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Recently a new approach to inflation proposal has been constructed via the smeared coherent state
picture of spacetime noncommutativity. Here we generalize this viewpoint to a Randall–Sundrum II
braneworld scenario. This model realizes an inflationary, bouncing solution without recourse to any
axillary scalar or vector fields. There is no initial singularity and the model has the potential to produce
scale invariant spectrum of scalar perturbations.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Spacetime noncommutativity can be achieved naturally on cer-
tain backgrounds of string theory [1,2]. Existence of a fundamental
minimal length of the order of the Planck length and spacetime
noncommutativity are naturally related in these theories [3]. In
this viewpoint, description of the spacetime as a smooth com-
mutative manifold becomes therefore a mathematical assumption
no more justified by physics. It is then natural to relax this as-
sumption and conceive a more general noncommutative spacetime,
where uncertainty relations and spacetime discretization naturally
arise. Noncommutativity is the central mathematical concept ex-
pressing uncertainty in quantum mechanics, where it applies to
any pair of conjugate variables, such as position and momentum.
One can just as easily imagine that position measurements might
fail to commute and describe this using noncommutativity of the
coordinates. The noncommutativity of spacetime can be encoded
in the commutator [1]

[
x̂i, x̂ j] = iθ i j (1)

where θ i j is a real, antisymmetric and constant tensor, which de-
termines the fundamental cell discretization of spacetime much in
the same way as the Planck constant h̄ discretizes the phase space.
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In d = 4, it is possible by a choice of coordinates to bring some
θ i j ’s to the following form

θ i j =
⎛
⎜⎝

0 θ 0 0
−θ 0 θ 0
0 −θ 0 θ

0 0 −θ 0

⎞
⎟⎠ .

This was motivated by the need to control the divergences show-
ing up in theories such as quantum electrodynamics. Here

√
θ is

the fundamental minimal length (order of magnitude of
√

θ can
be found in Ref. [3]). This noncommutativity leads to the modifica-
tion of Heisenberg uncertainty relation in such a way that prevents
one from measuring positions to better accuracies than the Planck
length.

It has been shown that noncommutativity eliminates point-like
structures in the favor of smeared objects in flat spacetime. As
Nicolini et al. have shown [4] (see also [5] for extensions), the ef-
fect of smearing is mathematically implemented as a substitution
rule: position Dirac-delta function is replaced everywhere with a
Gaussian distribution of minimal width

√
θ . In this framework,

they have chosen the mass density of a static, spherically sym-
metric, smeared, particle-like gravitational source as follows

ρθ (r) = M

(2πθ)
3
2

exp

(
− r2

4θ

)
. (2)

As they have indicated, the particle mass M , instead of being per-
fectly localized at a point, is diffused throughout a region of linear
size

√
θ . This is due to the intrinsic uncertainty as has been shown

in the coordinate commutators (1).
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Recently, a new approach to the issue of inflation in the frame-
work of Nicolini et al. coherent states viewpoint of noncommu-
tativity has been reported by Rinaldi [6]. In this model, the in-
trinsic noncommutative structure of spacetime is responsible for a
violation of the dominant energy condition near the initial singu-
larity, which induces a bounce. The following expansion is quasi-
exponential and it does not require any ad hoc scalar field. Here
we are going to investigate the effects of the spacetime noncom-
mutativity on the inflationary dynamics in the Randall–Sundrum II
braneworld scenario. We use the Nicolini et al. coherent state ap-
proach encoded in the smeared picture defined in (2). Some other
studies of the noncommutative inflation with different approaches
can be found in Ref. [7].

2. Noncommutative brane inflation

We begin with the Randall–Sundrum II (RS II) geometry. In this
setup, there is a single positive tension brane embedded in an in-
finite bulk [8]. The Friedmann equation governing the evolution of
the brane in this scenario is given as follows (see for instance [9])

H2 = Λ4

3
+

(
8π

3M2
4

)
ρ +

(
4π

3M3
5

)
ρ2 + E0

a4
(3)

where M4 and M5 are four and five-dimensional fundamental
scales respectively and Λ4 is the effective cosmological constant
on the brane. The last term in Eq. (3) is called the dark radiation
term and E0 is an integration constant. The relation between four
and five-dimensional fundamental scales is

M4 =
√

3

4π

(
M2

5√
λ

)
M5 (4)

where λ is the brane tension. We now suppose that the initial
singularity that leads to RS II geometry afterwards, is smeared due
to noncommutativity of the spacetime. A newly proposed model
for the similar scenario in the usual 4D universe suggests that one
could split the energy density on any hypersurface as [6]

ρ = ρ0e−|τ |2/4θ e−|�X |2/4θ (5)

where R2 = τ 2 + |�X|2 and τ = it is the Euclidean time. Note that
we suppose that the universe enters the RS II geometry immedi-
ately after the initial smeared singularity which is a reasonable as-
sumption (for instance, from an M-theory perspective of the cyclic
universe this assumption seems to be reliable, see Ref. [10]). From
one hypersurface to another, the �X-dependent part of ρ does not
change, so it can be included into ρ0. If we neglect the dark radi-
ation term (which is reasonable during inflation as it is vanishing
really fast1) and also the brane cosmological constant, the Fried-
mann equation (3) can be rewritten as

H2 = 8π

3M2
4

ρ

[
1 + ρ

2λ

]
. (6)

Using Eq. (5), this Friedmann equation in noncommutative space
could be rewritten as follows

(
ȧ

a

)2

= 8π

3M2
4

ρ0e−t2/4θ

[
1 + ρ0e−t2/4θ

2λ

]
. (7)

1 But note that this term is important when one treats the perturbations on the
brane. As has been shown in Ref. [11], on large scales this term slightly suppresses
the radiation density perturbations at late times. In a kinetic era, this suppression
is much stronger and drives the density perturbations to zero.
Fig. 1. Evolution of the scale factor in noncommutative Randall–Sundrum II geome-
try. There is an inflationary era without recourse to any scalar or vector fields. The
model avoids also the initial singularity.

This equation can be solved for a(t) to obtain

a(t) = H
([

1

4

ρ0 − 2
√

2θλ3/2
√

8π
3M2

4

ρ0

]
,

[
1

2

]
,

1

8

√
2
√

8π
3M2

4
[(4ρ0 + 4λ)θ + tρ0]2

θ
√

λρ0

)

× exp

{
− 1

16

[(8ρ0 + 8λ)θ + tρ0]
√

2
√

8π
3M2

4
t

θ
√

λ

}

+ [
(4ρ0 + 4λ)θ + tρ0

]

× exp

{
− 1

16

[(8ρ0 + 8λ)θ + tρ0]
√

2
√

8π
3M2

4
t

θ
√

λ

}

× H
([

1

4

3ρ0 − 2
√

2θλ3/2
√

8π
3M2

4

ρ0

]
,

[
3

2

]
,

1

8

√
2
√

8π
3M2

4
[(4ρ0 + 4λ)θ + tρ0]2

θ
√

λρ0

)
, (8)

where H shows the Hypergeometric function of the arguments. To
see the cosmological dynamics of the model, we plot the evolu-
tion of the scale factor and the Hubble parameter in Figs. 1 and 2.
As Fig. 1 shows, this noncommutative model naturally gives an in-
flation era without consulting to any axillary inflaton field. On the
other hand, due to smeared picture adopted in this noncommuta-
tive framework, there is no initial singularity in this setup.
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Fig. 2. Evolution of the Hubble parameter in noncommutative Randall–Sundrum II
geometry.

The number of e-folds in this model will be given by

N =
t f∫

ti

H dt � 8

3
πρ0

[√
πθ erf

(
1

2

t f√
θ

)

+ 1

2

√
2πθ erf

(
1

2

√
2t f√
θ

)
λ−1

]
M4

−2

− 8

3
πρ0

[√
πθ erf

(
1

2

ti√
θ

)

+ 1

2

√
2πθ erf

(
1

2

√
2ti√
θ

)
λ−1

]
M4

−2. (9)

By expanding the error functions in Eq. (9) in series, the number of
e-folds (supposing that the universe enters the inflationary phase
immediately after the big bang, that is, ti = 0 and t f = t) will be
given by

N � 8

3
πρ0

[
t − 1

12

t3

√
πθ

3
2

+ 1

160

t5

√
πθ

5
2

+ 1

2

(
2t − 1

6

√
2t3

√
πθ

3
2

+ 1

40

√
2t5

√
πθ

5
2

)
λ−1

]
M4

−2. (10)

We plot this relation as a function of time in Fig. 3. It is obvious
from this figure that if ρ0 is suitably large, we will get sufficient
amount of inflation in this scenario. Now, using Eq. (10) and solv-
ing for ρ0, we find

ρ0 = 45
√

θλM4
2
[

2π
3
2 θλt erf

(
1

2

t√
θ

)
+ 4πθ

3
2 λe− 1

4
t2
θ

+ π
3
2 θ

√
2t erf

(
1

2

√
2t√
θ

)
+ 2πθ

3
2 e− 1

2
t2
θ

]−1

. (11)

Usually the number of e-folds required to solve problems of stan-
dard cosmology is N � 60 − 70. If we assume that the value of θ
Fig. 3. Number of e-folds as a function of time. If the amount of ρ0
λ

in Eq. (10) is
suitably large, we will get sufficient amount of inflation. We have set θ = 10−20 and
ρ0
λ

= 1016 with M4 = 1.

to be of the order of 10−20, the value of ρ0
λ

required for a success-
ful inflation with N = 60 is ρ0

λ
∼ 1016 where we have set M4 = 1.

We note that ρ0
λ

obtained in this way is a fine-tuned value. The
value of θ can be estimated for instance by the noncommutative
correction to the planets perihelion precession of the solar sys-
tem [12] (see also [3]). Another point we stress here is that Rinaldi
has pointed in Ref. [6] that ρ0

λ
may play the role of a cosmological

constant after the inflationary phase. Actually this is not the case
since ρ0

λ
has not correct equation of state to be dark energy.

To be a realistic model of the early universe and also to test
whether or not our model is consistent with recent observational
data, a scale invariant spectrum of scalar perturbations should be
generated after inflation. We define the slow-roll parameters as
usual

ε ≡ M4
2

4π

(
H ′

H

)2

, η ≡ M4
2

4π

(
H ′′

H

)
. (12)

These slow-roll parameters as a function of cosmic time are given
in Appendix A. We assume that as usual the scalar spectral index
is given by the

ns − 1 � −6ε + 2η. (13)

This assumption will be justified shortly. To match the observa-
tional data, ns should be around unity at the end of inflation. This
guaranties the generation of scale invariant scalar perturbations.
Fig. 4 shows variation of ns versus the cosmic time. In plotting this
figure we have used the same values of parameters as have been
used to plot Fig. 3. As one can see from this figure, it is possible
essentially to have scale invariant scalar spectrum in this model.
However, we stress that in order to study the power spectrum
in our model, a more thorough analysis of generation of density
perturbations should be done, taking into account the dark radi-
ation term since this term plays a crucial role in perturbations.
Especially the relation (13) needs to be reformulated in this non-
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Fig. 4. Variation of the scalar spectral index versus the cosmic time. The spectral
index approaches the Harrison–Zel’dovic spectrum at the end of inflation. The pa-
rameters used to plot this figure are the same as previous figures. The spectral index
is exactly one at t = ±4.021168857 × 10−21.

commutative framework. These issues are under investigation by
the authors.

Finally, two points should be explained here: Firstly, one might
think that this model has the potential to be able to solve the
flatness problem from an accelerated expansion. We note how-
ever that this is not actually the case since as long as this model
want to address the singularity problem, one needs to consider
t → −∞, where ρ (defined in Eq. (5)) is exponentially small. If
there were large spatial curvature when t → −∞, the spatial cur-
vature will dominate the universe quickly. Secondly, as one can
read from Fig. 2, with our choice of parameters, the end of the in-
flation era takes place around 4 × 10−21. In order to have a scale
invariant spectrum of scalar perturbations, ns should be around
unity at this time. From figure 4 one can see that this is in-
deed the case. The scalar spectral index is exactly one at the time
t = ±4.021168857 × 10−21. ns changes from negative values at
t = 0 to around unity at the end of inflationary era.

3. Summary

In this Letter, by adopting the smeared coherent state pic-
ture of spacetime noncommutativity, we generalized the Randall–
Sundrum II braneworld inflation to noncommutative spaces. This
model realizes an inflationary, bouncing solution without recourse
to any axillary scalar or vector fields. Due to noncommutative
structure of the very spacetime which admits the existence of
a fundamental length scale, there is no initial singularity in this
model. Note that we supposed that the universe enters the RS II
geometry immediately after the initial smeared singularity which
is a reasonable assumption for instance from an M-theory perspec-
tive of the cyclic universe. There is a parameter, ρ0

λ
, in this model

that has the potential to play important roles in the inflation era:
by taking the number of e-folds to be N � 60, and setting the
noncommutativity parameter to be θ ∼ 10−20, the value of ρ0

λ
re-

quired for a successful inflation is ρ0 ∼ 1016. By treating the scalar

λ

perturbations in this setup, we have shown that it is possible es-
sentially to have scale invariant scalar perturbations in this frame-
work. From another viewpoint, ρ0 contains a space-dependent part
of e−|�X|2/4θ that essentially breaks the homogeneity on the succes-
sive hypersurfaces. This may open new windows on the issue of
cosmological perturbations. A more thorough analysis of perturba-
tions on the brane is therefore required to justify the successes of
this model.

Appendix A. Slow-roll parameters

The slow-roll parameters defined in Eq. (12) are given by

ε = M4
2

4π

9

64

[
−4

3
πρ0te− 1

4
t2
θ
(
1 + e− 1

4
t2
θ λ−1)θ−1M4

−2

− 4

3
πρ0e− 1

2
t2
θ tθ−1λ−1M4

−2
]2

× [
M4

4π−2ρ0
−2e− 1

2
t2
θ
(
1 + e− 1

4
t2
θ λ−1)−2]

(14)

and

η = M4
2

4π

3

8

[
−4

3
πρ0e− 1

4
t2
θ
(
1 + e− 1

4
t2
θ λ−1)θ−1M4

−2

+ 2

3
πρ0t2e− 1

4
t2
θ
(
1 + e− 1

4
t2
θ λ−1)θ−2M−2

+ 2πρ0t2e− 1
2

t2
θ θ−2λ−1M4

−2 − 4

3
πρ0e− 1

2
t2
θ θ−1λ−1M−2

]

× [
M4

2π−1ρ0
−1e

1
4

t2
θ
(
1 + e− 1

4
t2
θ λ−1)−1]

. (15)

References

[1] M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73 (2001) 977;
R.J. Szabo, Phys. Rep. 378 (2003) 207;
N. Seiberg, E. Witten, JHEP 9909 (1999) 032;
A. Connes, M. Marcolli, arXiv:math.QA/0601054;
A. Connes, J. Math. Phys. 41 (2000) 3832;
A. Konechny, A. Schwarz, Phys. Rep. 360 (2002) 353;
M. Chaichian, et al., Eur. Phys. J. C 29 (2003) 413;
F. Ardalan, H. Arfaei, M.M. Sheikh-Jabbari, JHEP 9902 (1999) 016;
A. Micu, M.M. Sheikh-Jabbari, JHEP 0101 (2001) 025.

[2] G. Veneziano, Europhys. Lett. 2 (1986) 199;
D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 197 (1987) 81;
D. Amati, M. Ciafaloni, G. Veneziano, Int. J. Mod. Phys. A 3 (1988) 1615;
D. Amati, M. Ciafaloni, G. Veneziano, Nucl. Phys. B 347 (1990) 530;
D.J. Gross, P.F. Mende, Nucl. Phys. B 303 (1988) 407;
D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 216 (1989) 41.

[3] K. Nozari, Far East J. Dynamical System 9 (3) (2007) 379;
P. Nicolini, Int. J. Mod. Phys. A 24 (2009) 1229, arXiv:0807.1939.

[4] P. Nicolini, et al., Phys. Lett. B 632 (2006) 547;
P. Nicollini, J. Phys. A 38 (2005) L631;
E. Spallucci, A. Smailagic, P. Nicolini, Phys. Rev. D 73 (2006) 084004.

[5] T.G. Rizzo, JHEP 0609 (2006) 021;
S. Ansoldi, P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B 645 (2007) 261;
E. Spallucci, A. Smailagic, P. Nicolini, Phys. Lett. B 670 (2009) 449;
K. Nozari, S.H. Mehdipour, Class. Quantum Grav. 25 (2008) 175015;
K. Nozari, S.H. Mehdipour, JHEP 0903 (2009) 061.

[6] M. Rinaldi, arXiv:0908.1949.
[7] J. Martin, R. Brandenberger, Phys. Rev. D 68 (2003) 0305161;

R. Brandenberger, arXiv:hep-th/0210186v2;
S. Tsujikawa, R. Maartens, R. Brandenberger, Phys. Lett. B 574 (2003) 141;
Q.G. Huang, M. Li, JCAP 0311 (2003) 001;
X. Zhang, JCAP 0612 (2006) 002;
W. Xue, B. Chen, Y. Wang, JCAP 0709 (2007) 011;
S. Koh, R. Brandenberger, JCAP 0706 (2007) 021;
S. Koh, R. Brandenberger, JCAP 0711 (2007) 013.

[8] L. Randall, R. Sundrum, Phys. Rev. Lett. 83 (1999) 4690, arXiv:hep-th/9906064.



190 K. Nozari, S. Akhshabi / Physics Letters B 683 (2010) 186–190
[9] R. Maartens, D. Wands, B.A. Bassett, I. Heaard, Phys. Rev. D 62 (2000) 041301.
[10] P.J. Steinhardt, N. Turok, Phys. Rev. D 65 (2002) 126003;

P.J. Steinhardt, N. Turok, Nucl. Phys. B (Proc. Suppl.) 124 (2003) 38;
J. Khoury, P.J. Steinhardt, N. Turok, Phys. Rev. Lett. 92 (2004) 031302;
N. Turok, P.J. Steinhardt, Phys. Scripta T117 (2005) 76;
M. Bojowald, R. Maartens, P. Singh, Phys. Rev. D 70 (2004) 083517.
[11] B. Gumjudpai, R. Maartens, C. Gordon, Class. Quantum Grav. 20 (2003) 3295,

arXiv:gr-qc/0304067;
See also R. Maartens, arXiv:astro-ph/0402485.

[12] K. Nozari, S. Akhshabi, Europhys. Lett. 80 (2007) 20002, arXiv:0708.3714.


	One more step toward the noncommutative brane inflation
	Introduction
	Noncommutative brane inflation
	Summary
	Slow-roll parameters
	References


