðtÞ: Recall the identification of M̂ðlÞr with %MðlÞ: Consider weight vectors
mr

gA %MðlÞr
g and mg0A %MðlÞg0 : Note that mr

gðtmg0 Þ is zero if gag0: It follows that the
map %U can be extended to a linear map, which we also refer to as %U ; from
M̂ðlÞr#M̂ðlÞ to the formal Laurent series ring Cððz�a j aApÞÞ such that (with the
obvious interpretations)

%U
X
gpl

mr
g#

X
gpl

mg

 !
¼
X
gpl

%U ðmr
g#mgÞ:

Let C½½z�*ai j aiAp�� denote the subring of Cððz�a j aApÞÞ consisting of elements of
the form

P
*gX0 a*gz

�*g where each *gAQþðSÞ and a*gAC:
Note that gr U inherits a triangular decomposition from U : Let P be the

projection of gr U onto gr U0 using the direct sum decomposition

gr U ¼ gr U0"gr ðG�
þU þ UUþ

þ Þ:

Now gr xiyjtj ¼ dijðqi � q�1
i Þ�1 þ gr qð�aj ;aiÞyjtjxi for all aiepY: Hence

Pðgr UþG�ÞDC½TY�:

Lemma 5.7. There exists pAC½½z�*ai j aiAp�� such that %U ðzr
l#zlÞ ¼ zlp for all lAhY:

Moreover, p has a nonzero constant term.

Proof. Let b and br be as in Lemma 5.6. We can write b ¼
P

g b�g where each b�g is a

weight vector of weight �g in N�: Similarly, we can write br ¼
P

g br
g where each br

g is

a weight vector of weight g in Nþ: Let b00
g be the scalar such that Pðgr br

gb�gÞAb00
g þ

C½TY�þ: Note that svl ¼ vr
ls ¼ 0 for all sAC½TY�þ and lAhY: It follows that

ðvr
lbr

gÞðtðbÞb�gvlÞ ¼ ðvr
lÞððgr br

gtðbÞb�gÞvlÞ

¼ qðb;�gþlÞvr
lððgr br

gb�gÞvlÞ

¼ qðb;�gþlÞvr
lðb00

gvlÞ

for all tðbÞAT and lAhY: Thus

z�l %U ðb�gvl#vr
lb

r
gÞ ¼ b00

gz�g
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for each g and for all lAhY: Therefore, by Lemma 5.6, z�l %U ðzr
l#zlÞ ¼

z�l0 %U ðzr
l0#zl0 Þ for all l and l0 in hY: This proves the first assertion. The second

assertion follows from the fact that both b and br have nonzero constant terms
(Lemma 5.6). &

We can give CðQSÞA a filtration by setting deg f ¼ 0 for all fACðQSÞ and setting
the degree of an element tAA equal to its degree in the F filtration of U : Note that
CðQSÞA is isomorphic to its associated graded ring under this filtration. Given a
homogeneous element gtðbÞ where gACðQSÞ and tðbÞAA; we write gr gtðbÞ as
just gtðbÞ:

Note that F extends in an obvious way to a filtration on Ǔ: In particular, suppose
that tðmÞAŤ: We can write m ¼ m1 þ m2 where Yðm2Þ ¼ m2 and m1 ¼

P
aiAp miai for

some rational numbers mi: Then the degree of elements in G�tðmÞUþ is justP
aiAp mi: (Since the quotient group Ť=T is finite, there exists a positive integer m

such that mðdeg tÞ is an integer for all tAŤ: In particular, it is possible to rescale this
degree function on Ǔ so that it is an integer valued degree function.) The above
filtration extends in a similar fashion to CðQSÞ $A: Now suppose zAZðǓÞ: Then gr z

is in the center of gr Ǔ: As explained in Section 4, given mAPþðpÞ; there exists
a central element cm in ðad UÞtð�2mÞ such that cmAtð�2mÞ þ ðad UþÞtð�2mÞ:
Furthermore, by (4.8) (which applies in general and not just to the rank one cases),
there exists a nonzero scalar multiple c0m of cm such that

c0mAtð�2mÞ þ G�
þUXUþ

þ tð�2mÞ: ð5:4Þ

Hence by Lemma 3.1, there exists pmACðQSÞ such that gr c0mtðbÞ is an element of

ðBŤYÞþgr ðG�Uþtðb� 2mÞÞ þ gr ðG�Uþtðb� 2mÞÞðB0ŤYÞþ þ tð�2 *mÞðpm � tðbÞÞ:

It follows that

gr ðXðc0mÞÞ ¼ tð�2 *mÞpm

and

ðzr
l#zlÞðgr c0mtðbÞÞ ¼ %U ðzr

l#zlÞððgrXðc0mÞÞ � tðbÞÞ

¼ %U ðzr
l#zlÞððtð�2 *mÞpmÞ � tðbÞÞ

for all tðbÞAA:

Theorem 5.8. There exists pAC½½z�*ai j aiAp�� such that %U ðzr
l#zlÞ ¼ zlp for all lAhY

and gr ðXðc0mÞÞ ¼ p�1tð�2 *mÞp for all mAPþðpÞ:

Proof. The first assertion is simply Lemma 5.7. By (5.4), it follows that ðgr c0mÞvl ¼
q�2ðl;mÞvl: Furthermore, lAhY ensures that ðl; mÞ ¼ ðl; *mÞ: Since ðgr c0mÞ is central in
gr U ; it follows that gr c0m acts on %MðlÞ as multiplication by the scalar q�2ðl; *mÞ:
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A similar argument yields that gr c0m acts on %MðlÞr as multiplication by the same
scalar q�2ðl; *mÞ: Hence gr c0m acts on elements of both M̂ðlÞr and M̂ðlÞ as
multiplication by the scalar q�2ðl; *mÞ: It follows that

%U ðzr
l#zlÞ  p�1tð�2 *mÞp ¼ zlp  p�1tð�2 *mÞp

¼ q�2ðl; *mÞzlp

¼ zlp  ðgrXðc0mÞÞ:

In particular,

gr ðXðc0mÞÞ � p�1tð�2 *mÞp ð5:5Þ

acts as zero on zlp for all lAhY: But gr ðXðc0mÞÞ � p�1tð�2 *mÞp is an element of
C½½z�*ai j aiAp��tð�2 *mÞ: The only element of this set which acts as zero on zlp is zero.
This forces the expression in (5.5) to be identically equal to zero. &

6. Computing graded radial components

In this section, we compute the graded image of radial components using
information about rank one quantum symmetric pairs from Section 4. In particular,
for each i such that aiAp; we associate a semisimple Lie subalgebra gi of g such that
gi; g

y
i is an irreducible symmetric pair with rank one restricted root system as follows.

Recall that oj denotes the fundamental weight corresponding to the root ajAp: For
all i such that aiAp; set pi ¼ faj j ðoj;Yð�aiÞÞa0 or ðoj;Yð�apðiÞÞÞa0g: Let giDg

be the semisimple Lie subalgebra generated by the root vectors ej and fj with ajApi:
It follows that pi is the set of simple roots associated to gi:Moreover, the choice of pi

ensures that y restricts to an involution of gi which we also refer to as y: Recall the
definition of the restricted root system S associated to g; gy given in (1.1). Set Si ¼
f7*aig and note that Si is precisely the set of restricted roots associated to the
symmetric pair gi; g

y
i :

Let Di denote the root system associated to gi and set Ui equal to the subalgebra of
U generated by xi; yi; t71

i for aiApi: Note that Ui can be identified with the quantized
enveloping algebra of gi: Set D

þ
i ¼ Dþ-Di: The coideal subalgebra B-Ui of Ui can

be thought of as a (standard) quantum analog of Uðgyi Þ inside of Ui: In particular,
results in the previous sections of this paper apply to the quantum symmetric pair
Ui;B-Ui: A similar comment can be made in reference to the subalgebra B0 of U :

For most standard subsets of U ; we use the subscript i to denote the intersection of
this subset with Ui: For example, we write Uþ

i for Uþ-Ui: The exception to this rule
is B-Ui since Bi has already been defined as something different in (1.2).

Set hYi ¼ flAQa1 þ?þQan j ðl; ZÞ ¼ 0 for all ZAQðpiÞ such that YðZÞ ¼ Zg:
Note that hY is a subset of hYi: Given lAhYi; let vl be a T weight vector of weight l
and give Cvl the structure of a trivial MiU

þ
i module. Write %MiðlÞ for the (left)

gr UiT module induced from the gr TMiU
þ
i module Cvl:
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Lemma 6.1. Fix lAhY and let w be a weight vector in %MðlÞ of weight g: Assume

further that sw ¼ 0 for all sAgr ðMiTYiU
þ
i Þþ: Then gAhYi and the map uvg/uw is a

gr UiT module isomorphism from gr UiTvg onto gr UiTw:

Proof. Since sw ¼ 0 for all sAC½TYi�þ; it follows that tðZÞw ¼ qðZ;gÞw ¼ w

for all tðZÞATYi: Now tðZÞATYi if and only if ZAQðpiÞ and YðZÞ ¼ Z:
Hence gAhYi:

Set I ¼ UUþ
þ þ

P
tðbÞAT UðtðbÞ � qðg;bÞÞ: Note that %MiðgÞ is isomorphic to the left

gr UiT module ðgr UiTÞ=ðgr ðI-UiTÞÞ: Since w is annihilated by gr ðI-UiTÞ; it
follows that the map uvg/uw is a gr UiT module map.

By our assumptions on w; we have that ðgr UiTÞw ¼ N�
i w: Now %MðlÞ is a free N�

module. Hence the subspace ðgr UiTÞw is a cyclic free N�
i module. The lemma now

follows from the fact that %MiðgÞ is also a cyclic free N�
i module. &

Let M̂iðlÞ be the completion of %MiðlÞ consisting of possibly infinite sums of weight
vectors in %MiðlÞ: Similarly, let N̂�

i be the subspace of N̂� consisting of possibly
infinite sums of weight vectors in N�

i : Given lAhYi; let zli denote the B0-Ui

invariant vector of M̂iðlÞ: By Lemma 5.6 (for the rank one symmetric pair gi; g
y
i )

there is an element bi in N̂�
i such that zli ¼ bivl:

Lemma 6.2. There exists w ¼
P

gwgAN̂� such that each wg is a weight vector of weight

g; swvl ¼ 0 for all sAgr ðMiTYiU
þ
i Þþ; and biwvl ¼ zl for all lAhY:

Proof. Fix lAhY: Let m ¼
P

gmg be an element in N̂� such that each mgAN�
g and

ðB0-UiÞþmvl ¼ 0: It follows that smgvl ¼ 0 for all sAC½TYi�þ and all g: Thus mg

nonzero implies that gAhYi:
Let b be the highest weight such that mba0: The same argument as in Lemma 5.6

shows that xjmbvl ¼ 0 for all ajApi: By the previous paragraph, b is a weight in hYi:
Hence smbvl ¼ 0 for all sAgr ðTYiU

þ
i Þþ:

Note that each yjtj with ajepY is a highest weight vector for the action of adMþ:
By [11, Section 4], ad yk acts ad nilpotently on yjtj whenever kaj: Hence [11,
Theorem 5.9] ensures that each yjtj such that ajepY generates a locally finite
adM module. By the definition of N�; it follows that N� is a locally finite
module with respect to the action of adM: Hence mb generates a finite
dimensional adMi module. The fact that ðb; ajÞ ¼ 0 for all ajApi-pY further
implies that mb generates a one-dimensional trivial adMi module. It follows that
mbvl is annihilated by any element in gr ðMiTYiU

þ
i Þþ: Thus by Lemma 6.1, bimbvl is

a B0-Ui invariant vector. Moreover, rescaling if necessary, we may assume by
Lemma 5.6 that bimbvl ¼ mbvlþ terms of weight lower than bþ l: Set m0 ¼
m � bimb and note that m0vl is a B0-Ui invariant vector. Moreover, when m0 is
written as a sum of weight vectors, the highest weight of a nonzero summand is
strictly less than b:

Now assume that we are in the special case where mvl ¼ zl: (In particular, m is
equal to b of Lemma 5.6 and is independent of the choice of l:) Set wb ¼ mb: By
induction, we can find a sequence of weight vectors fwgg in N� such that each wg
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generates a trivial gr ðMiTYiU
þ
i Þ module and

m � bi

X
0XgXg0

wgA
X
aog0

N̂�

for all g0: Thus by the definition of N̂�; we obtain m ¼ bi

P
gwg: &

Let G�
p\pi

denote the subalgebra of G� generated by ðad U�
i ÞC½yiti j aiepi�: By [20,

Section 6], we see that multiplication induces an isomorphism of vector spaces

G�DG�
i #G�

p\pi
: ð6:1Þ

Furthermore, G�
p\pi

is generated by elements of the form ðad yÞyjtj where ajepi;
yAG�

i ; and the weight of ðad yÞyjtj is a root in D: It follows that the weight of
ðad yÞyjtj cannot be an element of Di: Hence the weights of vectors in G�

p\pi
are

elements of X
gADþ

\Dþ
i

Nð�gÞ:

Suppose that bAD and *b ¼ *ai: Note that 2*aiA
P

aApi
Nai: Hence b must be a

positive root. So both b and �YðbÞ are elements of
P

aApNa: Hence 2 *bA
P

aApi
Na

forces both b and �YðbÞ to be elements of
P

aApi
Na: In particular

fbADþ j *b ¼ *aigCDþ
i : ð6:2Þ

By (6.2), if gADþ
\Dþ

i ; then *geSi: In particular, if b is a weight of an element of
G�

p\pi
; then

*bA
X

*gASþ
\f*aig

Nð�*gÞ:

Lemma 6.3. Let lAhY: Suppose w is a weight vector of weight b in N� such that wvl
generates a trivial gr ðUþ

i MiTYiÞ module and bAQðSÞ: Then the weight of w is

contained in
P

*gASþ
\f*aigNð�*gÞ:

Proof. Write w ¼
P

jw1jw2j where w1jAGi and w2jAG�
p\pi

: For each j; set g1j equal to
the weight of w1j and g2j equal to the weight of w2j: We may further assume that
fw2jgj is a linearly independent set. Choose b0 minimal in the set fg2jgj using the
standard partial ordering on QðpÞ: By the discussion preceding the lemma, we have
that

*b0A
X

*gASþ
\f*aig

Nð�*gÞ:

Thus it is sufficient to show that b ¼ b0:
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Consider akApi: In particular, xkwvl ¼ 0: By Lemma 5.2, %MðlÞ is isomorphic to
the submodule N� of G� as Uþ modules. Hence xk  w ¼ gr ððad xkÞwÞ ¼ 0: On the
other hand,

gr ððad xkÞwÞA
X
g2j¼b0

grððad xkÞw1jÞw2j þ G�
i

X
g5b0

ðG�
p\pi

Þg:

Hence, by (6.1), gr ðad xkÞw1j ¼ 0 for all j such that g2j ¼ b0: Fix j such that g2j ¼ b0:
It follows that w1j is a highest weight vector with respect to the action of Uþ

i on G�
i :

By [12, Lemma 4.7(i)], w1j is a scalar. Thus the weight of w agrees with the weight of
w2j which is just b0: &

Given lAhYi; let vr
l be a right T weight vector of weight l and give Cvr

l the
structure of a one-dimensional trivial grðMiG

�
i Þ module. Define %MiðlÞr to be the

right gr UiT module induced from the one-dimensional gr ðMiG
�
i TÞ module Cvr

l:
Note that versions of Lemmas 6.1–6.3 hold for the right gr Ui modules %MiðlÞr: In
particular, let br be chosen as in Lemma 5.6. Let br

i be also chosen as in Lemma 5.6
for the modules %MiðlÞr: As in Lemma 6.2, there exists wrAN̂þ such that wrbr

i ¼ br:
Moreover, wr ¼

P
gw

r
g where each wg is annihilated by elements in gr ðG�

i MiTYiÞþ:
Furthermore, wr

ga0 implies that g is an element of
P

*bASþ
\f*aigN

*b:
Recall the graded versionP of the Harish-Chandra map defined in the last section.

The vector space decomposition (3.5) extends in the obvious way to the
corresponding graded algebras. Let PA denote composition of P with projection
onto grC½ $A� using a graded version of (3.5).

Given lAhY; assume that vr
l has been chosen so that vr

lðvlÞ ¼ 1: It follows that
vr
lðtðbÞvlÞ ¼ qðl;bÞ for all tðbÞAT : In particular, vr

lðtvlÞ ¼ 1 for all tATY: Hence
vr
lctðbÞdvl ¼ qðl�g;bÞðPAðgr cdÞÞ for all cAUþ

g ; tðbÞAT ; and dAG�
�g: Thus

%U ðvr
lc#dvlÞ ¼ zl�gðPAðgr cdÞÞ

for all cAUþ
g and dAG�

�g: (Note that by the definition of PA given in the previous
paragraph, PAðgr cdÞ is just an element of grC½ $A�:)

Choose piAC½½z�*ai j aiAp�� as in Lemma 5.7 such that U ðzr
li#zliÞ ¼ zlpi: Let

C½½z� *b j *bASþ
\*ai�� denote the subring of C½½z�*ai j aiAp�� consisting of possibly

infinite linear combinations of the z�n for nA
P

bASþ
\f*aigNb:

Lemma 6.4. There exists kiAC½½z� *b j *bASþ
\f*aig�� such that p ¼ piki: Furthermore, ki

has a nonzero constant term.

Proof. By Lemma 5.7, p has a nonzero constant term. Hence if we can write p ¼ piki;
then both pi and ki have nonzero constant terms. Thus the second assertion follows
from the first.

Fix lAhY: Using Lemma 5.6, choose bAN̂� such that zl ¼ bvl and biAN̂�
i such

that zli ¼ bivl Write

bi ¼
X
d

bid and br
i ¼

X
d

br
id
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where each bidAðN�
i Þ�d and br

idAðNþ
i Þd: Note that

zlpi ¼
X
d

%U ðvr
lb

r
id#bidvlÞ ¼

X
d

zl�dðPAðgr br
idbidÞÞ:

Let w ¼
P

gwg satisfy the conditions of Lemma 6.2. By Lemma 6.3, each g with wg

nonzero satisfies �gA
P

bASþ
\f*aigNb: Choose g so that wga0: Note that Uþ

iþwgvl ¼ 0:

Using the identification of %MðlÞ with N� as Uþ modules (Lemma 5.2), we obtain

gr ðad xjÞwg ¼ 0 for all ajApi: Hence gr xjwg ¼ gr tjwgt
�1
j xj for all xjAUi: It follows

that PAðgr ðUUþ
iþÞwgÞ ¼ 0: Similarly PAðwr

gðgr G�
iþUÞÞ ¼ 0: To make the next

computation easier to read, we shorten PAðgr uÞ to PAðuÞ for uAU : Since

bidAðN�
i Þ�d and br

idAðNþ
i Þd; it follows thatX

d

PAðwr
gb

r
idtðbÞbidwgÞ ¼

X
d

PAðwr
gPAðbr

idtðbÞbidÞwgÞ

¼
X
d

qð�d;bÞPAðbr
idbidÞPAðwr

gtðbÞwgÞ

¼PAðwr
gtðbÞwgÞpi � tðbÞ:

Now PAðwr
gtðbÞwgÞ is equal to agz

g � tðbÞ for some scalar ag independent of b: Thus

%U ðvr
lb

r#bvlÞ ¼ zl
X
g

agz
g

 !
pi:

The lemma now follows from the fact that �g is in the N span of the set Sþ
\f*aig

whenever aga0: &

Let s̃i be the reflection in WY corresponding to the restricted root *ai: Recall that s̃i

restricts to a permutation on the set Sþ
\f*aig: Hence s̃i induces a linear map on

C½½z� *b j *bASþ
\f*aig�� defined by

s̃i

X
*g

z�*g ¼
X
*g

zs̃ið�*gÞ:

Lemma 6.5. Choose kiAC½½z� *b j *bASþ
\f*aig�� such that p ¼ piki: Then s̃iki ¼ ki:

Proof. Recall that oj denotes the fundamental weight corresponding to ajAp: Given
aj and ak in p; we know that ðoj; *akÞ is a nonzero scalar multiple of djk: Set
ni ¼ ð

P
fr j arApgorÞ � oi: It follows that ð*aj; niÞa0 for all jai and ð*ai; niÞ ¼ 0: Hence

pi commutes with tð�2niÞ: More generally,

z�
*btð�2niÞ ¼ qð�2ni ;� *bÞtð�2niÞz�

*b

for all *bAQðSÞ: Note that if *bASþ is not a scalar multiple of *ai; then ð *b; niÞa0:
Hence if kAC½½z� *b j *bASþ

\f*aig�� and k commutes with tð�2niÞ then k is a scalar.

ARTICLE IN PRESS
G. Letzter / Advances in Mathematics 189 (2004) 88–147 127



Now by Corollary 3.3 and Theorems 3.4 and 5.8,

Xðcni
Þ ¼

X
wAWY

wðk�1
i tð�2*niÞkiÞ þ

X
fmAPþð2SÞ j mo*nig

X
wAWY

wð fmÞtð�2wmÞ

up to a nonzero scalar for some fmACðQSÞ: Since Xðcni
Þ is s̃i invariant and

s̃itð�2niÞ ¼ tð�2niÞ; it follows that s̃iðkitð�2niÞk�1
i Þ ¼ kitð�2niÞk�1

i : Hence s̃iki ¼
kik where k commutes with tð�2niÞ: Thus k must be a scalar. Since ki has a nonzero
constant term, and s̃i fixes constants, it follows that k ¼ 1: &

Let a and x be an indeterminates and define

ðx; aÞ
N

¼
YN
i¼0

ð1� xaiÞ: ð6:3Þ

Set zi ¼ z2*ai : Let ri denote the half-sum of the positive roots in Di: Note that r is just
the sum of the fundamental weights corresponding to the simple roots in p: A similar
statement can be made concerning ri with respect to pi: Hence ðr; bÞ ¼ ðri; bÞ for all
bAQðpiÞ:

For each *aASþ; we let C½½z�*a�� denote the subring of C½½z�*ai j aiAp�� consisting of
elements of the form

P
mX0amz�m*a where the am are scalars. Recall that zi ¼ z2*ai :

Using the rank one computations found in Section 4, we determine pi:

Lemma 6.6. Given aiAp; we have

pi ¼
ðgiz

�1
i ; aiÞN

ðz�1
i ; aiÞN

;

where ai ¼ qð2*ai ;*aiÞ and gi ¼ q2ðr;*aiÞ:

Proof. Let mi be chosen to satisfy the conditions of (4.7) with respect to gi: By
Theorems 4.7 and 5.8

p�1
i t̃�1

i pi ¼ gr ðXðc0mi
ÞÞ ¼ t̃�1

i ð1� giz
�1
i Þð1� z�1

i Þ�1:

Note that z�1
i t̃�1

i ¼ ait̃
�1
i z�1

i : Hence,

ðz�1
i ; aiÞN

ðgiz
�1
i ; aiÞN

t̃�1
i

ðgiz
�1
i ; aiÞN

ðz�1
i ; aiÞN

¼ t̃�1
i

YN
j¼0

ð1� z�1
i a

jþ1
i Þ

ð1� giz
�1
i a

jþ1
i Þ

ð1� giz
�1
i a

j
i Þ

ð1� z�1
i a

j
i Þ

¼ t̃�1
i ð1� giz

�1
i Þð1� z�1

i Þ�1:

The lemma now follows from the fact that the only elements in C½½z�*ai �� which
commute with t̃i are the scalars. &

Consider aAD: Since S is reduced, ða;�YðaÞÞ equals 0 if �aaYðaÞ and equals
ða; aÞ otherwise. Hence it is straightforward to check that *a ¼ *b implies ða; aÞ ¼
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ðb; bÞ for all b in D: In particular, the length of a root whose restriction equals *a is
just a function of *a and does not depend on the choice of root. Set

multð*aÞ ¼ jfbADj *b ¼ *agj:

We recall two well known facts about the mult function. First, multð*aiÞ ¼
2ðr; *aiÞ=ð*ai; *aiÞ for all aiAp: Moreover, multð*aÞ ¼ multðw*aÞ for all wAWY and aAD:

Given *aASþ; set a*a ¼ qð2*a;*aÞ and g*a ¼ qmultð*aÞð*a;*aÞ: Set

p*a ¼
ðg*az�2*a; a*aÞN
ðz�2*a; a*aÞN

for *aAS: Note that pi ¼ p*ai
: Furthermore, by the previous paragraph, wp*a ¼ p *b

whenever wAWY satisfies w*a ¼ *b:Now p*a is clearly an element of CððqÞÞ½½z�*a�� where
CððqÞÞ is the Laurent polynomial ring in the one variable q: However, by definition,
p*ai

is actually an element of C½½z�2*ai ��: Hence p*a is an element of C½½z�2*a�� for each
*aASþ:

Theorem 6.7. Set

p ¼
Y
*aASþ

p*a:

Then for each mAPþðpÞ;
gr ðXðc0mÞÞ ¼ p�1tð�2 *mÞp: ð6:4Þ

Proof. By Theorem 5.8, there exists an element p in C½½z�*ai j aiAp�� such that
gr ðXðc0mÞÞ ¼ p�1tð�2 *mÞp for all mAPþðpÞ: Since each p*a is an element of C½½z�*a��; it
follows that

Q
*aASþ p*a is an element of C½½z�*ai j aiAp��: Choose p0 in C½½z�*ai j aiAp��

so that pp0 ¼
Q

*aASþ p*a:
Set k0

i ¼
Q

*aASþ
\f*aig p*a: Note that pik

0
i ¼ pp0: Choose ki as in Lemma 6.4. It follows

that kip
0 ¼ k0

i for each i such that aiAp:Write k0
i ¼

P
*gX0d

0
*gz

�*g; ki ¼
P

*gX0d*gz
�*g; and

p0 ¼
P

*gX0a*gz
�*g:

Note that by the definition of k0
i and Lemma 6.5,X

*gX0

d 0
*gz

�s̃i *g ¼ k0
i and

X
*gX0

d*gz
�s̃i *g ¼ ki;

where equality holds in C½½z�*ai j aiAp��: It follows thatX
*gX0

a*gz
�s̃i *g ¼ p0

in C½½z�*ai j aiAp�� for all simple reflections s̃iAWY: HenceX
*gX0

a*gz
�w*g ¼ p0 ð6:5Þ
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in C½½z�*ai j aiAp�� for all wAWY: Suppose *g40 is such that a*g is nonzero. We can
find wAWY such that w*go0: But then z�w*geC½½z�*ai j aiAp��: This contradicts (6.5).
Hence p0 must be a scalar and so ki is a scalar multiple of k0

i: &

Let p be defined as in Theorem 6.7. It follows that, up to a nonzero scalar, p is the
unique element of C½½z�*ai j aiAp�� such that (6.4) holds for all mAPþðpÞ: Recall
the definition of the projection map PA given at the end of Section 3. The next
result extends Theorem 6.7 to other elements in ZðǓÞ and, more generally, to
elements of ǓB:

Corollary 6.8. For each cAǓB;

gr ðXðcÞÞ ¼ p�1gr ðPAðcÞÞp;

where

p ¼
Y
*aASþ

p*a:

Moreover, ceBþǓ if and only if PAðcÞa0:

Proof. Let cAǓB: The definition of the map PA ensures that PAðǓÞ is contained in
C½ $A�: Thus zlðPAðcÞÞ ¼ 0 for all lAPþð2SÞ if and only if PAðcÞ ¼ 0: Hence, by
Theorem 3.6, XðcÞ ¼ 0 if and only if PAðcÞ ¼ 0:

Suppose cABþǓ: Then XðcÞ ¼ 0: By the previous paragraph, PAðcÞ ¼ 0: Thus
the lemma follows trivially in this case. Thus we may assume that ceBþǓ:

Let c0A $ANþ such that c � c0ABþǓ: In particular, XðcÞ ¼ Xðc0Þ: We can write
gr c0 ¼ ðgr anÞ þ ðgr n0Þ where a is in C½ $A�; n is a weight vector in Nþ of weight g; and
n0A
P

b4g
$ANþ

b : Note that aa0 since ceBþǓ: Choose lAPþð2SÞ such that
zlðgr aÞa0: Since vr

l generates the gr U module %MðlÞr; it follows that vr
lna0: Hence

zr
lðgr c0ÞAvr

lðgr c0Þ þ
X
b40

vr
lN

þ
b ðgr c0Þ ¼ zlðgr aÞvr

ln þ
X
b4g

vr
lN

þ
b : ð6:6Þ

In particular, zr
lðgr c0Þ is nonzero.

Given bAB; we have c0b ¼ cb þ ðc0 � cÞbAbc þ BþǓ: Thus c0bABþǓ for all bABþ:
Hence

zr
lðgr c0ÞBþ ¼ 0:

Therefore, by the discussion following Lemma 5.5, zr
lðgr c0Þ is a scalar multiple of zr

l:
This forces n to be an element of C: Without loss of generality, we may assume that
n ¼ 1: Thus (6.6) implies that zr

lðgr c0Þ ¼ zlðgr aÞzr
l; which is a nonzero multiple of zr

l:
Using the definition of the map PA (end of Section 3), we see that gr a ¼
gr ðPAðc0ÞÞ ¼ gr ðPAðcÞÞ: Hence PAðcÞ is nonzero, which completes the proof of the
second assertion of the lemma.
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Arguing as in Theorem 5.8, yields

gr ðXðc0ÞÞ ¼ p�1gr ðPAðc0ÞÞp:

Hence gr ðXðcÞÞ ¼ p�1gr ðPAðcÞÞp: The first assertion now follows from
Theorem 6.7. &

An immediate consequence of Corollary 6.8 is that

ǓB-ð $ANþ
þ þ ðBŤYÞþǓÞCðBŤYÞþǓ:

A similar argument switching the right and left actions yields that

ǓB-ð $ANþ
þ þ ǓðBŤYÞþÞCǓðBŤYÞþ:

7. Minuscule and pseudominuscule weights

In this section, we find ‘‘small’’ elements in ǓB which correspond to minuscule or
pseudominuscule weights of S and determine their radial components. For all but
three types of irreducible symmetric pairs g; gy; this small element is c0m plus a
constant term where *m is either a minuscule or a pseudominuscule weight in S: Most
of this section is devoted to finding a suitable element in ǓB in the remaining three
problematic cases. This involves a separate construction using fine information
about finite dimensional adr U submodules of Ǔ:

Recall that g; gy is an irreducible symmetric pair and S is reduced. It follows from
the classification of irreducible symmetric pairs that S is an irreducible root system
corresponding to a simple Lie algebra as classified in [7, Chapter III]. Before
discussing elements of ǓB; we briefly review facts concerning minuscule and
pseudominuscule weights associated to root systems of simple Lie algebras. Since we
will be applying this information to the restricted root system, all the results will be
stated with respect to S:

A fundamental weight b is called minuscule with respect to the root system S if

0p
2ðb; aÞ
ða; aÞ p1 ð7:1Þ

for all aASþ: Since S is simple, it admits a minuscule weight if and only if it is not of
type E8;F4; or G2: It is straightforward to check that the minuscule weights for S
are exactly the smallest fundamental weights not contained in QþðSÞ: In particular, a
minuscule weight b satisfies the following condition:

There does not exist gAPþðSÞ such that b� gAQþðSÞ\f0g: ð7:2Þ

The longest root of S; when S is simply laced, and the longest short
root of S; when S has two root lengths, is called a pseudominuscule weight.
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A pseudominuscule weight b satisfies (7.1) for all aASþ
\b: Moreover, one checks

easily that a pseudominuscule weight b satisfies the following condition similar
to (7.2):

The weight gAPþðSÞ satisfies b� gAQþðSÞ\f0g if and only if g ¼ 0: ð7:3Þ

Recall the definition of the element p given in Theorem 6.7. Using the previous
sections, we can compute the image of cm under X when m satisfies one of the above
conditions. In particular, we have the following.

Lemma 7.1. (i) If mAPþðpÞ is such that *m is minuscule in S then there exists a central

element c in ZðǓÞ with

XðcÞ ¼
X

wAWY

wðp�1tð�2 *mÞpÞ:

(ii) If mAPþðpÞ is such that *m is pseudominuscule in S then there exists a central

element c in ZðǓÞ with

XðcÞ ¼
X

wAWY

wðð1� tð2 *mÞÞp�1tð�2 *mÞpÞ:

Proof. Suppose first that there exists mAPþðpÞ such that *m is minuscule in S: Let
ðCðQSÞAXÞþ denote the subalgebra of CðQSÞAX generated by CðQSÞ and C½AX�þ:
By Theorem 6.7 and Corollary 3.3,

Xðc0mÞAp�1tð�2 *mÞp þ ðCðQSÞAXÞþtð�2 *mÞ:

Note that since *m satisfies (7.2), there does not exist tð�2 *bÞAC½AX�tð�2 *mÞ such that
*b is dominant. Hence by Theorem 3.4,

Xðc0mÞ ¼
X

wAWY

wðp�1tð�2 *mÞpÞ:

This proves (i).
Now assume that there exists mAPþðpÞ such that *m is pseudominuscule in S: The

same reasoning as in the previous paragraph, yields that

Xðc0mÞ ¼
X

wAWY

wðp�1tð�2 *mÞpÞ þ g

for some gACðQSÞ: Now the zonal spherical functions jl are eigenvectors for the
action of Xðc0mÞ: When l ¼ 0; jl is just 1: Hence the action of Xðc0mÞ on 1 must be a
scalar. Now the action ofX

wAWY

wðp�1tð�2 *mÞpÞ �
X

wAWY

wðtð2 *mÞp�1tð�2 *mÞpÞ
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on 1 is zero. Furthermore, wðtð2 *mÞp�1tð�2 *mÞpÞ is in CðQSÞ for each wAWY: Hence
g þ

P
wAWY

wðtð2 *mÞp�1tð�2 *mÞpÞ is a scalar, say g0: It follows that Xðc0m � g0Þ has the
required form. &

Assume for the moment that g; gy is not of type EIV, EVII, or EIX. (See the
Appendix, Section 9, for explicit descriptions of the types of irreducible symmetric
pairs.) Suppose that b is a minuscule weight or pseudominuscule weight in PþðSÞ: A
straightforward computation shows that PþðpÞ contains a fundamental weight m
such that b ¼ *m: These values of m and *m are given in the appendix.

Now assume that g; gy is of type EIV. Then S is of type A3 with set of simple roots
f*a1; *a6g: Recall that oi denotes the fundamental weight corresponding to the simple
root ai: For i ¼ 1 and i ¼ 6; let o0

i denote the fundamental weight in the weight
lattice of S corresponding to *ai: Note that both o0

1 and o0
6 are minuscule. It is

straightforward to check that neither o0
1 nor o0

6 is in the span of the set
f *oi j 1pip6g: A similar computation shows that if g; y is of type EVII or EIX
then the minuscule or pseudominuscule weights associated S are not the restriction
of elements in PþðpÞ: Thus, in these special cases, ZðǓÞ does not contain elements
whose radial components are of the form described in Lemma 7.1. The remainder of
this section is devoted to finding elements in ǓB in the remaining cases which play
the role of cm for m minuscule or pseudominuscule.

We recall basic facts about the structure of Ǔ as a U module with respect to the
adjoint action (see [11,12], or [8, Section 7]). Here we use the right adjoint action
instead of the left and will translate the results accordingly. For each ZAPþðpÞ;
observe that tð2ZÞ generates a finite dimensional adr U module. Let FrðǓÞ denote the
locally finite part of Ǔ with respect to the right adjoint action. One has that FrðǓÞ is a
subalgebra of Ǔ: As an ðadr UÞ module, FrðǓÞ is isomorphic to the direct sum of the
ðadr UÞtð2ZÞ as Z runs over elements in PþðpÞ:

Let Gþ be the subalgebra of U generated by the xjt
�1
j for j ¼ 1;y; n: By [10,

Theorem 3.3], one can construct a basis of ðadr UÞtð2ZÞ consisting of weight vectors
contained in sets of the form

a�bbb0tð2ZÞ þ
X

xAQþðpÞ

X
gpb�x

X
g0pb0�x

U�
�gG

þ
g0 tð2Z� 2xÞ; ð7:4Þ

where a�bAU�
�b and bb0AGþ

b0 : Moreover, 0pxpZ� w0Z and both b and b0 are less
than or equal to Z� w0Z [8, 7.1.20].

Lemma 7.2. Let ZAPþðpÞ and suppose that uAðadr UÞtð2ZÞ: Then

PAðuÞAtð2gw0Zw0ZÞC½AX�: ð7:5Þ

Proof. Suppose that uAU�
�gG

þ
g0 tð2Z� 2xÞ where x and g are elements of QþðpÞ such

that 0pxpZ� w0Z and 0pgpZ� w0Z� x: We argue that u satisfies (7.5). The
lemma then follows by the linearity of PA and the description of a basis of
ðadr UÞtð2ZÞ using (7.4).
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Note that (2.7) implies that Uþ
þ Ǔ0DMþ

þNþǓ0 þ Nþ
þ
$A: Hence PAðUþ

þ Ǔ0Þ ¼ 0: It
further follows from (3.11) that

ǓUþ
þ Ǔ0DððBŤYÞþǓ þ Nþ

þ
$Aþ C½ $A�ÞUþ

þ Ǔ0DðBŤYÞþǓ þ Nþ
þ
$A:

Hence PAðU�Gþ
þǓ0Þ ¼ 0: Thus, we may reduce to the case where g0 ¼ 0 and so

uAU�
�gtð2Z� 2xÞ: It follows that uAG�

�gtð2Z� 2x� gÞ:
By Lemma 2.1 and (2.10), we have that

PAðuÞAtð2*Z� 2*x� *gÞC½AX�:

To complete the proof of the lemma, we argue that tð2*Z� 2*x� *gÞAtð2gw0Zw0ZÞC½AX�:
Our assumptions on x and g ensure that 2Z� 2x� gX2w0Z: Furthermore, 2*Z; 2*x;
and 2w0 *Z are all elements of Qð2SÞ: Thus it is sufficient to show that *gAQð2SÞ
whenever PAðuÞa0:

Note that utð�2Zþ 2x� gÞ can be written as a sum of monomials yi1 ti1?yim tim in
the yiti of weight g: Assume that yi1eBþ: Arguing as in the proof of Lemma 2.1, we
obtain

yi1 ti1?yim timA� *yðyi1Þti1yi2ti2?yim tim þ Bþyi2 ti2?yim tim :

Thus by (2.5)

yi1ti1?yim timAG� *yðyi1Þti1 þ G�
�gþ2*ai

T 0
X

TY þ BþU :

It follows that PAðyi1ti1?yim timÞAPAðG�
�gþ2*ai

T 0
X

TYÞ: Furthermore,

PAðG�
�gþ2*ai

T 0
X

TYÞ ¼ PAðG�
�gþ2*ai

ÞPAðT 0
X

TYÞ:

By induction on g; we obtain PAðG�
�gÞ ¼ 0 unless *gAQþð2SÞ: Therefore PAðuÞa0

implies *gAQþð2SÞ: &

Let f be the Hopf algebra automorphism of U which fixes elements in MT ;

fðxiÞ ¼ qð�2r;*aiÞxi for all 1pipn; and fðyiÞ ¼ qð2r;*aiÞyi for all 1pipn: Note that

fðBiÞ ¼ qðr;�YðaiÞ�aiÞðqð2r;aiÞyiti þ qð2r;YðaiÞÞ *yðyiÞtiÞ for all aiepY: The next lemma

provides information about ðadr BþÞǓ which will be applied later to elements of ǓB:

Lemma 7.3. Suppose uAðadr BþÞǓ: Then uAðfðBÞŤYÞþǓ þ ǓðBŤYÞþ:

Proof. Suppose uAðadr ðMTYÞþÞǓ: Now MTY is a Hopf subalgebra of U : Hence
ðadr ðMTYÞþÞǓCðMTYÞþǓ þ ǓðMTYÞþ: The lemma now follows in this case since
MTY is a subalgebra of both fðBÞ and B: Thus, it is sufficient to show that
ðadr BiÞaAðfðBÞŤYÞþǓ þ ǓðBŤYÞþ for all i such that aiepY and aAǓ:

Fix i with aiepY: By [20, Theorem 7.1], there exists a sequence i1;y; is; with
aijApY for 1pjps; and a nonzero scalar g such that *yðyiÞ ¼
gðadr xi1Þyðadr xisÞðt�1

pðiÞxpðiÞÞ: Using the fact that ðadr xjÞa ¼ �t�1
j xja þ t�1

j axj for
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all j and for all aAǓ; we obtain

*yðyiÞtiAMþU þ gtðYðaiÞÞxpðiÞxis?xi1ti ð7:6Þ

and

*yðyiÞtiAUMþ þ ð�1Þs
gt�1

i1
xi1?t�1

is
xis t

�1
pðiÞxpðiÞti: ð7:7Þ

Note that tðYð�aiÞÞt�1
i ATY: Applying the antipode to (7.7) and using (7.6) to

simplify yields

sð*yðyiÞtiÞAMþU � gt�1
i t�1

pðiÞxpðiÞtpðiÞt
�1
is

xis tis?t�1
i1

xi1ti1

¼ ðMTYÞþU � qð2r;YðaiÞÞgtðYðaiÞÞxpðiÞxis?xi1

¼ ðMTYÞþU � qð2r;YðaiÞÞ *yðyiÞ:

Hence

sðBiÞ ¼ sðyiti þ *yðyiÞtiÞ

¼ � qð2r;aiÞyi � qð2r;YðaiÞÞ *yðyiÞ þ ðMTYÞþU

¼ � qðr;YðaiÞþaiÞfðBiÞt�1
i þ ðMTYÞþU :

Recall that DðyitiÞ ¼ yiti#1þ ti#yiti: It follows from [20, (7.14)] that

Dð*yðyiÞtiÞA*yðyiÞti#tðYðaiÞÞti þ ti#*yðyiÞti þ U#ðMTYÞþ:

Note that tðYðaiÞÞtiATY: Thus tðYðaiÞÞtiA1þ C½TY�þ: Combining the formulas for
DðyitiÞ and Dð*yðyiÞÞ gives us

DðBiÞABi#1þ ti#Bi þ U#ðMTYÞþ:

Hence ðadr BiÞaA� qðr;YðaiÞþaiÞfðBiÞt�1
i a þ t�1

i aBi þ ðMTYÞþǓ þ ǓðMTYÞþ for all
aAǓ: &

Recall the definition of the Hopf algebra automorphism w following the proof of
Theorem 4.5. In particular, wðxiÞ ¼ qðr;*aiÞxi for all 1pipn: Since ðr; *aiÞ ¼ ð *r; aiÞ for
all i; it follows that tð� *rÞxitð *rÞ ¼ fwðxiÞ for 1pipn: Similarly, tð� *rÞyitð *rÞ ¼
fwðyiÞ for all 1pipn: Thus tð� *rÞutð *rÞ ¼ fwðuÞ for all uAU :

Lemma 7.4. Suppose that a0AǓB and aAǓ0 such that

a0Aa þ fðBÞþǓ þ ǓðMTYÞþ þ ðadr BþÞFrðǓÞ:
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Then

ðj Xða0ÞÞðtð *rÞÞ ¼ jðatð *rÞÞ ð7:8Þ

for all jAC½Pð2SÞ�WY :

Proof. By [21, Corollary 5.4], fjl j lAPþð2SÞg is a basis for C½Pð2SÞ�WY :
Hence it is sufficient to verify (7.8) when j ¼ jl for lAPþð2SÞ: We use here facts
from Section 1 introduced before Theorem 1.1. In particular, fwðBÞHfðBÞ is the
subspace of Rq½G� consisting of left fwðBÞ and right fðBÞ invariants. Moreover, the
space fwðBÞHfðBÞ contains a distinguished basis fg0

l j lAPþð2SÞg such that the set
fU ðg0

lÞ j lAPþð2SÞg satisfies (1.3). For each lAPþð2SÞ; U ðg0
lÞ is written as

jl
fðBÞ;fwðBÞ: By [21, Theorem 6.3], jl

fðBÞ;fwðBÞ ¼ jl
B;B0 ¼ jl for all lAPþð2SÞ:

The discussion preceding this lemma implies that

a0tð *rÞAatð *rÞ þ fðBÞþǓ þ ǓfwðBÞþ:

Hence

g0
lða0tð *rÞÞ ¼ jlðatð *rÞÞ:

Recall that g0
lALðlÞfwðBÞ#ðLðlÞÞfðBÞ: Thus arguing as in Section 3 (preceding

Theorem 3.6),

g0
lða0tð *rÞÞ ¼ zlðPAða0ÞÞg0

lðtð *rÞÞ: ð7:9Þ

The lemma now follows from Theorem 3.6 and the fact that g0
lðtð *rÞÞ ¼

jlðtð *rÞÞ: &

By [21, Theorem 3.1], FrðǓÞ can be written as a direct sum of finite dimensional
simple ðadrBÞ modules. Consider an element aAFrðǓÞ: Since the action of adrB on
FrðǓÞ is locally finite, ðadrBÞa is a finite dimensional submodule of FrðǓÞ: Now
suppose that aeðadrBþÞǓ: In particular, ðadrBþÞa has codimension 1 in ðadrBÞa:
Since the action of ðadrBÞ on FrðǓÞ is completely reducible, it follows that there
exists a nonzero element a0AǓB such that

ðadrBÞa ¼ Ca0"ðadrBþÞa:

We may further assume that a0 has been chosen so that

a0Aa þ ðadrBþÞa:

Now ðadrBþÞǓ-ǓB ¼ 0: Hence the choice of a0 is unique. Thus we have a linear
map L : FrðǓÞ-ǓB such that LðaÞ is the unique element of ǓB in the set a þ
ðadrBþÞa: (Note that L is very similar to the so-called Letzter map studied in [9].)

Recall that WY acts on C½ $A� (see the discussion following the proof of Corollary
3.3). Given wAWY and uAC½ $A� we write w � u for the action of w on u:
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Lemma 7.5. Suppose that a0 is an element of FrðǓÞ such that a0Aa þ fðBÞþǓ þ
ǓðMTYÞþ where aAC½ $A� and X

wAWY

w � ðatð *rÞÞa0:

Then PAðLða0ÞÞ is nonzero.

Proof. It is straightforward to check that the bilinear pairing between C½Pð2SÞ�WY

and C½ $A�WY given by / f ; kS ¼ f ðkÞ for all fAC½Pð2SÞ�WY and kAC½ $A�WY is
nondegenerate. Note that

jðatð *rÞÞ ¼ jWYj�1j
X

wAWY

w � ðatð *rÞÞ
 !

for all jAC½Pð2SÞ�WY : Hence the assumptions on a ensure that there exists

jAC½Pð2SÞ�WY such that jðatð *rÞÞa0:
By the previous lemma and (7.9), glðLða0Þtð *rÞÞ ¼ zlðPAðLða0ÞÞglðtð *rÞÞ ¼

jlðatð *rÞÞ: Thus it is sufficient to find l such that jlðatð *rÞÞ is nonzero. But the
fjl j lAPþð2SÞg form a basis for C½Pð2SÞ�WY : The result now follows using the
nondegenerate pairing described in the first paragraph. &

We are now ready to associate an element of ǓB to a minuscule or
pseudominuscule restricted weight.

Lemma 7.6. There exists aAǓB such that

PAðaÞAtð�2*ZÞ þ tð�2*ZÞC½AX�þ; ð7:10Þ

where *Z is a minuscule or pseudominuscule weight.

Proof. By the discussion preceding Theorem 3.6, PA restricted to ZðǓÞ agrees with
the composition of P followed by the projection onto C½ $A� using (3.5). Suppose that
ZAPþðpÞ such that *Z is a minuscule or pseudominuscule restricted weight with
respect to S: Then description (4.8) of the image of the central elements under P
ensures that cZ satisfies (7.10). Thus we may reduce to the cases when g; gy is of type
EIV, EVII, or EIX. We assume first that g; gy is of type EIV.

Recall that oi is the fundamental weight corresponding to the simple root ai in p
and o0

i is the fundamental weight corresponding to the restricted root *ai in S: One
checks that *o6 ¼ 2o0

6; *o1 ¼ 2o0
1; and w0o6 ¼ o1: Consider the ðadrUÞ submodule

ðadrUÞtð2o6Þ of FrðǓÞ: Note that the only restricted dominant integral weights less
than 2o0

1 is o0
6:

By Lemma 7.2,

PAðaÞAtð�4o0
1ÞC½AX�þ
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for any aAǓB-ðadrUÞtð2o6Þ: On the other hand, Corollary 6.8 and Theorem 3.6
ensure that grðPAðaÞÞ is a linear combination of terms of the form tð�2gÞ where
gAPþðSÞ: Hence if aAǓB-ðadrUÞtð2o6Þ; then

PAðaÞAtð�2gÞ þ tð�2gÞC½AX�þ;

where g ¼ o0
6; or g ¼ 2o0

1: Thus it is sufficient to find two elements a1 and a2 in
ǓB-ðadrUÞtð2o6Þ such that PAða1Þ and PAða2Þ are linearly independent.

Note that tð2o6Þ is in ðadrUÞtð2o6Þ: It is straightforward to check that
4o0

6 � 2*a6 ¼ 2o0
1: Hence tð2o0

1ÞAtð2o6Þtð�2a6Þ þ C½ŤY�þ:
The action adr is a right action. In particular, ðadruvÞw ¼ ðadrvÞðadruÞw for all u; v;

and wAǓ: A direct computation yields that

ðadry6x6Þtð2o6Þ � q�1tð2o6Þ

¼ �q�2ð1� q2Þ2tð2o6Þt�1
6 y6x6 � q�1tð2o6Þt�2

6 :

Set x ¼ x6x5x4x2x3x4x5x6: Arguing as in [L4, Lemma 5.1], one has, up to a non-
zero scalar, that ðadrxÞtð2o6Þ is an element of *yðy6Þx6t�1

6 tð2o6Þ þ ðMTYÞþU þ
UðMTYÞþ: Using this fact, it is straightforward to show that up to a nonzero scalar

ðadrxÞtð2o6ÞAtð2o6Þt�1
6 y6x6 þ fðBÞþǓ þ ǓðMTYÞþ:

Thus a suitable linear combination of the terms tð2o6Þ; ðadry6x6Þtð2o6Þ and
ðadrxÞtð2o6Þ yields an element bAðadrUÞtð2o6Þ such that

bAtð2o0
1Þ þ fðBÞþǓ þ ǓðMTYÞþ:

Set a1 ¼ Lðtð2o6ÞÞ and a2 ¼ LðbÞ: Note that 2o0
1 þ *r and 4o0

6 þ *r are distinct
dominant restricted weights and hence are in different orbits with respect to the
action of WY: It follows from Lemma 7.5 that PAða1Þ; and PAða2Þ are linearly
independent. This completes the proof of the lemma when g; gy is of type EIV for the
restricted minuscule weight o0

1: The same argument works for the restricted
minuscule weight o0

6 using the diagram automorphism of E6 which sends a1 to a6:
Now consider the case when g; gy is of type EVII. In this case, we use the ðadrUÞ

module ðadrUÞtð2o7Þ: Note that o0
7 ¼ *o7 and o0

1 are the only dominant
integral restricted weights less than or equal to *o7: Furthermore, as above,
there exists a linear combination b of tð2o7Þ; ðadry7y6x7x6Þtð2o7Þ;
ðadry7x7Þtð2o7Þ; ðadry7xx7Þtð2o7Þ and ðadrx7xx7Þtð2o7Þ such that

bAtð2o0
1Þ þ Ctð2ð *o7 � *a7ÞÞ þ fðBÞþǓ þ ǓðMTYÞþ:

One checks that 2o0
1 þ *r; 2ð *o7 � *a7Þ þ *r; and tð2 *o7Þ þ *r are in different WY orbits.

Hence Lemma 7.5 ensures thatPAðLðtð2o7ÞÞÞ andPðLðbÞÞ are linearly independent
and the proof follows in this case. Similarly, if g; gy is of type EIX, one can find a
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linear combination b of elements in ðadrUÞtð2o8Þ such that b is an element of

tð2o0
1Þ þ Ctð2ð *o8 � *a8ÞÞ þ Ctð2ð *o8 � *a8 � *a7ÞÞ þ fðBÞþǓ þ ǓðMTYÞþ:

In this case, there are three dominant integral weights, 1; o0
1; and o0

8; less than or
equal to *o8 ¼ o0

8: Now the WY orbits of *r; 2o0
1 þ *r; 2ð *o8 � *a8Þ þ *r; ð *o8 � *a8 �

*a7Þ þ *r; and 2 *o8 þ *r are distinct. This combined with Lemma 7.5 implies that the
three elements PAð1Þ;PAðLðtð2o8ÞÞ; and PAðLðbÞÞ are linearly independent. The
desired element a in ǓB which satisfies (7.10) is then a suitable linear combination
of 1; Lðtð2o8Þ; and LðbÞ: &

Using the proof of Lemma 7.1, we can compute the radial components of the
‘‘small’’ elements in ǓB described in Lemma 7.6.

Theorem 7.7. Suppose that *m is a minuscule weight of S: Then there exists an element

cAǓB such that

XðcÞ ¼
X

wAWY

wðp�1tð�2 *mÞpÞ:

If S is of type F4, G2, or E8, and *m is the pseudominuscule weight of S; then there

exists an element c in ǓB such that

XðcÞ ¼
X

wAWY

w½ð1� tð2 *mÞÞp�1tð�2 *mÞp�:

Proof. If g; gy is not of type EIV, EVII, or EIX, then the result follows from Lemma
7.1 and the paragraph immediately following the lemma. More generally, let *m be a
minuscule or pseudominuscule weight of S: Then Lemma 7.6 guarantees the
existence of an element cAǓB such that grPAðcÞ ¼ tð�2 *mÞ: Arguing as in the proof
of Lemma 7.1, using Corollary 6.8 and Theorem 3.6 (instead of Theorem 6.7 and
Corollary 3.3) we see that XðcÞ has the desired form. &

8. Macdonald polynomials

In this section we express the zonal spherical functions as Macdonald
polynomials. Formally, Macdonald polynomials associated to a root system are
Laurent polynomials which depend on an indeterminate a and a system of
parameters g ¼ fga j a is a rootg such that ga ¼ gwa for all w in the corresponding
Weyl group. Often, however, the ga are taken to be powers of a: We will take
this point of view here in reviewing basic facts and notations concerning
these polynomials. To further simplify the presentation, we assume that a is a
power of q and that the ga are rational powers of a: In particular, each ga is an
element of C:
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Let $S denote the dual root system to S: For each lAPþð2SÞ; set

ml ¼
X

wAWY

zwl:

The set of Macdonald polynomials fPlða; gÞ j lAPþð2SÞg associated to 2S; $2S is the
unique basis of C½Pð2SÞ�WY which satisfy the following conditions:

(8.1) The polynomials are orthogonal with respect to the Macdonald inner product
at a; g:

(8.2) There exists scalars al;m in C such that Plða; gÞ ¼ ml þ
P

molal;mmm for all
lAPþð2SÞ:

For more details, the reader is referred to [23] or [17].
Macdonald polynomials can also be characterized using certain difference

operators associated to minuscule and pseudominuscule weights. In particular, set
a*a ¼ a2ð*a;*aÞ for *aAS: Recall (6.3) the definition of ðx; aÞ

N
: Let

Dþ
a;g ¼

Y
*aASþ

ðz2*a; a*aÞN
ðg*az2*a; a*aÞN

:

Given bAPð2SÞ; define an operator Tb on C½Qð2SÞ� by

Tbza ¼ qðb;aÞza:

Let Dbða; gÞ be the operator on C½Qð2SÞ� defined by

Dbða; gÞð f Þ ¼
X

wAWY

wððDþ
a;gÞ

�1ðTbðDþ
a;g f ÞÞÞ:

Similarly, let Ebða; gÞ be the operator on C½a; g�½za j aAS� defined by

Ebða; gÞð f Þ ¼
X

wAWY

wððDþ
a;gÞ

�1ððTbðDþ
a;gÞÞððTb � 1Þ f ÞÞÞ:

Set Fb equal to the difference operator Db if b is a minuscule weight of 2S and
equal to the difference operator Eb if b is pseudominuscule of 2S: The following
result summarizes the relationship between Macdonald polynomials and these
difference operators.

Theorem 8.1 (Macdonald [23]). Let S be a subset of 2S consisting of

(i) one minuscule weight if 2S is not of type Dn; E8, F4, or G2
(ii) both minuscule weights if 2S is of type Dn

(iii) one pseudominuscule weight if S is of type E8, F4, or G2.

Then the set fPlða; gÞ j lAPþð2SÞg is the unique basis of C½Pð2SÞ�W satisfying (8.2)
which consists of eigenvectors for the action of Fb as b ranges over S:
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In order to identify the zonal spherical functions with Macdonald polynomials, we
show that the action of certain central elements (or more generally B invariant
elements) on the right correspond to the left action of the difference operators
described above.

Theorem 8.2. Let g; gy be an irreducible symmetric pair. Let fjl j lAPþð2SÞg denote

the unique WY invariant zonal spherical family associated to B: Then

jl ¼ Plða; gÞ

for all lAPþð2SÞ: Here a ¼ q and g*a ¼ qmultð*aÞð*a;*aÞ for each *aAS:

Proof. Let *m be a minuscule weight in S if S is not of type F4, EVIII, or G2 and
pseudominuscule otherwise. Note that when *m is minuscule, so is �w0

0 *m and similarly
if *m is pseudominuscule then so is �w0

0 *m: Consider first the case when *m is minuscule.
Applying Theorem 7.7 to the weight w0

0 *m shows that there exists cAǓB such that

XðcÞ ¼
X

wAWY

wðp�1tð2w0
0 *mÞpÞ: ð8:3Þ

It is straightforward to see that w0
0ðp�1Þ ¼ Dþ

a;g using the definition of p given in
Theorem 6.7. Hence we can rewrite (8.3) as

XðcÞ ¼
X

wAWY

wðDþ
a;gtð2 *mÞðDþ

a;gÞ
�1Þ:

It follows that the right action of XðcÞ agrees with the left action of D2 *mða; gÞ: Thus
the basis fjl j lAPþð2SÞg is a basis of eigenvectors for the action of D2 *mða; gÞ
satisfying (8.2) when m is minuscule. The theorem now follows from Theorem 8.1
when *m is minuscule. A similar argument using the operators E2 *mða; gÞ works for *m
pseudominuscule. &
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Appendix A

We include in this appendix a complete list of all irreducible symmetric pairs with
reduced restricted roots using Araki’s classification [1]. For each case, we explicitly
describe the involution Y on D and the restricted roots S: (This information can also
be read off the table in [1].) We further give the values of g*a and a*a for aAp in each
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case. Moreover, if g; gy is not of type EIV,EVII, or EIX, then we explicitly give
mAPþðpÞ such that *m is the pseudominuscule or minuscule weight of S:

Note that in Case 1 below, when g1 and g2 are simply laced, we have a*a ¼ g*a for all
restricted roots *a: In particular, a ¼ g in these cases and the resulting Macdonald
polynomials are just the Weyl character formulas.

Case I. g ¼ g1"g2 where both g1 and g2 are simple and isomorphic to each other.
Let p1 ¼ fa1;y; ang denote the simple roots corresponding to g1 and p2 ¼
fanþ1;y; a2ng denote the roots for g2: We further assume that ai/aiþn defines
the isomorphism between the two root systems.

YðaiÞ ¼ �aiþn for 1pipn; S ¼ f*a1;y; *ang and is of the same type as g1; *m is
minuscule (resp. pseudominuscule) when m is a minuscule (resp. pseudominuscule)
weight of g1:

a*ai
¼ qðai ;aiÞ and g*ai

¼ qðai ;aiÞ for each i:
Case II. g is simple
Type AI g is of type An:
YðaiÞ ¼ �ai; for 1pipn: S ¼ fa1;y; ang is of type An:
minuscule weight: *m ¼ o1 where m ¼ o1:
a*ai

¼ q4 and g*ai
¼ q2 for all 1pipn:

Type AII g is of type An; where n ¼ 2m þ 1 is odd and nX3:
YðaiÞ ¼ ai for i ¼ 2j þ 1; 0pjpm; YðaiÞ ¼ �ai�1 � ai � aiþ1 for i ¼ 2j;

1pjpm: S ¼ f*ai j i ¼ 2j þ 1; 0pjpmg is of type An:
minuscule weight: *m ¼ o0

1 is minuscule where m ¼ o1:
a*ai

¼ q2 and g*ai
¼ q4 for all i; i ¼ 2j; 1pjpm:

Type AIII Case 2. g is of type An where n ¼ 2m þ 1:
YðaiÞ ¼ �an�iþ1 for 1pipn: S ¼ f*ai j 1pipmg is of type Cm:
minuscule weight: *m ¼ o0

1 where m ¼ o1:
a*ai

¼ q2 for 1pipm � 1; a*am
¼ q4; and g*ai

¼ q2 for 1pipm:
Type BI g is of type Bn; r is an integer such that 2prpn:
YðaiÞ ¼ ai for r þ 1pipn; YðaiÞ ¼ �ai for 1pipr � 1; YðarÞ ¼ �ar � 2arþ1 �

2arþ2 �?� 2an: S ¼ f*a1;y; *arg is of type Br:
minuscule weight: *m ¼ o0

r where m ¼ on:
a*ai

¼ q4 and g*ai
¼ q2 for 1pipr � 1; a*ar

¼ q2 and g*ar
¼ q2ðn�rÞþ1:

Type BII g is of type Bn:
YðaiÞ ¼ ai for 2pipn; Yða1Þ ¼�a1� 2a2 � 2a3 �?� 2an: S¼ f*a1g is of

type A1:
minuscule weight: *m ¼ o0

1 where m ¼ on:
a*a1 ¼ q2 and g*a1 ¼ q2n�1:
Type CI g is of type Cn:
YðaiÞ ¼ �ai for 1pipn: S ¼ f*a1;y; *ang is of type Cn:
minuscule weight: *m ¼ o0

1 where m ¼ o1:
a*ai

¼ q4 and g*ai
¼ q2 for 1pipn � 1; a*an

¼ q8; and g*an
¼ q4:

Type CII Case 2. g is of type Cn where nX3 is even.
YðaiÞ ¼ ai for i ¼ 2j � 1; 1pjpn=2; YðaiÞ ¼ �ai�1 � ai � aiþ1 for i ¼

2j; 1pjpðn � 2Þ=2; YðanÞ ¼ �an � 2an�1: S ¼ f*ai j i ¼ 2j; 1pjpn=2g is of
type Cn=2:
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minuscule weight: *m ¼ o0
2 where m ¼ o1:

a*ai
¼ q2 and g*ai

¼ q4 for i ¼ 2j; 1pjpðn � 2Þ=2; a*an
¼ q4 and g*an

¼ q6:
Type DI Case 1. g is of type Dn; r is an integer such that 2pr

pn � 2
YðaiÞ ¼ ai for r þ 1pipn; YðaiÞ ¼ �ai for 1pipr � 1; YðarÞ ¼ �ar � 2arþ1 �

?� 2an�2 � an�1 � an: S ¼ f*a1;y; *arg is of type Br:
minuscule weight: *m ¼ o0

r where m ¼ on:
a*ai

¼ q4 and g*ai
¼ q2 for 1pipr � 1; a*ar

¼ q2 and g*ar
¼ q2ðn�rÞ:

Type DI Case 2. g is of type Dn; nX4:
YðaiÞ ¼ �ai for 1pipn � 2; Yðan�1Þ ¼ �an;YðanÞ ¼ �an�1: S ¼ f*a1;y; *an�1g is

of type Bn�1:
minuscule weight: *m ¼ o0

n�1 where m ¼ on�1:
a*ai

¼ q4 for 1pipn � 2; a*an�1
¼ q2; and g*ai

¼ q2 for 1pipn � 1:
Type DI Case 3. g is of type Dn; nX4:
YðaiÞ ¼ �ai for 1pipn: S ¼ fa1;y; ang is of type Dn:
minuscule weight: *mi ¼ on�i where mi ¼ on�i; for i ¼ 0 and i ¼ 1:
a*ai

¼ q4 and g*ai
¼ q2 for all 1pipn:

Type DII g is of type Dn; nX4:
YðaiÞ ¼ ai for 2pipn; Yða1Þ ¼ �a1 � 2a2 �?� 2an�2 � an�1 � an: S ¼ f*a1g is

of type A1:
minuscule weight: *m ¼ o0

1 where m ¼ on:
a*a1 ¼ q2 and g*a1 ¼ q2ðn�1Þ:
Type DIII Case 1. g is of type Dn where n is even,
YðaiÞ ¼ ai for i ¼ 2j � 1; 1pjpn=2: YðaiÞ ¼ �ai�1 � ai � aiþ1 for i ¼ 2j;

1pjpðn � 2Þ=2; YðanÞ ¼ �an: S ¼ f*a2; *a4;y; *ang is of type Cn:
minuscule weight: *m ¼ o0

2 where m ¼ o1:
a*ai

¼ q2 and g*ai
¼ q4 for i ¼ 2j; 1pjpðn � 2Þ=2; a*an

¼ q4; and g*an
¼ q2:

Type E1 g is of type E6.
YðaiÞ ¼ �ai for all i: S ¼ f*a1;y; *a6g:
minuscule weight: *m ¼ o0

6 where m ¼ o6:
a*ai

¼ q4 and g*ai
¼ q2 for all 1pipn:

Type EII g is of type E6.
YðaiÞ ¼�apðiÞ where pð1Þ ¼ 6; pð3Þ ¼ 5;pð4Þ ¼ 4; pð2Þ ¼ 2; pð5Þ ¼ 3; and pð6Þ ¼ 1:

S ¼ f*a2; *a4; *a3; *a1g is of type F4.
pseudominuscule weight: *m ¼ o0

1 where m ¼ o1:
a*ai

¼ q2 for i ¼ 3; 1; a*ai
¼ q4 for i ¼ 2; 4; and g*ai

¼ q2; for i ¼ 1; 2; 3; 4:
Type EIV g is of type E6.
YðaiÞ ¼ ai for i ¼ 2; 3; 4; 5; Yða1Þ ¼ �a1 � 2a3 � 2a4 � a5 � a2; Yða6Þ ¼ �a6 �

2a5 � 2a4 � a3 � a2: S ¼ f*a1; *a6g is of type A3.
a*ai

¼ q2 and g*ai
¼ q8 for i ¼ 1; 6:

Type EV g is of type E7.
YðaiÞ ¼ �ai for all i: S ¼ f*a1;y; *a7g:
minuscule weight: *m ¼ o0

7 where m ¼ o7:
a*ai

¼ q4 and g*ai
¼ q2 for all 1pip7:

Type EVI g is of type E7.
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YðaiÞ ¼ ai for i ¼ 2; 5; 7; Yða6Þ ¼ �a6 � a5 � a7; Yða4Þ ¼ �a2 � a5 � a4; YðaiÞ ¼
�ai for i ¼ 1; 3: S ¼ f*a1; *a3; *a4; *a6g is of type F4.

pseudominuscule weight: *m ¼ o0
6 where m ¼ o7:

a*ai
¼ q4 and g*ai

¼ q2 for i ¼ 1; 3; a*ai
¼ q2 and g*ai

¼ q4 for i ¼ 4; 6:
Type EVII g is of type E7.
YðaiÞ ¼ ai for i ¼ 2; 3; 4; 5; Yða1Þ ¼ �a1 � 2a3 � 2a4 � a2 � a5; Yða6Þ ¼ �a6 �

2a4 � 2a5 � a2 � a3; Yða7Þ ¼ �a7: S ¼ f*a1; *a6; *a7g is of type C3.
a*ai

¼ q2 and g*ai
¼ q8 for i ¼ 1; 6; a*ai

¼ q4 and g*ai
¼ q2 for i ¼ 7:

Type EVIII g is of type E8.
YðaiÞ ¼ �ai for all i: S ¼ f*a1;y; *a8g is of type E8.
pseudominuscule weight: *m ¼ o0

8 where m ¼ o8:
a*ai

¼ q4 and g*ai
¼ q2 for all 1pip8:

Type EIX g is of type E8.
YðaiÞ ¼ ai for i ¼ 2; 3; 4; 5; Yða1Þ ¼ �a1 � 2a3 � 2a4 � a2 � a5; Yða6Þ ¼ �a6 �

2a4 � 2a5 � a2 � a3; YðaiÞ ¼ �ai for i ¼ 7; 8: S ¼ f*a8; *a7; *a6; *a1g is of type F4. a*ai
¼

q2 and g*ai
¼ q8 for i ¼ 1; 6; a*ai

¼ q4 and g*ai
¼ q2 for i ¼ 7; 8:

Type FI g is of type F4.
YðaiÞ ¼ �ai for i ¼ 1; 2; 3; 4: S ¼ f*a1; *a2; *a3; *a4g is of type F4.
pseudominuscule weight: *m ¼ o0

4 where m ¼ o0
4:

a*ai
¼ q4 and g*ai

¼ q2 for i ¼ 1; 2; a*ai
¼ q2 and g*ai

¼ q for i ¼ 3; 4:
Type G g is of type G2.
YðaiÞ ¼ �ai for i ¼ 1; 2: S ¼ f*a1; *a2g is of type G2.
pseudominuscule weight: *m ¼ o0

1 where m ¼ o0
1:

a*ai
¼ q4 and g*ai

¼ q2 for i ¼ 1; a*ai
¼ q12 and g*ai

¼ q6 for i ¼ 2:

Appendix B. Commonly used notation

Here is a list of notation defined in Section 1 (in the following order):
C; Q; Z; N; C; Fþ; QðFÞ; PðFÞ; QþðFÞ; PþðpÞ; g; n�"h"nþ; D; p ¼ fa1;y; ang;

ð ; Þ; r; y; Y; pY; p; p; *a; S; WY; U ; xi; yi; t71
i ; U�; Uþ; Uþ; Sþ; T ; U0; t; Ng; TY;

M; *y; Bi; By; H; B; S; LðlÞ; Rq½G�; U ; B0HB; B0HBðlÞ; jl
B;B0 ; fjl j lAPþð2SÞg:

Defined in Section 2:
T 0 subgroup of T generated by fti j aiApg
G� subalgebra of U generated by yiti; 1pipn

M� M-G�

Mþ M-Uþ

N� subalgebra of G� generated by ðadM�ÞC½yiti j aiepY�
Nþ subalgebra of Uþ generated by ðadMþÞC½xi j aiepY�
Sb;r the sum of weight spaces Sb0 with

*b0 ¼ *b
T 0
X

monoid generated by t2i for aiAp

A group generated by tð2*aÞ for aAp

AX semigroup generated by tð2*aÞ for aAp
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Defined in Section 3:
QS QðSÞ
CðQSÞ quotient ring of C½QS�
B0 ¼ B0

y algebra in B such that B0HB is WY invariant
UX UþG�AX

Ǔ simply connected quantized enveloping algebra
Ť ftðlÞ j lAPðpÞg
$A ftð *mÞ j mAPðpÞg

Ǔ0 C½Ť�
ŤY ftðmÞ j tðmÞAŤ and YðmÞ ¼ mg
TX monoid generated by t2i for i ¼ 1;y; n

gl element in B0HB such that U ðglÞ ¼ jl
X see Theorem 3.2 and Corollary 3.3
ZðǓÞ the center of Ǔ

P the quantum Harish-Chandra projection of Ǔ onto Ǔ0

CððQSÞÞ formal Laurent series ring Cððz�*ai j aiApÞÞ
o0

i the fundamental weight in PþðSÞ corresponding to *ai

adr right adjoint action
ǓB adrB invariant elements in Ǔ

PA projection of Ǔ onto C½ $A� using (3.11)
xl a particular choice of nonzero vector in ðLðlÞÞB

Defined in Section 4:
cm nonzero vector in ðtð�2mÞ þ ðad UþÞtð�2mÞÞ-ZðǓÞ
w0 longest element in W

oi fundamental weight in PþðpÞ corresponding to ai

P0
A P composed with projection of Ǔ to C½ $A� using (3.5)

w0
0 longest element in WY

w Hopf algebra automorphism defined after proof of Theorem 4.5

Defined in Section 5:
hY flAQa1 þ?þQan jYðlÞ ¼ �lg
%MðlÞ ð %MðlÞrÞ graded version of generalized left (right) Verma module

M̂ðlÞ ðM̂ðlÞrÞ completion of %MðlÞ ð %MðlÞrÞ
zl ðzr

lÞ nonzero vector in M̂ðlÞB0
(ðM̂ðlÞrÞB)

N̂�ðN̂þÞ completion of N� (Nþ)
%U map from M̂ðlÞr#M̂ðlÞ to Cððz�a j aApÞÞ
P projection of gr U onto gr U0

c0m multiple of cm satisfying (5.4)
p defined in Theorem 5.8

Defined in Section 6:
pi faj j ðoj;Yð�aiÞÞa0 or ðoj ;Yð�apðiÞÞÞa0g
gi rank one semisimple Lie subalgebra of g with simple roots pi
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Si f7*aig
Di root system associated to gi

Ui subalgebra of U generated by xi; yi; t71
i for aiApi

multð*aÞ number of elements in fbAD j *b ¼ *ag
ðx; aÞ

N
defined in (6.3)

a*a qð2*a;*aÞ

g*a qmultð*aÞð*a;*aÞ

Defined in Section 7:
FrðǓÞ locally finite part of Ǔ with respect to right adjoint action
L map from FrðǓÞ to ǓB defined before Lemma 7.5
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[28] T. Sugitani, Zonal spherical functions on quantum Grassmann manifolds, J. Math. Sci. Univ. Tokyo

6 (2) (1999) 335–369.

[29] N.R. Wallach, Real Reductive Groups, I, Pure and Applied Mathematics, Vol. 132, Boston, 1988.

ARTICLE IN PRESS
G. Letzter / Advances in Mathematics 189 (2004) 88–147 147


	Quantum zonal spherical functions and Macdonald polynomials
	Introduction
	Background and notation
	Decompositions and related projections
	Action of the center on spherical functions
	Central elements: the rank one case
	Graded zonal spherical functions
	Computing graded radial components
	Minuscule and pseudominuscule weights
	Macdonald polynomials
	Acknowledgements
	Commonly used notation
	References


