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Abstract

We propose an a posteriori error estimator for the Stokes problem using the Crouzeix–Raviart/P0 pair. Its
e3ciency and reliability on highly stretched meshes are investigated. The analysis is based on hierarchical
space splitting whose main ingredients are the strengthened Cauchy–Schwarz inequality and the saturation
assumption. We give a theoretical proof of a method to enrich the Crouzeix–Raviart element so that the
strengthened Cauchy constant is always bounded away from unity independently of the aspect ratio. An
anisotropic self-adaptive mesh re$nement approach for which the saturation assumption is valid will be de-
scribed. Our theory is con$rmed by corroborative numerical tests which include an internal layer, a boundary
layer, a re-entrant corner and a crack simulation. A comparison of the exact error and the a posteriori one
with respect to the aspect ratio will be demonstrated.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In many practical situations, the solution to a partial di;erential equation has some preferred
orientation. That is, it changes considerably fast toward certain directions. That is exempli$ed by
problems presenting boundary or internal layers. Anisotropic meshes which contain thin and stretched
elements have been demonstrated to be suitable for solving such problems (see among many others
[4,6,29,9,25,17]).
In this paper, we will focus mainly on the Stokes problem in two dimensions. It is a well-known

fact [20] that the inf–sup condition (also widely known as LBB-condition) guarantees the con-
vergence of the FE-discretization. The stability of a velocity–pressure pair depends on whether its
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inf–sup constant is bounded away from zero. In contrast to several other velocity–pressure pairs
[30,7], the Crouzeix–Raviart/P0, which we will use throughout this paper, is known to be uncondi-
tionally stable on any anisotropic mesh (see [5,2]).
The objective of this paper is the investigation of a posteriori error estimator for the Crouzeix–

Raviart/P0 pair on anisotropic grids. Further, we aim at using that estimator to construct an automatic
self-adaptive (see [32,13,31] and the reference there) mesh re$nement algorithm which starts from a
coarse mesh. Basically, a posteriori error estimators permit to evaluate the $nite element errors with-
out knowing the exact solution. That feature makes it possible to dynamically identify regions where
one should have further re$nements if the error there is too large. Therefore, adaptive re$nements
are mainly based on the quality of a posteriori error estimators.
Lots of related works have already been done in this topic. For isotropic grids, many di;erent a

posteriori error estimators have been already proposed for the Stokes problem (see [33,34,3,22] and
the references there). In the context of anisotropic meshes, there are already a variety of a posteriori
error estimators for Poisson and reaction–di;usion problems [15,23–25]. For the Stokes equation,
a recent article [14] by CreusDe et al. presents a survey on the residual based error estimator on
anisotropic grids. An interesting a posteriori error estimator for two and three dimensions as well as
an anisotropic adaptive mesh re$nement are also detailed in [31].
In the present document, we propose an a posteriori error estimator which is based on a hierarchical

space enrichment whose major ingredients are the strengthened Cauchy–Schwarz inequality and the
saturation assumption. We demonstrate a method to enrich the Crouzeix–Raviart element so that the
strengthened Cauchy constant is always strictly smaller than the unity independently of the aspect
ratio. We will show also an anisotropic mesh re$nement technique which starts from a coarse and
isotropic mesh and which keeps the saturation assumption valid.
The structure of the paper is as follows. In Section 2, we introduce various de$nitions and no-

tations. Section 3 treats exclusively the strengthened Cauchy–Schwarz inequality for the Crouzeix–
Raviart element on stretched grids. We detail the a posteriori error estimator in Section 4. In the
last section, we propose an anisotropic mesh re$nement strategy. We analyze the performance of
the investigated a posteriori error estimator on four di;erent problems: an internal layer, a boundary
layer, a re-entrant corner and a crack problem. Additionally, we want to make a closer survey of
the saturation assumption based on the proposed mesh re$nement strategy. In all those tests, the
expressions of the exact solutions are explicitly known so that we can make a clear comparison
between the exact error and the a posteriori estimated error.

2. Problem setting and notations

2.1. The Stokes problem

Let � be a polyhedral domain with Lipschitz boundary. The Stokes problem consists of searching
for the velocity ũ= (u1; u2)∈V := H 1

0 (�)
2 and the pressure p∈Q := L20(�) such that

(∇ũ;∇ṽ)− (div ṽ; p) = (f̃; ṽ) ∀̃v∈V

(div ũ; q) = 0 ∀q∈Q; (1)
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where

H 1
0 (�) := {v∈H 1(�) : v= 0 on @�}; (2)

L20(�) :=
{
q∈L2(�) :

∫
�
q= 0

}
: (3)

2.2. Anisotropic mesh

De�nition 1. An anisotropic mesh Th is a set of disjoint triangles such that

F� =
⋃

T∈Th

FT (4)

and every edge of any element Ti ∈Th is either a part of the boundary @� or an edge of another
element Tj of Th.

Remark 2. For a triangle T , we denote

h(T ) := diam(T ) = sup{‖̃x − ỹ‖R2 ; x̃; ỹ∈T};
�(T ) := supremum of the diameters of all balls contained in T;

�(T ) := h(T )=�(T ) = aspect ratio of T:

We will denote by @Th the set of all edges of elements in the mesh Th and the aspect ratio of the
mesh Th is de$ned by

�h := max
T∈Th

�(T ):

2.3. Crouzeix–Raviart/P0 pair

We approximate the velocity and the pressure in the following discrete spaces:

Vh :=
{
ṽh ∈L2(�)2 : ṽh|T ∈ (P1)2 ∀T ∈Th and

∫
F
[̃vh] = 0 ∀F ∈ @ Th

}
; (5)

Qh := {qh ∈L20(�) : qh|T ∈P0 ∀T ∈Th}; (6)

where [̃vh] stands for the jump of ṽh across the edge F if F is an internal edge, and it is equal to
ṽh itself if F is a boundary edge. For all ũ; ṽ∈Vh and q∈Qh, we de$ne

aT (̃u; ṽ) :=
2∑

j=1

∫
T
grad uj · grad vj; bT (̃v; q) :=

∫
T
q div ṽ and

ah(̃u; ṽ) :=
∑
T∈Th

aT (̃u; ṽ); bh(̃v; q) :=
∑
T∈Th

bT (̃v; q):

The discrete problem deals with $nding ũ h ∈Vh and ph ∈Qh such that

ah(̃uh; ṽh)− bh(̃vh; ph) = (f̃; ṽh) ∀̃vh ∈Vh;

bh(̃uh; qh) = 0 ∀qh ∈Qh: (7)
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Let us introduce the broken Sobolev space

H := {u∈L2(�) : u|T ∈H 1(T ) ∀T ∈Th}:
The exact velocity and the pressure errors are, respectively,

ũ err := ũ − ũ h ∈H2; (8)

perr := p − ph ∈Q: (9)

We will need the following scalar product and its corresponding energy norm later on:

〈̃u; ṽ〉 := ah(̃u; ṽ); ‖|̃u‖| := 〈̃u; ũ〉1=2: (10)

2.4. Simpli9cation of the errors

Our idea is to avoid the evaluation of ũ err and perr directly. Rather, we will $rst reduce these
errors into a single error with a Poisson problem.

Lemma 3. Let Ẽ ∈H2 be the solution of

ah(Ẽ; ṽ) = ah(̃u err ; ṽ)− bh(̃v; perr) ∀̃v∈H2; (11)

then

C1‖|Ẽ‖|26 ‖|̃u err‖|2 + ‖perr‖206C2‖|Ẽ‖|2;
where the constants C1 and C2 are independent of h and the aspect ratio �h of the mesh Th. C1
and C2 depend exclusively on �.

Proof. This is proved in a very similar way as [3, Theorem 1.1].

3. Strengthened Cauchy–Schwarz inequality

We propose in this section a way to enrich the Crouzeix–Raviart element on anisotropic meshes.
Let T be an arbitrary triangle and k = 2; 3. Denote by a1; a2; a3 the midpoints of its edges and by
�i; i = 1; 2; 3 the linear polynomials in T for which �i(aj) =  ij i; j = 1; 2; 3. We re$ne T into k2

similar triangles and denote by bj (j = 1; 2; 3 for k = 2 and j = 1; : : : ; 7 for k = 3) the nodes which
do not coincide with the apices of T (see Fig. 1). Finally, let  j be the piecewise linear nodal basis

�

�

�
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a3

a1

b3

b1

b2

b5
b1

b7b2

b6
b3

b4

Fig. 1. Initial triangle; re$nement for k = 2; re$nement for k = 3.
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functions at bj. The spaces spanned by �i and  j are denoted by V (T ) and Z(T ), respectively. For
scalar valued functions u; v∈H 1(T ), we de$ne the following local entities:

〈u; v〉T :=
∫
T
grad u · grad v and |u|1; T := 〈u; u〉1=2T : (12)

Theorem 4. Let T be a triangle. There exists a constant #∈ [0; 1) which is independent of �(T ),
meas(T ), h(T ) and �(T ) such that

〈u; v〉T 6 #|u|1; T :|v|1; T ∀u∈V (T ); ∀v∈Z(T ):

Proof. The case k = 2 is already implicitly proved in [27] where #2 = 3
4 , we only need to show it

for k = 3. We should demonstrate that

# := sup
u∈V (T )

sup
v∈Z(T )

〈u; v〉T
|u|1; T |v|1; T ¡ 1: (13)

By introducing the sti;ness matrix corresponding to (�1; �2; �3;  1; : : : ;  7), which has a block
structure

M =

[
A B

BT C

]
;

one obtains

#= sup
u∈R3

sup
v∈R7

u TBv√
u TAu

√
vTCv

: (14)

Therefore, # is given by the square root of the largest eigenvalue of the generalized eigenproblem

(BC−1BT)̃v= (Ãv: (15)

Our aim is to express this largest eigenvalue in terms of the angles ) and * (see Fig. 1 and note
that we can get rid of + = , − ) − *). The $rst step in our proof is to reduce (15) into a simpler
equation. We have (see [27])

A= 2



c + a −a −c

−a a+ b −b

−c −b b+ c


 ; B=

1
3
[A|A|0]; C =




.I R u1

RT .I u2

uT1 uT2 2.


 ;

where a := cot ), b := cot *, c := cot +, . := a+ b+ c, I is the identity matrix of order 3, and

R=




−b=2 −a 0

0 −c=2 −b

−c 0 −a=2


 ; u1 =




−c

−a

−b


 ; u2 =




−a

−b

−c


 :
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Let us de$ne the inverse of the upper left blocks of C by

K :=

[
.I R

RT .I

]−1
which is also given by (16)

K =

[
(.I − (1=.)RRT)−1 (−1=.)R(.I − (1=.)RTR)−1

(−1=.)RT(.I − (1=.)RRT)−1 (.I − (1=.)RTR)−1

]
: (17)

The inverse matrix C−1 can also be expressed as

C−1 =

[
K + 2KUUTK −2KU

−2UTK 2

]
with U :=

[
u1

u2

]
; 2 :=

1
2. − UTKU

:

Because K is given in block structure, K + 2KUUTK can also be written block-wise:

K + 2KUUTK= :

[
P Q

S T

]
:

The left-hand side of (15) therefore becomes

1
9
[AT|AT]

[
P Q

S T

] [
A

A

]
:

As a consequence, eigenproblem (15) is reduced into

1
9
A(P + Q + S + T )w̃ = (w̃: (18)

With the help of (17), we can express P, Q, S and T in terms of ) and *. A simple (but long)
computations yield that the three eigenvalues of (18) are:

(1 = (1(); *) =
−2
D
(−35 + 17c42 −

√
dc44 −

√
dc55s+ 34c33s

+
√
dc66 − 52c11s+ 17c24 + 35c22 − 34c44); (19)

(2 = (2(); *) =
−2
D
(−35 + 17c42 +

√
dc44 +

√
dc55s+ 34c33s

−
√
dc66 − 52c11s+ 17c24 + 35c22 − 34c44); (20)

(3 = 0; (21)

where

cij := cosi ) cosj *;

s := sin ) sin *;
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D :=−13c42 + 138 + 4c55s − 95c33s+ 7c35s+ 7c53s − 2c51s

+20c02 − 20c04 − 2c15s − 38c31s − 38c13s+ 238c11s − 20c40

+ 20c20 − 13c24 + 6c26 − 4c66 − 5c64 + 6c62 − 211c22 + 101c44 − 5c46;

d := (121− 185c42 − 32c55s+ 182c33s − 56c35s − 56c53s+ 16c51s

− 160c02 + 160c04 + 16c15s+ 304c31s+ 304c13s − 714c11s+ 160c40

− 160c20 − 185c24 − 48c26 + 32c66 + 40c64 − 48c62 + 787c22 − 230c44 + 40c46)=c88:

Since (1 and (2 are functions of (); *), it is very easy to compute the maximum taken value. For
(); *)∈ (0; ,)× (0; ,), it can be shown (see Fig. 2(a) and (b)) that

max((1; (2)6 8
9 ≈ 0:888 : : : : (22)

The theorem is then proved with #= 2
3

√
2.

Remark 5. The proof was simple but lengthy, a computation supported by MAPLE was helpful in
performing all the elementary calculus. The maximum value of (22) is approached when one of the
angles is tending to , (see Fig. 2(a) and (b)). The result seems to be true for any k¿ 2 with

#2 =
k2 − 1
k2

as the following numerical results show. Readers are referred to [11,8,18] for some ways to determine
numerically the strengthened Cauchy–Schwarz constant. The test consists of varying the value of the
parameter H (see Fig. 3(a)) and compute the corresponding strengthened Cauchy–Schwarz constant.
The results of the tests are presented in Fig. 3(b). One can clearly see that when the triangle becomes
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Fig. 3. (a) The investigated triangle and (b) strengthened Cauchy–Schwarz constant.

anisotropic (H tends to 0), the strengthened Cauchy–Schwarz Constant is tending to

#2 = 0:75 for k = 2;

#2 = 0:888 : : : for k = 3;

#2 = 0:9375 for k = 4:

The smallest value of the Cauchy–Schwarz constant is obtained for H=0:8660254 where the triangle
is equilateral. It is, however, worth noting that k¿ 4 is not of any interest because that leads to
overly many nodes for each element and that results in too intensive computational costs for the a
posteriori error estimator.

Before we state a corollary of Theorem 4, let us introduce the following space:

Zh := {̃v∈L2(�)2 : ṽ|T ∈Z(T )2 ∀T ∈Th}: (23)

Corollary 6 (Strengthened Cauchy–Schwarz inequality): Let Th be a mesh (anisotropic or not). For
Vh and Zh de9ned in (5) and (23), there exists #∈ [0; 1) which is independent of any property of
Th such that

〈̃v; z̃〉6 #‖|̃v‖|:‖|̃z‖| ∀̃v∈Vh; ∀̃z ∈Zh: (24)

Proof. Let ṽ= (v1; v2) and z̃ = (z1; z2) be in Vh and Zh, respectively.
By de$nition (10) we have

〈̃v; z̃〉=
∑
T∈Th

〈v1; z1〉T + 〈v2; z2〉T :

Therefore, according to Theorem 4, we obtain

〈̃v; z̃〉6 #
∑
T∈Th

{|v1|1; T |z1|1; T + |v2|1; T |z2|1; T}:
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From the usual Cauchy–Schwarz inequality we deduce

〈̃v; z̃〉6 #

{∑
T∈Th

|v1|21; T + |v2|21; T
}1=2 {∑

T∈Th

|z1|21; T + |z2|21; T
}1=2

:

4. A posteriori error estimator

De�nition 7. For each element T ∈Th, let ẽ T = (e1T ; e
2
T )∈Z(T )2 be the solution of the Poisson

problem

aT (̃eT ; ṽ) = (f̃; ṽ)T − aT (̃uT ; ṽ) ∀̃v∈Z(T )2; (25)

where ũ T is the restriction of the solution ũ h of problem (7) in the element T. We de$ne the
following expression which will be the a posteriori error estimator:

;T :=
√

|e1T |21; T + |e2T |21; T : (26)

Before we can prove the equivalence of this a posteriori error estimator to the true error, let us
introduce the following de$nitions.

De�nition 8 (Hierarchical space enlargement): For each element T ∈Th, we de$ne the local space

R(T ) := {̃v∈H 1(T )2 : div ṽ= 0}: (27)

We introduce also the global spaces

R := {̃v∈L2(�)2 : ṽ|T ∈R(T ) ∀T ∈Th}: (28)

Now we enlarge the space Vh ∩ R hierarchically into Wh:

Wh := (Vh ∩ R)⊕ Zh; (29)

where ⊕ stands for direct sum (and not orthogonal sum).

De�nition 9. If we approximate the following continuous problem:{
Find Ẽ ∈H2 :

ah(Ẽ; ṽ) = (f̃; ṽ)− ah(̃uh; ṽ) ∀̃v∈V ∩ R
(30)

in the $nite-dimensional spaces Vh and Wh as,{
Find ṽh ∈Vh :

ah(̃vh; ṽ) = (f̃; ṽ)− ah(̃uh; ṽ) ∀̃v∈Vh ∩ R
(31)

{
Find w̃h ∈Wh :

ah(w̃h; ṽ) = (f̃; ṽ)− ah(̃uh; ṽ) ∀̃v∈Wh;
(32)
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then we say that the saturation assumption is met if

∃*¡ 1 : ‖|Ẽ − w̃h‖|6 *‖|Ẽ − ṽh‖|: (33)

Remark 10. The saturation assumption (33) quanti$es that the solution in the larger space Wh is
more accurate than that in the smaller space Vh (see [28,16] for further investigation of this as-
sumption). Note that problems (30)–(32) were only de$ned in order to introduce the saturation
assumption. We do not need to solve any of them in practice. In the last section of this paper, we
will show numerical evidence of how to achieve this assumption in practice.

Theorem 11. If we suppose that the saturation assumption (33) is ful9lled then there exist two
constants C and FC which are independent of h and the aspect ratio �h of the mesh Th such that

C
∑
T∈Th

;2T 6 ‖|Ẽ‖|26 FC
∑
T∈Th

;2T : (34)

Remark 12. A theorem similar to this has been discussed in [22,1] where the authors have used
extensively the shape regularity of the mesh.

Proof. Part 1 (E<ciency): Let us de$ne Ẽh ∈Zh by

Ẽh|T := ẽ T ∀T ∈ Th: (35)

We note immediately that Ẽh is the solution of

ah(Ẽh; ṽ) = (f̃; ṽ)− ah(̃uh; ṽ) ∀̃v∈Zh (36)

because Eq. (25) implies∑
T∈Th

aT (̃eT ; ṽ) =
∑
T∈Th

[(f̃; ṽ)T − aT (̃uT ; ṽ)]:

Therefore, we obtain[∑
T∈Th

;2T

]1=2
= ‖|Ẽh‖|6 sup

z̃∈Zh
‖|̃z‖|=1

ah(Ẽh; z̃) = sup
z̃∈Zh

‖|̃z‖|=1

ah(w̃h; z̃) (37)

6 sup
z̃∈Zh

‖|̃z‖|=1

‖|w̃h‖|:‖|̃z‖|= ‖|w̃h‖|: (38)

We have the second equality in (37) because the right-hand sides of (32) and (36) coincide for all
z̃ ∈Zh ⊂ Wh.
On the other hand, we obtain from (33) that

‖|w̃h‖|6 ‖|Ẽ − w̃h‖|+ ‖|Ẽ‖|6 *‖|Ẽ‖|+ ‖|Ẽ‖|= (1 + *)‖|Ẽ‖|; (39)

whereby used the fact that ṽh of (31) is the zero function because ah(̃uh; ṽ) = (f̃; ṽ) for all function
ṽ which is divergence free (see problem (7)).
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This last inequality and (38) yield[∑
T∈Th

;2T

]1=2
6 (1 + *)‖|Ẽ‖|: (40)

Part 2 (Reliability): Let ṽ∈Vh ∩ R and z̃ ∈Zh be such that ‖|̃v+ z̃‖|= 1. Then
1 = ‖|̃v+ z̃‖|2 = ‖|̃v‖|2 + ‖|̃z‖|2 + 2〈̃v; z̃〉 (41)

¿ ‖|̃v‖|2 + ‖|̃z‖|2 − 2#‖|̃v‖|:‖|̃z‖| (42)

= (‖|̃v‖|2 − #‖|̃z‖|)2 + (1− #2)‖|̃z‖|2: (43)

Consequently,

1¿ (1− #2)‖|̃z‖|2: (44)

We have on the other hand

‖|Ẽ‖|6 ‖|Ẽ − w̃h‖|+ ‖|w̃h‖|6 *‖|Ẽ‖|+ ‖|w̃h‖|;
(we used again the same technique as in (39)) which implies

(1− *)‖|Ẽ‖|6 ‖|w̃h‖|: (45)

Now, we use (44) to obtain

‖|w̃h‖|6 sup
‖|̃v+z̃‖|=1

(̃v;̃z)∈(Vh∩R)×Zh

ah(w̃h; ṽ+ z̃) (46)

= sup
‖|̃v+z̃‖|=1

(̃v;̃z)∈(Vh∩R)×Zh

(f̃; ṽ+ z̃)− ah(̃uh; ṽ+ z̃) (47)

= sup
‖|̃v+z̃‖|=1

(̃v;̃z)∈(Vh∩R)×Zh

(f̃; ṽ)− ah(̃uh; ṽ)︸ ︷︷ ︸
=0

+ (f̃; z̃)− ah(̃uh; z̃)︸ ︷︷ ︸
ah(Ẽh;̃z)

6
1√
1− #2

‖|Ẽh‖|= 1√
1− #2

[∑
T∈Th

;2T

]1=2
: (48)

According to (45) and this last inequality,

‖|Ẽ‖|6 1
1− *

‖|w̃h‖|6 1

(1− *)
√
1− #2

[∑
T∈Th

;2T

]1=2
:

Finally, the theorem is proved and

1
(1 + *)2

∑
T∈Th

;2T 6 ‖|Ẽ‖|26 1
(1− *)2(1− #2)

∑
T∈Th

;2T : (49)
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5. Numerical results

The purpose of this section is to show the numerical performance of our a posteriori error estimator.
To that end, we consider four test problems: an internal layer, a boundary layer, a re-entrant corner
and a crack problem. We will always start from a coarse mesh which will then be further re$ned
adaptively. Before discussing the test problems, we want to describe our mesh re$nement approach.

5.1. Mesh operations and anisotropy direction

In the course of the mesh re$nement, we distinguish three mesh operations:

(Op1) Subdivision of a triangle T into three sub-triangles by joining the center of gravity and the
three apices (see Fig. 4(a)). This will be used to subdivide a triangle T for which ;T is too
large.

(Op2) Edge Lipping (see Fig. 4(b)). This can only be applied if the union of the two incident
triangles form a convex set.

(Op3) Subdivision of a triangle T into two sub-triangles (see Fig. 4(c)). This will only be applied
to a boundary element by joining the middle of the boundary edge and the internal node.

De�nition 13. Suppose ũ=(uh1; uh2), and ph are the solution on the current mesh. Let (x; y) be the
middle of an edge e. Consider some elements Tsk in the proximity of e and approximate uh1 (resp.
uh2, resp. ph) by a single (i.e. non-piecewise) polynomial Q1 (resp. Q2, resp. Qp) (see [21]) inside
F :=

⋃
k Tsk . Introduce

F̃ i(x; y) := [x; y; Qi(x; y)]; i = 1; 2; p:

(a)

A

D

C

B

A

D

C

B

(b)

(c)

Fig. 4. (a) Subdivision; (b) edge Lipping and (c) boundary re$nement.
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The corresponding normal vectors are therefore

ñi(x; y) =
@F̃i

@x
× @F̃i

@y
; i = 1; 2; p: (50)

We de$ne now Ñ (x; y) := ñ1(x; y) + ñ2(x; y) + ñp(x; y)∈R3. Let m̃(x; y)∈R2 denote the $rst two
components of Ñ (x; y) and t̃(x; y)∈R2 be a perpendicular vector to m̃(x; y). With E being the set
of all edge midpoints, we de$ne $nally the anisotropy direction to be

Ã(x; y) :=
t̃(x; y)
tmax

; where tmax := max
(x;y)∈E

|̃t(x; y)|:

As an illustration, in Figs. 5(b) and 6(b) the $elds Ã(x; y) follow the layer orientations. In Figs.
7(b) and 8(b) they do not follow any special direction.

5.2. Anisotropic mesh re9nement algorithm

We start from a mesh Th;0 which is both coarse and isotropic. We will now describe the way
to deduce Th;k+1 from Th;k . First, we compute all a posteriori errors ;T of formula (25) and (26)
corresponding to T ∈Th;k . We subdivide the elements (say 12%) which have the largest error by
applying mesh operation (Op1).
As a second step, we consider every edge e and its midpoint (x; y) and we compute the value

of Ã(x; y). By choosing a threshold value  ∈ [0; 1], we can distinguish two cases according to the
value of |̃A(x; y)| with respect to  .
If |̃A(x; y)| ∈ [0;  ), we perform the usual Delaunay edge Lipping (see [10,19]) to e. In the case

|̃A(x; y)| ∈ [ ; 1], we apply the technique of generalized Voronoi triangulation (see [26,12]) which we
want to describe brieLy now. Denote by A; B; C; D the apices of the incident triangles to the edge e
(see Fig. 4(b)). If the following generalized swapping criterion is satis$ed then we Lip the edge e:

‖(C − B)× (A − B)‖(A − D)TM(x;y)(C − D)

+ (C − B)TM(x;y)(A − B)‖(A − D)× (C − D)‖¡ 0; (51)

where

M(x;y) =

[
cos + −sin +
sin + cos +

] [
1=r21 0

0 1=r22

] [
cos + sin +

−sin + cos +

]
: (52)

In the last equations, + denotes the polar angle of Ã(x; y), r2 is any positive number and by choosing
a large parameter C,

r1 := (r2C + (1− ()r2 where ( :=
|̃A(x; y)| −  
1−  

∈ [0; 1]: (53)

As for boundary elements T ∈Th;k , if the longest edge e is the boundary one and if e is not in
the same orientation as Ã(x; y), we apply mesh operation (Op3) to T . The advantage of those mesh
operations over some others is that they induce no hanging node whatsoever. Therefore, every mesh
manipulation can be kept local in the implementational point of view.
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Fig. 5. (a) Coarse mesh for the internal layer problem; (b) Ã(x; y) $eld; (c) $nest mesh; (d) zoom in [0:3; 0:55]×[0:4; 0:65]
and (e) exact solution of internal layer.

5.3. Internal layer

We want to investigate an internal layer problem on a domain � which is supposed to be the unit
square [0; 1]2. The exact solution of the velocity is

ũ(x; y) :=

[
10x2(x − 1)2y(y − 1)(2y − 1)

10y2(y − 1)2x(x − 1)(2x − 1)

]
: (54)
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Fig. 6. (a) Coarse mesh for the boundary layer problem; (b) Ã(x; y) $eld; (c) $nest mesh and (d) zoom inside
[0:75; 1]× [0:2; 0:45].

The pressure p(x; y) is chosen to have an internal layer (see Fig. 5(e)) along the curve y = )(x)
with

)(x) = 10:4794x5 − 23:6686x4 + 15:3989x3 − 1:9598x2 + 0:3500: (55)

This has been done in the following manner. Consider the univariate function
L(t) := sin[sign(t)|0:5,t|s] which presents a layer at t = 0 if s is small in size. As the value
of s tends to zero, the width of the layer becomes thinner. For (x; y)∈ [0; 1]2, we de$ne the exact
pressure to be

p(x; y) :=

{
L[(y − )(x))=)(x)] + K if y¡)(x);

L[(y − )(x))=(1− )(x))] + K if y¿ )(x):

The constant K is determined so that the pressure has zero integral. The initial mesh (Fig. 5(a)) for
this internal layer problem consists of 38 isotropic triangles. In Fig. 5(c), we $nd the $nal mesh
which has 1715 elements. The mesh is obviously dense in the vicinity of the internal layer. The
closeup in Fig. 5(d) shows that the elements are also thin and stretched along the layer orientation
and it is isotropic elsewhere (Table 1).
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Fig. 7. (a) Coarse mesh for the re-entrant; (b) Ã(x; y) $eld; (c) $nest mesh and (d) zoom inside [−0:15; 0:15]×[−0:15; 0:15].
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Fig. 8. (a) Coarse mesh for the crack problem; (b) Ã(x; y) $eld; (c) $nest mesh and (d) zoom inside [−0:1; 0:1]×[−0:1; 0:1].
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Table 1
Internal layer: ratio between exact error and a posteriori error

No. elements Aspect ratio Error ratio E3ciency

38 7.51 E+000 1.027830 1.027830
151 1.82 E+002 1.001999 1.001999
191 8.13 E+003 1.033813 1.033813
387 2.25 E+004 0.970307 1.030602
796 2.25 E+004 1.078548 1.078548
1266 2.25 E+004 1.070143 1.070143

Table 2
Boundary layer: ratio between exact error and a posteriori error

No. elements Aspect ratio Error ratio E3ciency

38 7.51 E+000 1.191296 1.191296
53 1.13 E+001 1.309279 1.309279
282 5.81 E+002 0.906400 1.103265
744 5.95 E+003 0.906323 1.103360
1490 7.14 E+003 1.145491 1.145491

5.4. Boundary layer

We want now to study a boundary layer problem in which the domain � is again the unit square.
The exact solutions are chosen to be

ũ(x; y) := [(2 − 1)y2−1=2; (2 − 1)x2−1=2]; (56)

p(x; y) := (x − 0:5)(y − 0:5): (57)

The velocity presents a boundary layer at the right and the upper boundaries. The width of the layer
is controlled by the parameter 2 in Eq. (56). As 2 increases in size, the boundary layer becomes
thinner. We start from the same initial mesh as in the former problem. In Fig. 6(c) we $nd the $nal
mesh having 3265 elements. As we approach the position of the boundary layer, the mesh becomes
both dense and anisotropic as is demonstrated in Fig. 6(d) (see Table 2).

5.5. Re-entrant corner

In this third test we perform our test on the domain

� = {(x; y)∈R2 : x2 + y2¡ 1 and (x; y) �∈ [0;∞)× (−∞; 0]}: (58)

We take the exact solutions from [33,34]. Their expressions in polar variables (r; +) are as follows:

.(+) := sin((1 + ))+) cos(1:5,))=(1 + ))− cos((1 + ))+) (59)
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Table 3
Re-entrant corner: ratio between exact error and a posteriori error

No. elements Aspect ratio Error ratio E3ciency

14 2.84 1.032237 1.032237
236 5.81 1.110648 1.110648
481 7.04 1.108649 1.108649
967 16.7 1.058267 1.058267
1217 25.1 0.841642 1.188153
1540 37.4 0.971552 1.029287

+ sin(() − 1)+) cos(1:5,))=(1− ))− cos(() − 1)+); (60)

 (r; +) := r1+).(+); (61)

ũ :=
[
@ 
@y

;−@ 
@x

]
; (62)

p(x; y) :=
−r)−1

1− )
[(1 + ))2@+.(+) + @3+.(+)]; (63)

where ) := 856 399=15 72 864. The initial mesh is very isotropic and has only 14 elements (see
Fig. 7(a)). The $nal mesh (See Fig. 7(c)) has 967 elements and it does not present any special
anisotropy direction. The closeup in Fig. 7(d) shows that the density of the mesh is very high in
the neighborhood of the re-entrant corner (Table 3).

5.6. Crack

Our last test deals with the investigation of a crack problem in which the domain of study is

� = {(x; y)∈R2 : x2 + y2¡ 1 and (x; y) �∈ [0;∞)× {0}}: (64)

The exact solutions are again those in [33,34] which are given in polar coordinates by

.(+) := 3 sin(0:5+)− sin(1:5+); (65)

 (r; +) := r1:5.(+); (66)

ũ :=
[
@ 
@y

;−@ 
@x

]
; (67)

p(x; y) :=
−2√
r
[2:25@+.(+) + @3+.(+)]: (68)

The re$nement history of the crack problem behaves in the same manner as that of the re-entrant
corner. Starting from an isotropic mesh with 18 elements (see Fig. 8(a)), we end with an isotropic
mesh having 1946 elements (see Fig. 8(c)). The mesh density at the origin is illustrated in the
Fig. 8(d) (see Table 4).
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Table 4
Crack problem: ratio between exact error and a posteriori error

No. elements Aspect ratio Error ratio E3ciency

18 3.81 1.519440 1.519440
110 6.89 1.519440 1.519440
373 7.51 1.165327 1.165327
760 7.51 1.155433 1.155433
1504 8.26 1.135096 1.135096
2387 8.62 1.153799 1.153799

5.7. Saturation assumption, anisotropy and error ratio

The value of the parameter C in Eq. (53) controls the anisotropy of the mesh. By choosing a
very large C (say 104), we allow the aspect ratio to become very large without letting it tend to
in$nity. That is already mentioned in [26,12] because the ratio r1=r2 which reLects the anisotropy
of the mesh resides in the interval [1; C].
In other words, by using the mesh re$nement in Section 5.2, triangles might become highly

anisotropic without being degenerated. The saturation assumption is known to be valid (see [1])
in our case where the aspect ratio is not tending to in$nity. For the four previous tests we have
computed the ratio between the exact error and the a posteriori error:

R :=
‖|̃u err‖|2 + ‖perr‖20∑

T∈Th
;2T

:

We gather in the last four tables the relationship between the number of elements, the largest aspect
ratio, the error ratio R, and the e3ciency which we de$ne by max(R; 1=R)∈ [1;∞). From Eq. (49),
we deduce that the error ratio R is bounded above by C=(1− *)2. That is, if the error ratio is very
large then C=(1 − *)2 tends to in$nity or equivalently * becomes very close to unity. In all tests,
we see that the error ratio is bounded. We remark from Tables 1 and 2 that escalation of the aspect
ratio does not a;ect the e3ciency of the error estimator. For example, in the case of boundary layer,
the error ratio for an aspect ratio of 7.51 is comparable to that for an aspect ratio of 7:14 × 103.
The sensitivity of the a posteriori error estimator is not inLuenced by the size of the aspect ratio.
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