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Fig. 1 Hydrodynamics related to performance in waves. 

APPROACH 

One reason why proper verification and validation of NS based modelling of ships in waves is hard to achieve is the 

complexity of the model itself. For self-propulsion, a way to model the rotating propeller has to be added on top of the already 

complex dynamical geometry. This leads to a difficulty in identifying the most important sources of error. For example in-

correct phasing of forces and motions has been identified as a problem in recent workshops (Larsson et al., 2014). If the mo-

tions are seen to be out of phase, it is hard to tell if this is due to incorrect forcing, a problem with the mesh deformation scheme 

or the coupling scheme between forces and motions. This means that the predicted propulsive performance of the ship has 

many associated error sources and it may be hard to clearly quantify the underlying reason for the error. 

 

 
Fig. 2 Results of validation case. 
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where 2a  gives the shape of the hull as 

2 2 2

2

2 2
1 1 1

2

B y x x
z a

T L L

                       
               

  (1) 

PROPELLER MODELLING 

The Wigley hull is a purely academical hullform and has no consideration of propeller positioning in the definition of its 

shape. The propeller disc is therefore positioned half a radius behind the aft perpendicular, with a lower point flush with the keel 

and with a diameter of 85% of the draught. This is seen as representative of a typical positioning of the propeller on a ship. The 

positioning of the propeller disc relative to the rear profile of the used Wigley hull is shown in Fig. 4. Furthermore a hub with a 

radius of 10% of the total disk radius is used as well as a shaft extending into the hull and ending in an ellipsoid cap to minimise 

separation. 

 

 
Fig. 4 Positioning of propeller disc behind Wigley hull. 

 
The propeller is modelled using a body force approach, meaning that an external force is added to the RANS momentum 

equation to represent the work done on the fluid by the propeller. The body force due to the propeller vF  is defined as a force 

per unit volume and is incorporated in the momentum equation as 

2

2

1 iji i i
j v

j i ij

u u u p
u F

t x x xx






    
          

  (2) 

In Eq. (2), the left hand side represents the momentum change of the fluid. The average velocity components are denoted as 

iu  with i =1,2,3. The right hand side of Eq. (2) represents stresses where the body force vector vF  is added to the pressure 

gradient, the viscous stresses and the Reynolds stress tensor ij  which is modelled using the turbulence model k   SST 

(Menter et al., 2003). 

Active cell identification 

The magnitude and direction of vF  in every cell in the domain is decided by the location of that cell in relation to the 

propeller to be modelled. Cells within the propeller disk will be active (i.e. be eligible to receive an vF >0. To not perform 

unnecessary calculations, these cells must be identified before any body force is added. Firstly, the centroid of the propeller in 

the undisturbed state is denoted 0xp , the initial centre of gravity of the hull 0CG  and the orientation of the propeller axis in 

relation to the initial state 0O . An arbitrary rotation and translation of the initial state is shown if Fig. 5. The rotation tensor due 

to the rotation of the hull in three degrees of freedom (pitch, roll and yaw) is denoted as Q  so that 

Global vector Q Local vector   (3) 
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and the planar shift of the centre of gravity due to motions is denoted P . With this notation, the location of the propeller 

centroid xp  at an arbitrary position and orientation of the hull is 

 0 0 0xp CG P Q xp CG      (4) 

and the orientation of the propeller axis O  (normal to the propeller disk plane) is 

0O Q O   (5) 

A cell is given a non-zero value of vF  if it lies within the radius of the propeller disk R  but outside of the hub radius 

HR  and within the thickness of the disk d . A vector Iv  is defined as going between the current propeller centroid xp  and 

the centre of cell I . The distance from the propeller centroid along the propeller normal axis ( Id ) is found from 

 I Id O v O   (6) 

The local radius of cell I , IR  is found by projecting the vector Iv  onto the propeller plane. Since the normal vector to 

the propeller plane is the vector  1 2 3, ,O O O O  the projection of Iv  onto the propeller plane is achieved by 

2 2
2 3 1 2 1 3

2 2
1 2 1 3 2 3

2 2
1 3 2 3 1 2

I I

O O O O O O

R O O O O O O v

O O O O O O

   
    
   

 (7) 

 

 
Fig. 5 Arbitrary rotation and translation of initial state. 

 
The definitions of IR , Id  and Iv  are shown in Fig. 6 

 

 
Fig. 6 Definitions of propeller disk extent. 
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From this definition it follows that 

0 / 2
I

v I

I H

R R

F if d d

R R

 
 
 

 (8) 

Thrust and torque distribution 

The body force exerted on a certain cell within the propeller disk can be calculated in several ways. The most accurate 

representation is to model the lift and drag of the blades along radius by separating them into finite elements, each having a 

certain foil shape and attitude to the oncoming flow. This is known as Blade Element Momentum theory (BEMt.) Simplifi-

cations to this can be made by allowing the blades to sweep over a certain distance to give average values in larger sectors of the 

disk. A further step is to assume that the propeller rotates fast enough for the thrust and torque to be smeared over the entire disk 

at any given time step. The approach to modelling the blades depends on the amount of information is needed about the 

instantaneous effect of the blades on the surrounding fluid. This must be put in relation to the time scales of other phenomena 

around the propeller such as vortices separating from the stern area and how well the interaction of these with the propeller is to 

be modelled. 

In this case the frequency of the waves passing and thus the variations in resistance and surge are deemed most important. 

The relation between the passing period of wave crests eT  at different / L  in relation to different rotational frequencies 1/ rT  

for the propeller are shown in Fig. 7. The rotational frequency is given as the full scale RPM found as 0.5
modfull elRPM RPM   

where   is taken as an example scale factor of 40 ( Lpp  of full scale ship = 120m when using the model described in Table 1). 

 

 
Fig. 7 Contours of the ratio /e rT T . 

 
As seen in Fig. 7, there will be more than 4 rotations of the propeller for every wave encounter in most situations. For low 

values of / L , the wave encounter frequency is significant. However, as seen in Fig. 2, the added forces due to the waves at 

these wavelengths are low. This means that the motions will be low and that the main simplification made by using a smeared 

distribution will be to ignore the periodic variation of inflow velocity due to the waves. This is something that will be true 

regardless of the wavelength. For the example used in this paper of / 1L  , there will be 6-12 rotations for each wave 

encounter. This is considered enough for a smeared approach to be applied to the thrust and torque distributions. The thrust and 

torque distribution inside the propeller disk is determined by a radial shape function which is zero at the hub and tip and 

approximately follows the Goldstein (1929) optimum distribution. A non-dimensional radius sr  is defined as 
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I H
s

H

R R
r

R R





 (9) 

A shape function describing the thrust distribution is given as 

1K s sf r r   (10) 

and equally for the torque 

 
1

1
s s

Q
s H H

r r
f

r R R




 
 (11) 

The shape functions Kf  and Qf  are shown in Fig. 8. 

 

 
Fig. 8 Shape functions Kf  and Qf . 

 

The shape functions are normalized so that the summation value over the entire disk corresponds to the desired thrust and 

torque 

K
KN K

I K

Of
f F

V f


  (12) 

Q
QN Q

I I Q

f
f F

V R f




  (13) 

where KF  is the thrust and QF  is the torque.   is a unit vector describing the direction of the circumferential force in each 

cell and is defined as 
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I

I

O R

O R





  (14) 

The direction of rotation can be altered by replacing Eq. (14) with 

I

I

O R

O R


 


  (15) 

The body force for a cell I  is now given as 

vI KN QNF f f   (16) 

The thrust and torque are decided by the coefficients of thrust and torque TK  and QK  as well as the current working 

RPM. 

 
2

4
2

60K T

RPM
F K R    

 
 (17) 

 
2

5
2

60Q Q

RPM
F K R    

 
 (18) 

Since the propeller blades are not explicitly modelled in this case, the variation of TK  and QK  with the RPM is not 

known. For stock propellers such as the Wageningen B-series, these can be found by interpolation of tabulated values based on 

experimental data for example from Bernitsas et al. (1981). Here, a 5th order polynomial fit to the open water characteristics of 

a MARIN 7967 propeller as described by Carrica et al. (2013) is used where 

2 3 4 50.398399 0.067794 1.286040 2.286960 2.039820 0.676130TK J J J J J       (19) 

2 3 4 50.051144 0.000390 0.171650 0.330060 0.327865 0.119477QK J J J J J       (20) 

In this case, the inflow speed is taken as the base forward speed 0U  plus the velocity of the propeller centroid relative to 

the moving reference frame. This gives the advance coefficient J  as 

060
xp

U O
t

J
RPM R

    


 (21) 

In Eq. (21), care must be taken with the signs of 0U  and /xp t   so that they, with the coordinate system used, have the 

same definition of positive speed. 

Eqs. (17) and (18) as well as the shape functions (Eqs. (10) and (11)) assume that the flow into the propeller is uniform so 

that the local advance ratio is constant along the circumference. If the propeller is working behind a hull, the wake created by 

the ship will distort this condition. The thrust and torque varies periodically because of the surging motion through Eq. (21). 

However, the presence of the waves would also mean a periodic variation of thrust and torque due to an unsteady wake, 

something that is not considered here. By applying a BEMt method post run-time to estimate the thrust and torque variations 

behind the Wigley hull in this study, Windén et al. (2013) found a thrust variation of 16% around the mean value due to the 

unsteady wake. 
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PROPELLER CONTROL 

Since the thrust produced by the propeller is a function of the RPM, it is possible vary the RPM based on given criteria for 

the thrust. In the interest of maintaining a constant service speed in waves, the RPM can be varied as to maintain the thrust 

needed to keep constant forward speed. Since the undisturbed forward speed is modelled with a current in this case, keeping 

constant speed is equivalent with keeping zero surge motion. 

This can be achieved in two ways. The most direct approach is to iterate in each time step to find the thrust that will ensure 

force balance in the surge direction. The other alternative is to use a control function to steer the RPM towards the correct value 

based on information available from previous time steps. The second approach is preferable here, both in terms of computa-

tional time but, more importantly because it more closely represents a situation that could be applied on a real ship. Because of 

the nonlinear properties of marine propulsion systems, to achieve optimal propulsion performance it is necessary to apply some 

sort of control algorithm to govern the propeller RPM (Xiros, 2002). This is particularly important when ship dynamics are also 

considered as a factor (Kashima and Takata, 2002). A similar approach as the one described in this paper with a body force 

propeller and PID regulator for the RPM was applied by (Carrica et al., 2008) for studying broaching events. 

PID-controller 

The PID controller is defined by letting the RPM in a time step be a function of the RPM in the previous time step and a 

correction value based on an error e , the rate of change of the error and the integral value of the error since the start of the 

simulation. 

1n n p d i

de
RPM RPM K e K K edt

dt      (22) 

An appropriate definition of the error e  must be chosen to link the thrust from the propeller to the surge movement of the 

hull. Care is taken here to only include variables that could be feasibly measured on a real ship. For example, the hydrodynamic 

drag as well as the thrust is available in the RANS-solver and the difference between them could make up the error e . 

However, neither the thrust nor the resistance can be feasibly measured on board a ship in real time. For this reason, the accele-

ration of the centre of gravity is chosen as the main control variable. The acceleration can be measured in real time by placing 

an accelerometer at an arbitrary location provided the position of that location relative to the centre of gravity is known. The 

error e  is thus based on the acceleration in the direction of travel  1a x . 

To accentuate the connection with the resistance, the acceleration is multiplied by the mass of the ship to give an estimate of 

the current force acting on the hull. Furthermore, to avoid motion with constant velocity (in this case meaning that the hull 

moves with constant velocity other than the one specified) a penalty of 1000 is put on the integral value of acceleration. The 

error is now defined as 

   1 11000e m a x a x dt      (23) 

RPM limiting 

In addition to the PID-controller governing the RPM, some restrictions must be applied to make the simulation more 
realistic. The RPM should not be allowed to exceed a certain value since that would mean a great risk of cavitation and damage 
to machinery in a real propulsion system. Furthermore, large acceleration of the propeller rotation should also be disallowed 
since the torque needed to achieve such acceleration lies beyond the capability of both engines and propeller shafts. Further-
more, RPM increases are usually limited in marine engines to avoid large heat gradients etc. A typical maximum value for how 
fast the propeller rotation is allowed to change is around 1 RPM per minute in full scale. If the example scale factor of 40 is 
applied in this case, this is equivalent to a maximum increase of 0.67 RPM/s in model scale. Furthermore, typical working 
shaft-RPM for most large merchant vessels lie between 40 and 100 RPM. This corresponds to between 250 and 630 RPM in 
the example model scale. 
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RESULTS 

Simulations are started from an initialised solution where the steady wave pattern of the hull is allowed to develop. At the 

initial state, the resistance is recorded and the starting RPM is set as to match this resistance with a corresponding thrust. The 

hull is then subjected to regular waves with the first crest reaching the hull about / 3et T  . 
 
Table 2 PID coefficients and initial RPM value. 

pK              1.2 dK                    0 

iK             0.5 Start RPM          496.4 

 
All the information about the propeller extent and position are shown in Table 3 

 
Table 3 Positioning and extent of propeller. 

R  0.0796875m 0O  (1 , 0 , 0) 

Id  0.0159375m 0xp  (1.53 , -0.1078125 , 0) 

HR  0.00796875m 0CG  (0 , -0.0175 , 0) 

 
Nine different values on the maximum permissible RPM change rate /RPM t   are tested as well as a reference case 

where the acceleration is unlimited. The tested constraints are listed in Table 4. 
 
Table 4 RPM constraints. 

# max /RPM t   # /RPM t   

1 0.65 6 0.9 

2 0.60 7 1 

3 0.70 8  

4 0.80 9 2 

5 0.50 10 3 

 
Controllers 2-5 performs similarly in terms of surge motion compared to controller 1, significant differences are only found 

for controllers 6-10. In Figs. 9, 10 and 11, the forward speed, surge and RPM for controllers 1, 7 and 10 are shown. Finally, the 

delivered power, which can be calculated as 2 / 60D QP F RPM (Molland et al., 2011) is shown in Fig. 12. 
 

 
Fig. 9 Changes in forward speed due to waves with different values of /RPM t   allowed. 
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As seen in Fig. 9, the hull experiences a periodical oscillation in forward speed due to the waves. There is also a drop in the 

mean velocity. This is due to the mean increase in resistance due to waves AWR . It is clear that none of the controller 

constraints are generous enough to influence the periodical velocity notably. The RPM in all cases follows the maximum 

permitted increase. However, the higher the permitted value of /RPM t   is, the faster the ship can overcome AWR  with an 

increased thrust and return to the original forward speed. This however comes at the cost of a higher power delivered to the 

propeller as seen in Fig. 12. Controller 8 is very successful in keeping constant forward speed, however the RPM increases (and 

subsequent power) required to do so are not in any way related to reality which is why controller 8 is excluded from the results 

figures. 

As seen in Figure 10, even though the hull returns to its initial forward speed, the integral value of the velocity means that it 

has been given a large distortion in surge. While this is not a problem in real applications, in this case it means that the mesh has 

been distorted. In the interest of accuracy future implementations should take this into consideration. 

 

   
Fig. 10 Changes in surge due to waves with              Fig. 11 Development of propeller RPM with  

different values of /RPM t   allowed.                 different values of /RPM t   allowed. 

 

 
Fig. 12 Changes in delivered power with different values of /RPM t   allowed. 

 

If the actual powering performance in waves is sought, it would not be suitable to construct a controller that puts a penalty 

on the surge drift. Instead it would be preferable to initialize the simulation from a fixed hull in waves and use the RPM needed 

to overcome AWR  as the initial condition. 

CONCLUSIONS 

The controller function described in this paper is a simplified version which mostly serves to demonstrate the opportunities 

of using open source RANS modelling with external inputs to more closely represent real operating conditions. Much more 
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advanced controlling algorithms could be employed here, see for example Xiros (2002). Furthermore, the actuator disk model 

has many limitations. To properly include the propeller geometry and to draw more detailed conclusions about the effects of 

unsteady loading, a BEMt approach is preferred. The future aim for this model is to replace the actuator disk formulation with 

the BEMt model developed by Phillips et al. (2009; 2010). 

This study has shown that it is possible to model and discuss around several aspects of self-propulsion using the described 

method. There is however need for proper validation against experimental data to ensure the accuracy of the model. The benefit 

of using RANS CFD to do this rather than experimental methods is that the entire flow field can be accessed and analysed to 

study the influence of e.g. changes in bow and stern shape and the subsequent change in performance. The future goal is to 

apply the methodology described in this paper to more realistic hull forms to be able to conduct detailed studies on more of the 

factors affecting ship performance in waves. 

Finally, the conclusions drawn regarding the controller constraints may become relevant with future engine development 

(with for example fuel cell powered electrical engines) where the RPM increase should be able to happen faster than with cur-

rent marine diesels. 
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