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We present a class of self-adjoint extensions of the symmetric operator
—A41Cy (R'{0}) which correspond formally to perturbations of the Laplacian by
pseudopotentials involving 3% These operators, which provide new examples of
generalized point interactions in the sense of Seba, are defined by the boundary
conditions f(0*)=e “f(07), rf(0° )+ (0" )=€[rf(0O" )+ /(0 )], for zeC,
re R. We calculate their spectra, resolvents, and scattering matrices, and show that
they can be realized as limits of Schrodinger operators with local short-range
potentials. 1993 Academic Press, Inc.

1. INTRODUCTION

Hamiltonians involving generalized point interactions in one dimension
were introduced by Seba [Sebl], who showed that certain self-adjoint
extensions of —4|Cy (R'\{0}) could be realized as perturbations of the
Laplacian by Fermi pseudopotentials. In two and three dimensions, the
point interactions correspond to perturbations by d-function potentials (cf.
[AFH]), but the phenomena are much richer in one dimension. To under-
stand this, note that the symmetric operator 4= —4|Cy(R'\{0}) has
deficiency indices (2, 2), while in two and three dimensions the analogous
operators have deficiency indices (1, 1). Consequently, in one dimension
the operator 4 has a four-parameter family of self-adjoint extensions. In
[Sebl], Seba gives a comprehensive analysis of all the self-adjoint
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extensions of 4 in terms of the Cayley transform parametrization by 2 x 2
unitary matrices, and the associated boundary conditions.

Of particular interest are the boundary conditions which “link” the inter-
vals (—oc,0) and (0, oc). It 1s straightforward to show that the most
general set of self-adjoint boundary conditions of this type is

SO )=af(0 )+ /"0 ), (L1)
SO =310")+'(0 ). (1.2)

Here the coefficients, complex in general, must be of the form x=aw,
B=bw, y=cw, 6 =dw, where w is a complex number of modulus 1, and a,
b, ¢, d are real with ad—bc=1 (cf. [GK]). The domain of the self-adjoint
operator L,;.; corresponding to these boundary conditions consists of all
functions f in H2(R'\{0}) which satisfy (1.1), (1.2); and we have
Lo/ =A% thatis, L, f(x)=—f"(x) for x#0. In particular, L, s is
a local operator; that is, if f vanishes on an open set U, then so does L, ; /.
(This is a particular case of [AGHH, Lemma C.2].)

Some of these boundary conditions correspond to “point interactions,”
or perturbations of —A by distribution potentials. Thus the formal
operators —4 +c¢d and —A4 + b3’ correspond to the respective boundary
conditions f(0")=f(0"), f/(07)—f"(0")=¢f(0), and f(07)—f(0 )=
bf'(0), /(07 )= f"(0 ) (cf. [GHM ], [AGHH]).

In [Sebl], Seba finds a two-dimensional family of generalized point
interactions formally given by perturbations of the Laplacian by one-
dimensional “Fermi pseudopotentials”

— A+ e3(x)+ (1 — a)[8'(x) — 8(x) d/dx ] + b&'(x) dfdx.
The corresponding boundary conditions are
J07)=af(0 )+5/(0 ),
SOT)=c¢f(0 )+ (2—a)f'(0 )

here a, b, and ¢ are real parameters satisfying the relation bc + (1 —a)*=0.

Seba asks whether other boundary conditions, for example, f(0*)=
—f(0 ), f(0")=~/"(0 ") can be realized by pseudopotentials in a
similar way, and whether it is possible to obtain the corresponding
Hamiltonians as limits of Schrodinger operators with local short-range
potentials.

In this paper we present the three dimensional class of self-adjoint
extensions of 4 defined by boundary conditions of the form

0T )=e S0 )

1.3
rf(07)+ /(0" )=e[rf(0 )+ /(0 )], zeC, reR. v
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We show that these extensions correspond to perturbations by pseudo-
potentials formally involving, among other terms, 62 It is easy to see
that the class of operators defined by the boundary conditions (1.3) is
nearly disjoint from Seba’s class; the only common operator is the free
Hamiltonian — 4.

Our approach exploits Segal’s method of interpreting the formal
operator (1/i)(d/dx)+ ad(x) in one dimension (cf. [Seg]) and enables us to
answer the questions above, as well as to determine the resolvent, spectral,
and scattering properties of the resulting operators.

In [Seg], Segal defines a self-adjoint operator on L*(R') corresponding
to the formal expression (1/i)(d/dx)+ V', where V' is any real measurable
function on R', by T, =¢ "Y(1/iXd/dx)e'. In particular, if V is the
Heaviside function, then V’ =4, the Dirac deita function. The operator T
can be approximated in the strong resolvent sense by operators with
smooth coefficients. A function ¢ € L*(R') belongs to Dom(T,.) if and only
if e "pe H(R')=Dom(d/dx).

In the same spirit, for z€ C, we define T.=e~ ""(d/dx) e’", where H is
the Heaviside function; formally 7. appears to be d/dx+ z6. However,
noting that T is periodic in z with period 2zi, we argue in Section 6 that
the correct formal interpretation is T.=d/dx + 21, where 1=(e"— 1)/
(e + 1)=tanh(z/2). (If z= +in, then 1 is formally +icc. Note that t never
equals 1.) The operator 7. is closed with dense domain Dom(7T.)=
{pe LY (R'): ¢"¢e H'(R')}. This means that g H'(R'\{0}), and that ¢
satisfies the boundary condition ¢(0*)=e “¢(0 7).

Because T.4=¢ away from 0, the self-adjoint operator on L*(R')
defined by B.=T*T. is an extension of 4. Since T*= —e "(d/dx)e 7",
B_ is formally

d e d .
( —3;4- 27 ()(Y))("-{:-{- 27 0(.’())

=—A4—4ilm ré(x)gd;—k &(x) +4|1]2 8(x)~

o

We get a more general family L,, ., of extensions of 4 as follows. For
reR, zeC, define Q, ., =(r+T)*(r+7T,), and L, ,=0Q, ., —r,
where [ is the identity operator on L*(R'). Then Dom(L, .,) =
Dom(Q, .,), and ¢eDom(Q,, .,) if and only if ¢eDom(7T.) and
(rl+T.)¢ecDom(T*). Thus #(x)=e HY(x), where yeH'(R'); in
particular, ¢(0* ) and #(0 ") exist and satisfy the boundary condition

0" )=e “$(0"). (1.4)
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In addition, the function (r/+ T.)g(x)=rd(x)+e ““Y'(x) (x#0) must
belong to Dom(T *), so that

rd(x)+e TN (x) = et 0(x), for some Oe H'(R');
this yields a second boundary condition
rg(07 )+ 40" )=e"[rg(0 )+4'(0 )] (L.5)
Note that, using (1.4), one sees that condition (1.5) is equivalent to
P07 )—eg' (0 )=r(e’—e )P0 ) (1.6)
From the definitions it is clear that if =0 or z is purely imaginary, then
L, _.,=B. Formally, L, ..=B.+r(T.+T¥), or

o

/
L. . =—A4—41mto(x) = — 2t §'(x)
- dx
+4|7]? 6(x)* + 4r Re 13(x).

When =0, so that r=0, the operator L, ., reduces to the free
Laplacian —A4; moreover, for purely imaginary z=1y, the operator
B.=¢ "M(—d?*/dx?)e"™ is unitarily equivalent to — 4.

The boundary conditions (1.4), (1.6) that define L., ., may be rewritten
in the form

#0")=pe4(0 ),
¢(0")=1e"¢(0 )+p 'eg'(0 ),

where ¢ “=pe™ and t= —r(p—p '). These correspond to the general
boundary conditions (1.1) and (1.2), with w=e¢", a=p, b=0, ¢ =1, and
d=p .

Finally, we note that the boundary conditions f(0")=—f(0 ),
f7(0*)= —f"(0 ) mentioned by Seba correspond to the operator B,,.

2. CAYLEY TRANSFORM PARAMETRIZATION

In this section we will determine the 2x2 unitary matrix 6= (0,)
corresponding to the operator L, ., in the Cayley transform parametriza-
tion of self-adjoint extensions of 4 = —A4[C;(R"\{0}). Recall (cf. [RS,
Theorem X.2]) that the extension A4, corresponding to 6 is the restriction
of the adjoint 4* to the domain

Dom(4,)={fe Lz(Rl)3.f=¢’ + ¢ g+ oty ),
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where ¢,, ¢, eC, g€ Dom(4)= H(R'\{0}), and
Hl,(h h _gzi(h, )2,

j=12 2.1)

v(?.[(-\‘) = (h + ),‘ -

Here, with {=¢""4,
_ ;
(h, )2(.\‘)=Esgn(.\‘) e,

(h, )l(x)z%ei;m‘

)a(x)= é sgn(x)e W,

(h ) (x)= 5 i, (h

(These functions are bases for the deficiency subspaces of the operator A4.)

Imposing the boundary condition (1.4), on v, ,, we get

T4+, + 0, =e(T+0,,—0,),

(2.2)

or
B =T+ 0,)),

where, as in Section 1, T = tanh(z/2).

We note that, for x #0,
, 1 04 - .
Lo (X) = ——Sgn(-v)e’""'+—2‘sgn(.\-)e T2 g, e FIN,

[N R

so that the second boundary condition (1.6) implies that
:)(:-'_ ZB]I + H.'Zl )

—-1+8 —‘:-911 ~ef(1 -8, _‘7821)=r(6’:—6’
e+ 1)=2Ret/(t+ 1),

Using (2.2) together with the formula (¢” — ¢

we obtain
0 _1+1’|r|2+rf(1+1:)(e"—e e+ 1)
YT Pl e =€) (e + 1)
_I+ilt?+2r{Ret
I+t =2 Ret’
Then
- . 1+ilr|2+2rfRe'c>)
97 = 5
2 T(S_l-g(l+|'r|‘—2rCRer

Jic

1+t —2r Ret
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Imposing the boundary condition (1.4) on vy, yields
1400, 0= [ -1400,,+0,]
whence we obtain the relation
Oy, =1+{10,. (2.3)
Using orthogonality of the rows of 8 together with (2.3), we see that

6, - —0a —/2%

B, +0t8,, 1+t °+2r Ret

Finally, (2.3) yields the formula
O, =1+ {182
L 2e?
1+]7)2+2r{ Ret

Ct—ijrl? + 2 Ret
1+ t]?+ 2l Ret’

Thus the matrix corresponding to the Cayley transform parametrization
of L, ..is

1+it]*+2r{Ret -J/21

1+{1)2—2r{Ret 1+ |7|°+2r{Rex
(r, z)= 5 , = tanh(z/2). 4
(r, 2) \/Er I ijt)? + 20 Re T T=tanh(z/2). (24)

1+ ]t1°=2r{ Ret 1+]7|*+2r{Ret

When t = +i2 we take limits in (2.4) to get

or, tin)= <(I) i)l>

Remark. In contrast to (2.4), the matrix corresponding to —4 + cd
is (4 9), with ¢c= —\/i(l +cot(w/2 —n/4)). For —A+hd’, the corre-
sponding matrix is () %), with b= —./2 (1 + tan(w/2 — n/4)).

3. RESOLVENT AND SPECTRUM

In this section we compute the resolvent of the self-adjoint operator Lz,
corresponding to the boundary conditions (1.1), (1.2); the resolvent of the
operator L, ., is a special case. When the parameters «, §, y, & are real,
our resolvent formula follows from the Green'’s function calculation sum-
marized in [Sebl]. We also discuss the spectrum, eigenfunctions, and
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resonances. Our main results are in the spirit of [AGHH ], where similar
properties of other solvable models are discussed. We use a perturbation
theory method, namely Krein's formula {AGHH, Appendix A] together
with the boundary conditions,

The resolvent of L=L,,; is of the following form. For Im#k >0,

convenient orthogonal solutions of (4* —k?*)¢=0 are ¥, ,(x)=¢"*"" and
Y. (x) =sgn(x) e**. There are coefficients A(k)={4,}7 _, so that
2
(L_'kz)*l=(;k+ z ;'I.m(k)<" lpm,k>|p/_k» (31)

fLm=1
where G, =(—d4—k3)"".
Given ge L*(R), set f=(L —k?)"' g. Then, using the familiar integral
representation of G,, we get from (3.1) the formula

f(x)=2—lk-f et Vlg(yydy + 4y, f eI+ g ( ) dy
+ f e* i+ sen(y) g(y) dy + 45, sgn(x) f e g () dy
+ 4z sE0(x) [ @91 sgn(y) g(3) dy. (32)
From this formula it follows that, for x #0,
’ ! kix - v
f(x)=§fe * T Msgn(y —x) g(y)dy

+tk4,, sgn(x) f e Ui 1ig( 1) dy
+ ik, sgn(x) [ %04 10 sgn(y) g(y) dy

ik [ €40 g(y) dy

Fikigy [ @I sgn(y) g(y) dy, (3.3)

By taking appropriate limits in formulas (3.2) and (3.3) we obtain the
following expressions for f(0*) and f'(0%):

700%)= (5 in i) [ ) dy

+(atim) | € sgn(y) g(y) dy (34)
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and

f1o* )_(+,A),1+,A/,,)| K15 g( 1) dy

1 e
+ (5 +iki .+ ik;tm) J e*Wsgn(y) g(y) dy. (3.5)

Next impose boundary condition (1.1), using formulas (3.4) and (3.5)
for /(0*), f(O ), and f'(0" ). Because g is arbitrary and ¢, , and ¥, , are
orthogondl we get two equations:

(2A+/,1+)7.) <2k+/” ,>+ikﬁ(—l,,+ﬂ,2,) (3.6)
and
(A2 Asn) = oAy~ Aos) + B(3 — ikAys + thAss). (3.7)

Stmilarly, from boundary condition (1.2), we get two more equations:
k(A + A= (2/\+/., >+1k6(—/,,+47]) (3.8)

and
(34 ikAys+ikAyy) =7(3 13— A2) + M3 — ikd, + ikiss). (3.9)

These four equations separate into two sets; (3.6), (3.8) give 4, and /,,,
while (3.7), (3.9) give 4,, and 4,,. The result, in matrix form, is

(k) = 1 (iy/2k+(u+5—l—d)/4 —(x—-d+1—-4)4 )
A )—D(,(k) —(a—0—1+4)4 k2 —(x+0—1—4)4
(3.10)
where A4 =ad — fiy, and

Alternatively, if we write the parameters in the form a=aw, f=bw,
=cw, 0 =dw, where |w] =1 and q, b, ¢, d are real with ad — bc =1, then,
after cancelling some factors of w, we get

k) = 1 (ic/2k+(a+d—w—u_))/4 —(a—-d+o-—w)4 )

D(k) —(a—d+w—a)/4 ihk/2 —(a+d~w—n)f4)’
(3.12)
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where
Dk)=bk*+ila+d)k —c. (3.13)

From the resolvent formula (3.1), we see that the eigenvalues E of the
operator L, ; correspond to the poles (if any) of A(k) such that k =ix,
k>0. (It is easy to see directly that 0 is not an eigenvalue of L,,;.) In
other words, E= —«?, where k =ix is a zero of the polynomial D(k) with
x> 0. Note that the substitution k = ix gives — D(ix)=hx’+ (a+d) x+ c.

If =0 (ie., §=0), then D(k) has one zero, namely

—ic
ko=iky=-—. 3.14
0= 1Ky atd ( )
Here the denominator a + 4 does not vanish because ad = 1.
If #0 (1e., f#0), then D(k) has two distinct zeros:

ki=ik,=i[—(a+d)+/(a—d) +4]/2b (3.15)
and
k2=in’z=i[-(a+d)—\/(a—d)2+4]/2h: (3.16)

here we have used the relation ad — bc = 1.
The following theorem summarizes our results.

THEOREM 3.1. Let a=aw, ff=bhw, y=cw, d =dw with |w| =1, and a, b,
¢, d real, satisfying ad—bc=1. Then the operator L,y s has essential
spectrum which is purely absolutely continuous with uniform multiplicity 2:
O (Loyps) =0, (L,gs)=[0x) L, has no positive eigenvalues, and at

most two negative eigenvalues. For Tm k>0, the resolvent of L., is

) , I _
(Lxlf;‘ri_k-) ]=(_A_k-) l+~D—(E_) Z Cl.m(k)<'ﬁlllm.k>llll<k' (317)

{fm=1

Here D(k)=bk* + i(a+ d) k — ¢, and the coefficients C,,, (k)= D(k) 4, (k).
where A(k) is given by Eq.(3.12).
The resolvent has integral kernel (Green’s function)

i
K (x v k = kix -y
s (X V1K) -2ke

+B%I_\'—j {lic/2k +{a+d—ow—n)/4]

—(o—d+ad—w)/dsgn(y)—(a—d+w—w)/4dsgnlx)
+ [ibk/2 —(a+d— @ — @)/4] sgn{x)sgn(y)} e* ¥+ 1D,
(3.18)
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Proof.  As everyone knows, in one dimension — 4 has spectrum [0, oc)
which is purely absolutely continuous with uniform multiplicity 2. Since the
resolvent of L =L, ; is a finite-rank perturbation of the resolvent of —4,
the fact that its essential spectrum is [0, oc) follows from Weyl’s theorem
on perturbations by compact operators. The more refined conclusion that
a,(L)=10, cv) with uniform multiplicity 2 is an application of [Ka,

ac

Theorem X.4.31.

We have already noted that the ecigenvalues of L are of the form
E= —«x? where k=ix 1s a zero of the quadratic polynomial D(k), with
x>0, |

Remark. From formula (3.18), it might appear that the Green’s
function has a simple pole at & =0. However, if ¢ #0, it is easy to see that
the residue vanishes, so in fact there is no pole at k =0.

CoRrOLLARY 3.1.1. (i) Ifb=0, let ko= —c/la+d) and let

bo() er, x<0

X)= .

© ae ", x>0.

If kK,>0, then Ey= — K} is a simple eigenvalue of L, s with eigenfunction

bo. If K4<0, then L, s has a simple resonance (or “virtual state”) at E,,
with resonance function ¢,.

(1) Ifb#0, let k,= —ik;, j=1,2, be given by (3.15) and (3.16). Let

erry, x<0
¢’(X):{(oz+ﬂh‘,)e o, x>0

L ‘2 . . . \ > - . )4 - vrr
If k,>0, then E;= —x; is a simple eigenvalue of L, ; with eigenfunction ¢,.
If k; <0, then there is a simple resonance at E, with resonance function ¢,.

Proof. The Green’s function (3.18), analytically continued to the entire
k-plane, has a simple pole at k=ixy, if =0, or x;, j=1,2, if b#0. If
k,>0, then E,= —«7 is an eigenvalue of L. If x,<0, then E, corresponds
to a resonance (also called a “virtual state” because E; is real).

From the explicit formulas (3.10) or (3.12) for the matrix A(k), one can
also show that the residue of the resolvent at ik, is a rank-one operator P,.
Hence E; is a simple eigenvalue (or simple resonance). The corresponding
eigenfunction (or resonance function) can be found by inspecting the
range of P,. Alternatively, it is easy to compute the eigenfunctions directly
by solving the equation Lé= —¢" = —«x?¢ (x#0), and imposing the
boundary conditions (1.1) and (1.2) at x=0. |}

Finally, we specialize the preceding general results to the case of the
operator L, ... Here a=¢" ", d =¢", =0, y= —r(a—3), and the determi-
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nant 20 — ffy reduces to «d. We will compute A(k) from the formulas (3.10)
and (3.11) in terms of the parameters r and 1, where, as before,

T= (e —1)/(e’ + 1) =tanh(z/2),

so that
e =(1+1)/(1—1)
We find
a+0=2(1+[t1?)/f(x),
(1+[t5)/f (3.19)
«— 0= —4 Re t/f(1), v =4r Re t/f(1),
and
ad = (1 —|t|* = 2i Im 1)/f (1),
where f(1)=1—|7r]>4+2iIm t.
A straightforward computation yields the formula
).(k\’:_l“(b Re r//f—llri‘ —zz) (3.20)
g(k) ~iT it°
where g(k)=2(1+|t|?) k +4ir Re 1.
Note that if e"= — 1, so that formally t= +ioc, we can either compute

+{k) directly or else take limits in (3.20) to get

1 /—i 0
z(k)zﬁ(o’ [).

THEOREM 3.2, The resolvent of the operator L, ., has integral kernel

K., . (x k)=2—l/;e"“"" = —le_) {(]7] + 2ir Re 1/k)

+ Tsgn(y)+ 1 sgn(x) — |t|” sgn(x) sgn(y)} e* I+ 10
where g(k)=2(1+|71*) k + 4ir Re 1.

L., .. has essential spectrum [0, o), purely absolutely continuous with
uniform multiplicity 2, together with at most one eigenvalue.

Let ko= —(2r Re t)/(1 + [1]?) and set E,= —«}. Define

plx)=[1—r1 Sgn(x)] e Fol¥l

If rRet<0, then E, is a simple eigenvalue of L,, ., with corresponding
eigenfunction ¢. If r Re 1> 0, then E, is a simple resonance of L, _, with
resonance function ¢. If r Ret1=0, then L,, ., has no eigenvalues.

Proof. The conclusions follow immediately from Theorem 3.1 and
Corollary 3.1.1, together with formula (3.20). Concerning the eigenvalues
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or resonances, note that k, and r Re 1 have opposite signs; hence x,> 0 if

rRe <0, and then E,= —«x} is an eigenvalue. Case (i) of Corollary 3.1.1
shows that
_f+T)er x<0
¢("-)—{(1*T)() k[l\" _Y>0

is the corresponding eigenfunction, stnce (1 —t)/(1 + 1) =¢ °=x Similarly,
if  Re t> 0, there is a resonance at £, with resonance function ¢. |}

Remark. W U, f(x)= f(x+ y) is the unitary translation operator, then
Lz/:;u&;y =U v le[i‘,"é U_\‘ {3.21)

is an extension of —A|Cy(R'\{y}) with boundary conditions at y
corresponding to (1.1} and (1.2). In particular, L, ., ,=U 'L, ., U,
corresponds to our generalized point interaction shifted to y. By shifting
the variables in the preceding formulas, one can immediately write down
the resolvent, Green’s kernel, and eigenfunctions for these operators. We
omit the details.

4, SCATTERING THEORY

In this section, we calculate the scattering matrix for the operators L. ;.
In particular, we recover the known results for perturbations of —4 by
3- and &’-potentials found in [AGHH, 1.3, 1.4]. Finally we specialize our
general results to the case of the operators L, .;.

Because the resolvent of L, ; is a finite-rank perturbation of the resol-
vent of — A, general scattering theory (cf. [Ka, X.3, X.4]) implies that the
wave operators exist and that the scattering operator S is unitary and
intertwines — A4 with itself. Hence S can be represented as a direct integral
of operators S(k) on the generalized (or “continuum”) eigenspaces .#, of
— A; for k>0, the space .#, corresponds to the generalized eigenvalue k*
in the spectrum, which, as we recalied in Section 3, is purely absolutely
continuous with uniform multiplicity 2.

.#, 1s two dimensional, with a basis given by the functions

b, (x)=e*" and balx)=e *

in the formalism of time-independent scattering theory these represent
waves with momentum k traveling to the right and left, respectively. With
respect to this basis S(k) has the matrix representation

T,(k) R,(k)>
R,(k) T,(k)

£l

S(k)=(
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here R,(k), T,{k) and R, (k), T.(k} are the “left-hand” and “right-hand”
reflection and transmission coefficients, respectively.

We first consider waves incident from the left, and scattered by the point
interaction at the origin. For k = 0, write

e+ R(k)e ™, x<0

f"(x)z{T,(k)e”“. x>0

This function must be a generalized eigenfunction of the operator L.,
with eigenvalue k2. Now f,(x) and its derivative have boundary values

[0 )=Tyk),  [i(07)=ikT,(k),
and
SO )=1+Ri(k), [0 )=ik(1—R,(k}))

whence, from the boundary conditions (1.1} and (1.2), we obtain the
relations

T,k )= + ikf + (2 — ikB) R, (k)
kT, (k) =7+ ik + (7 — ikd) R, (k).

Solving these equations, the left-hand coeflicients are

_ 2ik(a6 — By) _
T ==F 5 Rk =

3+ k2B~ ik(o— 3)
Dy (k) ’

(4.1)
where Do(k)=k*B+ ik(x+3)—7, as in Eq. (3.11). After cancelling some
factors of w, we obtain

dikeo e+ kh—ikia—d)
by Rkr= DK)

T,(k) (4.2)
Here, as in (3.13), D(k)=k’b+ ik(a+d)—c.

(Note: Using the fact that ad — bc =1, it is straightforward to verify that
|T,(k)? +|R,(k)|*=1. This is partial check that S(k) is unitary.)

Next, we calculate the right-hand coefficients. For k& >0, let

T.(k)e ™, ¥<0

fk(x)z{e ke R (k) e, x>0

Then f,(0")=14+ R, (k), f,(0")Y=ik(—1+ R, (k)), f,(0 )=T,(k), and
fi(0 )= —ikT, (k). Using (1.1) and (1.2), we obtain

1+ R (k)= (x—ikB) T, (k)
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and
k(—1+ R, (k))=(y—ikd) T, (k).

Accordingly,

2ik v+ k2B + ik(x— )
T (k)= , R, (k)= ,
Wb T hw
or, equivalently,
_ 2ka _ctkh+ika—d)

From (4.2) and (4.3), we can immediately write down a formula for S(k):

THEOREM 4.1.  The scattering matrix for L., s is given by

(4.4)

1 ik 4+ k2 ik(a —
S(k) ( 2ikw c+k*b+ik(a d)>,

D) \c+ k% — ik(a—d) 2ikad
where D(k)}= kb + ik(a+d)—c.

Remarks. (1) Note that the “on-shell” matrix S(k) (k real) is unitary,
as expected.

(2) From (4.4), we see that in general the analytically continued
S-matrix has simple poles at the roots of the quadratic polynomial D(k).
Recall from (3.14)-(3.16) that if b#0, then D(k) has two distinct roots,
and if »=0, then it has just one root, namely k = —ic/(a + d). Assuming
that b #0, both roots are non-zero unless ¢ =0; in which case a factor of
k cancels and the matrix S(k) reduces to

1 ( 2iw kb+i(aﬂd))

S(k)zi(a+d)+kb kb—i(a—d) 2idd

Because ¢ = 0 we have ad =1, and therefore a + d # 0. So in this subcase we
find that S(k) has just one pole, at the non-zero point k = —i(a+ d)/b.

Finally, if both b and ¢ are 0, we find that

2iw i(a—d))

S(k}zi(a+d)<——i(a—d) 2im

which is a constant matrix, independent of k.
Thus, we have the following corollary.
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CoroOLLARY 4.1.1. The poles of the analytically continued scattering
matrix S(k) are the same as those of the Green's kernel of L., except that
S never has a pole at k =0.

That S(k) never has a pole at kK =0, seems to be a general phenomenon
(cf. [AGHH, 1.3.4 and 1.4]), although it does not seem to have been
proved in complete generality. (But observe that it follows from unitarity
provided that S(k) is continuous in k for real k.)

Finally, we turn to the particular case of the operator L., _,. In this case,
as noted in Section 3, the parameters are a=¢e", d=¢°, =0, and
7= —r(x—3). Using (3.19), we get the following formula for the scattering
matrix from Theorem 4.1.

THEOREM 4.2, The scattering matrix for the operator L, ., is given by

S(k)___]_<(l—r)(l+f)k —2iRer(r—ik))
Thik)\ =2iRet(r+ik) 1+ —-D) k)
where h(k)=k(1 +|1]?)+ 2ir Re 1.

To conclude this section, we point out that completely similar results
hold for interactions centered at any point y € R. Define L, ;. , as in (3.21});
then the corresponding scattering operator is

S,=U;'S,U,.

where S, is the previously calculated scattering operator corresponding to
1 =0. In the momentum representation, U, is given by the diagonal matrix

eikr 0
(k)= .
\( ) (O e ij')’

S (ky= U, (k) ' Sotk) U.(k)
1 ( 2ikw (c+kb+ikia—d)]e 2”‘»‘)
D(k) [C+k2h—ik(a—d)]()2"k-" ik

so that

(cf. the corresponding calculations for the d(x— y) and &'(x — y} inter-
actions in [AGHH, 1.34 and 147]).

5. APPROXIMATION BY OPERATORS WITH SMOOTH COEFFICIENTS

In [Sebl], Seba asks whether the generalized point interaction
Hamiltonians he studies can be approximated by Schrodinger operators

S80 111 1-8
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with smooth (possibly nonlocal) potentials. It is well known that the
d-potential Hamiltonian can be represented as the norm resolvent limit
of operators with local, scaled, short-range potentials (cf. [AGHK7), but
this has been achieved only with nonlocal potentials in the case of the
d’-potential (cf. [Seb3]). In this section, we show that the family of point
interactions L, ., can be approximated, in the strong resolvent sense,
by Schrodinger operators with smooth local short-range potentials
(Theorem 5.1).

We begin with the case of purely imaginary = = iy, which is particularly
tractable, for L., .., = B, is unitarily equivalent to — 4. Indeed. let {4, be
any sequence of smooth functions such that 4,>0, {*_ h,(x)dx=1, and
h,, is supported in [0, 1/n] (so that #, — J in the usual sense of approxima-
tion of distributions). Set H,(x)= ", h,(y)dv: then H,(x)=0 for x<0,
H,(x)=1for x=1/n, 0<H, <1 everywhere, and H,(x}— H(x). Conse-
quently, B, ,=e """(—4)e""" converges in the strong group sense, and
hence the strong resolvent sense, to B,.. Moreover, the operator B, , is
obviously a perturbation of —A by a first-order differential operator with
smooth coefficients supported in [0, 1/n].

Note. This answers in the affirmative a question of Seba regarding the
operator B ; (cf. [Sebl1]).

Before proceeding to the general case, let {H,} be a sequence of
functions as defined above, and define

L =T+ T, )~

! -
trozon

where T.,=e¢ “"(d/dx) e’ As above, the operator L., ., is also a
perturbation of —A4 by a first-order differential operator with smooth
coefficients supported in [0, t/n].

THEOREM 5.1. Given re R and z€C, the sequence of operators L,, .,
converges to L., ., in the strong resolvent sense.

Proof. First, consider the case r#0. For -eC, T. generates the

uniformly bounded one-parameter group of operators on L2(R') given by
exp(’T:) =¢ :”6”)6‘:”’

where ¢'”=U, is the translation group generated by D =d/dx, with
Dom(D)= H'(R'); explicitly, for ¢ e L*(R'), we have

(exp(tT.) ¢)(x) = & T+ Hg(x 4 1),

This immediately implies the norm estimate

lexp(tT.) gl < M_[4ll,,  where M. =e!""L
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Moreover, if /€ C is not purely imaginary, the usual integral formula for
the resolvent implies that

M.
. 1 : .
2+ T.) HSIReM' (5.1)

the same estimates hold for the adjoint group exp(:T¥) generated by
T*=-T ..

Next, since H,=h,, we have T.,=e¢ “""De""=djdx+:h, and
T*,= —d/dx+Zh,; these operators generate uniformly bounded one-
parameter groups. Indeed, since exp(i7T.,)=e¢ “e'e"", we have the

estimates
lexpGt 7. ) <M., (5.2)
and

A+ T.,) Hi< (5.3)

|Re 4|

The same estimates hold for the adjoints T*,. From the explicit formula

for exp(¢T.,) and inequality (5.2), it is clear that for all re R,
s-imexp(«T. ,)=exp(tT.), (5.4)

n— s

and hence, for Re 4 #0,
s-lim(Ai+T.,) '=(4+T.) " (5.5)

n - x

Similar results hold for the adjoints.

In particular, let 2=r. Then by (5.5), we have strong convergence of
(r+T.,) "to(r+T.) ',and of (r+ T%*,) "to (r+ T*) ' Because the
norms of all of these operators are bounded by M_/|r|, independent of n,
it follows that

s-lim(r+7.,) "(r+T*) '=(r+T.) "(r+T* . (5.6)

Since L., ., =(r+ T*)(r+T.)—r’I we have
(FP+Ly.n] '=(r+T.,) "(r+T%) ",
so Eq. (5.6) shows that

s-slim (r*+ L, .1 "=(r?+L,.] "

n— s

That is, we have strong convergence of resolvents for the specific real value
4= r?, which for self-adjoint operators implies strong resolvent convergence
for all non-real 4 (cf. [Ka, Corollary VII1.1.47).
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Finally, suppose r=0. Then L. ,=B.=T*T., and L, _, =B.,=
T*,T.,. For general - e C, we will prove strong graph convergence of B_,
to B.; this is equivalent to strong resolvent convergence (cf. [RS,
Theorem VII.26]).

We employ a “localization™ technique. Choose any ¢ € Dom(B8.), and
decompose ¢ as  + 1, where ¢, Yy e Dom(B.),  is supported in [ —1, 1],
and 5 vanishes in a neighborhood of 0. It then follows immediately that

B:m’l"’B:’?= "7”3 as  n— 0] (57'

indeed, for n sufficiently large, B. ,n= —n".

Now define D=d/dx on L*[ —1,1], with Dom(D)={fe L} [—1,1]: f
absolutely continuous, /'€ L? and f(1)=0}. Then D* = — D, with domain
prescribed by the adjoint boundary condition f(—1)=0. Both D and its
adjoint generate contraction semigroups on L[ —1,1].

Likewise, set 7.=e ““De on L[ —1,1], and define B.=T*T..
Given y € Dom(B.), with y supported in [ —1, 17, let § denote its restric-
tion to L[ —1, 17. Then clearly ¥ € Dom(B.), and B.§ = B_y restricted to
[—1,1]

Define 7., and B., on L?[ —1,1] in the obvious way. An argument
similar to that given above for the case r#0 shows that B_, — B. in the
strong resolvent sense; for the operators 7":‘,, and Tf.'f,, on L[ —1,1] have
empty, spectra (cf. [Ka, 111.6.8]), and
(B.) '=T.4T*) '=s-lim T_NT*, '=s-lim (B.,) "

n—

Consequently, there exists a sequence of functions ¥, e Dom(B.,) such
that y, — ¢ and B ., — By in L*[ —1,1].

Define ¥, =y, on [—1, 1], and ¢, =0 elsewhere. Then y, € Dom(B.,,),
¥, — ¢, and

B:v”w":E:."lZ”_)B:&:B:lr// (5'8)

in L*(R'). Combining (5.7) and (5.8), we conclude that B., — B. in the
sense of strong graph convergence. ||

6. REMARKS

As we have noted in Section 1, Segal (cf. [Seg]) has suggested that,
given a real L™ function V on R', the formal expression (1/i)(d/dx)+ V'
can be interpreted as the self-adjoint operator on L*(R!) given by

LA dN
=e V-—]e". 6.1
Ty=e <idx)€ (6.1)
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This is motivated by the elementary fact that if V is sufficiently well
behaved--for example, absolutely continuous with bounded derivative—
then (1/i)}(d/dx)+ V' is a genuine operator which coincides with T',..

For V(x)=:H(x), where H is the Heaviside function and - is a real
constant, the distributional derivative V'(x)=1zd(x); in this case, (6.1)
specializes to the formula

l_i+:6= T.=e “H (l—d—> e H. 6.2)

i dx I dx

However, Segal himself noted in [Seg] that the right side of (6.2) is peri-

odic in = with period 27n. But the formal expression (1/i)(d/dx)+ = has no

such manifest periodicity. This suggests that (6.2) should be modified.
Indeed, there i1s a straightforward formal argument that leads to the

interpretation
) 1 d 1 d z
o FHL~ — e =——42tan{ <4 6.3
¢ (i dx) ‘ idx +etan (2) (6.3)

This may be regarded as a “coupling constant renormalization” in the
x-representation, analogous to the renormalization needed to interpret
(—Ad+:z0) in dimensions 2 and 3, and (—4 +zd’) in dimension 1. In
particular, for z = +n, the coupling constant is formally infinite.

Somewhat more generally, if z is any complex number, one may argue
for the interpretation

d -\ 5 -H d =i
‘(Z\T*I—‘E(_)():(’ E(’ . (6.4)
where t(z)= 2 tanh(z/2).
The justification is as follows: write T.=¢ ““(d/dx)e™™. Then T. is a
closed operator, similar to d/dx, with domain

{
Dom(7.)=¢ ¥ Dom (:;—) =¢ MHYR').
AS
so that fe Dom(T.} if and only if f=¢ g, where ge H'(R'). We then
have
T.f=e g

Now, outside any neighborhood of zero, f is absolutely continuous, and
' =e “Mg’. Thus, if (f'), denotes the derivative of f away from zero, we
have (f'),e L*(R"), and T_.f=(f"),. Note that, since f=¢ g, with g
absolutely continuous, f satisfies the following jump condition at zero:

0T )=e f(0 ) (6.5)
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This implies that the distributional derivative of f is given by

da . - .
d~=/ =(f"o+ [S0")=1(0 )]d(x)
X
=(f"Jo+ [ —¢7]/(07)6(x)
Thus
d
T:./V:(f’)():<d_')/+[(’ _1]/ *)o(x). (6.6)

Next, suppose we define f(Q)=(U/2)[ /(0" )+ f(0 V=(172)e"+ 1) f(0).
Then

51
(‘)-‘_1)1'(0*):2((—:7) /(O)—Ztanh< )/(0)

So, we have from (6.6}

!/ o
T.f= (‘—) f+2 tanh (—) 1(0) 6. (6.7)
dx 2
If we agree to interpret d(x) f(x) as f(0) d(x), then (6.7) becomes
) d N
T.f= [— + 2 tanh (—) o] f (6.8)
dx 2)
which is precisely (6.4).
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