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Abstract

We prove a pointwise gradient bound for bounded solutions of �u + F ′(u) = 0 in possibly unbounded
proper domains whose boundary has nonnegative mean curvature.

We also obtain some rigidity results when equality in the bound holds at some point.
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Given F ∈ C
1,1
loc (R), we study bounded solutions of the problem

⎧⎨
⎩

�u + F ′(u) = 0 in Ω,

u � 0 in Ω,

u = 0 on ∂Ω.

(1)

We suppose that Ω is a connected open subset of R
n (say, a “domain”, with n � 2), with

nonempty C
2,α
loc boundary: in particular, Ω is a proper subset of R

n (that is, Ω �= ∅ and Ω �= R
n),

and ∂Ω is sufficiently smooth to define its normal and to compute its variation, that is to define
the mean curvature of ∂Ω (notice that neither Ω or ∂Ω need to be bounded).
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If u ∈ C2(Ω) ∩ L∞(Ω) is a solution of (1), we define

cu := sup
r∈[0,‖u‖L∞(Ω)]

F(r). (2)

Then, the pointwise gradient estimate that we would like to obtain is the following one:

1

2

∣∣∇u(x)
∣∣2 � cu − F

(
u(x)

)
, for any x ∈ Ω . (3)

We prove that (3) holds true in cylinders and epigraphs, according to the following results:

Theorem 1. (i) Let Ω = Ωo × R
n−no , where Ωo ⊂ R

no is a bounded domain and 1 � no � n.
Let u ∈ C2(Ω) ∩ L∞(Ω) be a solution of (1).
Assume that

the mean curvature of ∂Ω is nonnegative. (4)

Then, (3) holds true.
(ii) Suppose that Ω is an epigraph, viz. there exists Φ : R

n−1 → R such that

Ω = {(
x′, xn

) ∈ R
n−1 × R s.t. xn > Φ

(
x′)}.

Assume that Φ ∈ C
2,α
loc (Rn−1), with

‖∇Φ‖C1,α(Rn−1) < +∞. (5)

Suppose also that (4) is satisfied. Let u ∈ C2(Ω) ∩ L∞(Ω) be a solution of (1). Then, (3) holds
true.

The pointwise estimate of Theorem 1, in its versions 1(i) and 1(ii), may be seen as an extension
of the one obtained in [15], where a similar result was proven in the case of solutions in the entire
space R

n. See also [10] for similar results in the halfspace.
We remark that Φ in Theorem 1(ii) does not need to be bounded.
The possibility n = no is also allowed in Theorem 1(i): in fact, when n = no, Theorem 1(i)

boils down to the case of bounded domains, for which several pointwise gradient estimates were
collected in [18] (see, for instance, Corollary 5.1 there).

An important strengthening of the work of [15] was also performed in [5], where singular and
degenerate operators were considered (still in the whole space R

n).
With respect to [15,5], here we need to take into account the presence of the boundary terms,

and this will provide some technical complications in the proof. Also, differently from [10], here
the boundary is not necessarily flat, and so we will have to take into account the role played by
its curvature (see also Remark 2(i) at the end of this introduction).

Besides working in proper domains, we have here some technical improvements with respect
to the setting of [15,5]. Indeed, in [15,5], F was assumed to be C2(R) and nonpositive (while,
here, F may be only C

1,1
(R) and no sign assumption is needed). Also, in [15,5] the term cu was
loc
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not present in (3) and so we have a somewhat sharper estimate here (in particular, such cu may
often be simply evaluated, see (6) and (9) below).

Indeed, solutions satisfying (3) enjoy some extra properties as stated in the following results:

Theorem 2. Let Ω ⊂ R
n be a domain and let u ∈ C2(Ω) ∩ L∞(Ω) be a solution of (1) for

which (3) holds true.
Then,

cu = max
{
F(0),F

(‖u‖L∞(Ω)

)}
and cu > F(t) for any t ∈ (

0,‖u‖L∞(Ω)

)
. (6)

Moreover, if

Ω has C1 boundary (7)

and

F ′(0) � 0, (8)

then

cu = F
(‖u‖L∞(Ω)

)
and cu > F(t) for any t ∈ [

0,‖u‖L∞(Ω)

)
. (9)

Of course, Theorem 2 is meaningful when u does not vanish identically (however, there is
no need to take this as an assumption, since (6) and (9) are true even in this case, since there is
nothing to check for the emptyset).

Moreover, condition (7) may be weakened: for instance, it is enough to assume that any two
points in Ω may be connected with C1 curves, which is enough to obtain (56).

Theorem 3. Let Ω ⊂ R
n be a domain and u ∈ C2(Ω)∩L∞(Ω) be a solution of (1) for which (3)

holds true.
Suppose that

equality in (3) holds at some point p ∈ Ω ∩ {∇u �= 0}. (10)

Then it holds in the whole Ω and there exists ω ∈ Sn−1 and uo : R → R such that u(x) =
uo(ω · x).

Moreover, the following alternative holds:

(a) either Ω is a halfspace, say {ω · x > c} for some c ∈ R,
(b) or Ω is a strip, say {ω · x ∈ (c−, c+)}, for some c+ > c−.

Furthermore, if

u > 0 in Ω, (11)

then the above alternative can be better clarified as follows:
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(a�) if Ω = {ω · x > c} for some c ∈ R, then u is strictly monotone in direction ω and with
nonvanishing gradient,

(b�) if Ω = {ω · x ∈ (c−, c+)}, for some c+ > c−, then u is strictly monotone in direction ω and
with nonvanishing gradient in both {ω · x ∈ (c−, c�)} and {ω · x ∈ (c�, c+)}, where c� :=
(c+ + c−)/2, and it is even with respect to {ω · x = c�}.

If, on the other hand,

{u = 0} ∩ Ω �= ∅, (12)

then uo is periodic.

Remark 1. The symmetry and monotonicity results in the above Theorem 3 are obtained directly
and without the moving plane methods used in [7,6,1–3].

Also, as a consequence of Theorem 3, we have that, when Ω is neither a strip or a halfspace,
then either (3) is a strict inequality or the equality in (3) is attained at points p which have to be
critical for u. In such case, u(p) is equal to either 0 or ‖u‖L∞(Ω), thanks to (6) – and, in fact,
u(p) = ‖u‖L∞(Ω) if (8) holds, due to (9).

Remark 2. The conditions assumed for our results are somewhat natural and they cannot be
dropped.

More precisely:

(i) Condition (4) cannot be dropped in Theorem 1. Indeed, it is easy to see that, when n � 3,
the function

u(x) = 1 − 1

|x|n−2

is a bounded positive solution of �u = 0 in R
n \ B1 with u = 0 on ∂B1: this solution does

not satisfy (3), since, in this case, F may be taken as 0 (notice that the mean curvature of
∂(Rn \ B1) is negative and compare with (4)).

(ii) The assumption that the solution is bounded cannot be removed as well: for instance the
function u(x1, x2) = x2e

x1 on the halfspace {x2 > 0} is positive and it solves �u − u = 0,
so we can take F(u) = −u2/2, but it is easily checked that there exists no c ∈ R for which

|∇u(x)|2
2

� c − F
(
u(x)

)
for any x ∈ R

2.

Analogously, the function u(x) = x1 is an unbounded solution of �u = 0 on {x1 > 0}
with u = 0 on ∂{x1 > 0}: in this case, F may be taken as 0, and so cu = 0 and (3) does
not hold.

(iii) Estimate (3) is, of course, sharp in the sense that the solutions of the ODE attain the equality
in (3) (which can be easily checked, for instance, by integrating the ODE).

(iv) If we want (9) to hold, condition (8) cannot be dropped. For instance, the function u(x1) =
1 − cos(x1) solves (1) with F(u) = (u2/2) − u in {x1 > 0} but it does not satisfy (9), since,
in this case
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cu = sup
r∈[0,2]

F(r) = 0 = F(2) = F(0).

Notice that in this case F ′(0) = −1, so (8) does not hold.
(v) If condition (11) does not hold, in general it is not possible to obtain the monotonicity results

given in (a�) and (b�) of Theorem 3: a counterexample is again given by u(x1) = 1− cosx1.
(vi) If F is nonnegative and bounded, (3) implies the following universal estimate:

1

2

∣∣∇u(x)
∣∣2 � 1

2

∣∣∇u(x)
∣∣2 + F

(
u(x)

)
� cu � sup

r∈R

F(r).

We now prove the results stated above.

Proof of Theorem 1. The method of proof is inspired by the work done in [15,5], as modified
in [10].

We prove (3) in case Ω is an epigraph, that is Theorem 1(ii).
The case of Theorem 1(i) is even simpler, and we will comment on this at the end of the proof.
Let

G(t) := cu − F(t).

Note that

G(t) � 0 (13)

for any t ∈ [0,‖u‖L∞(Ω)].
Given any v, which is C2 in its domain, and any x in the domain of v, we define

P(v, x) := ∣∣∇v(x)
∣∣2 − 2G

(
v(x)

)
. (14)

These type of P -functions have been extensively investigated in the PDE literature, after the
pioneering work of [16] (see, e.g., Chapter 5 in [18] and references therein).

By formula (2.7) of [5], we know that, if �v = G′(v),

∣∣∇v(x)
∣∣2

�P(v, x) − 2G′(v(x)
)∇v(x) · ∇P(v, x) � |∇P(v, x)|2

2
(15)

weakly in {∇v �= 0}.
Thus, if we set a(x) := ∣∣∇v(x)

∣∣2, for any φ ∈ C1
0({∇v �= 0}, [0,+∞)), the weak formulation

of (15) gives that

∫
Ω

−∇P · ∇(aφ) − 2G′(v)φ∇v · ∇P dx �
∫
Ω

|∇P |2φ
2

dx. (16)

Accordingly, for any ϕ ∈ C1({∇v �= 0}, [0,+∞)), taking φ := ϕ/a in (16), we have that
0
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∫
Ω

−∇P · ∇ϕ − 2G′(v)ϕ∇v · ∇P

|∇v|2 dx �
∫
Ω

|∇P |2ϕ
2|∇v|2 dx.

That is,

�P(v, x) − 2G′(v(x))∇v(x) · ∇P(v, x)

|∇v(x)|2 � |∇P(v, x)|2
2|∇v(x)|2 � 0 (17)

weakly in {∇v �= 0}.
Now, recalling (5), we also denote by S the set of all the functions Ψ ∈ C

2,α
loc (Rn−1) such that

the surface {xn = Ψ (x′)} has nonnegative mean curvature and

‖∇Ψ ‖C1,α(Rn−1) � ‖∇Φ‖C1,α(Rn−1). (18)

For any Ψ ∈ S, we define its epigraph

ΩΨ := {
xn > Ψ

(
x′)}.

Note that, by construction, if Ψ ∈ S we have that

the mean curvature of ∂ΩΨ is nonnegative. (19)

We set

F := {
v ∈ C2(ΩΨ ) solutions of �v = G′(v) in ΩΨ ,

with 0 � v � ‖u‖L∞(Ω), v = 0 on ∂ΩΨ and Ψ ∈ S
}
. (20)

Note that if v ∈ F then there exists Ψ (v) ∈ S such that v is C2 in ΩΨ (v) , it solves �v = G′(v)

in ΩΨ , with 0 � v � ‖u‖L∞(Ω) and v = 0 on ∂ΩΨ .
Thus, with a slight abuse of notation, we will write

Ωv := ΩΨ (v) ,

that is, Ωv will denote the domain of any v ∈ F.
Now, we consider

Po := sup
v∈F
x∈Ωv

P (v, x). (21)

By elliptic regularity (see, e.g., Theorems 6.6 and 6.19 of [11]), we have that

‖v‖ 2,α � C, (22)
C (Ωv)
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for any v ∈ F, where C > 0 only depends1 on n, ‖u‖L∞(Ω) and ‖∇Φ‖C1,α(Rn−1).
Thus, an obvious consequence of (22) is that the sup in (21) is finite.
Also, recalling (5) and (4), we observe that u ∈ F, Ωu = Ω , and then (3) is proved if we show

that

Po � 0. (23)

Therefore, we focus on the proof of (23).
Its proof is by contradiction, namely we assume that

Po > 0 (24)

and we take vk ∈ F and xk ∈ Ωvk
in such a way that

Po − 1

k
� P(vk, xk) � Po. (25)

Let

uk(x) := vk(x + xk).

Notice that uk ∈ F and

0 ∈ Ωuk
, (26)

because xk ∈ Ωvk
.

Note also that P(uk,0) = P(vk, xk), hence (25) reads

Po − 1

k
� P(uk,0) � Po. (27)

From (22) and Lemma 6.37 of [11], we know that we can take ũk ∈ C2,α(Rn) to be a smooth
extension of uk , that is ũk = uk on Ωuk

, such that2

‖ũk‖C2,α(Rn) � C‖uk‖C2,α(Ωv) � C. (28)

Now, we denote by Ψk ∈ S the function describing ∂Ωuk
. We know from (26) that

Ψk(0) � 0. (29)

We claim that

1 The reason for which C in (22) depends only on n, ‖u‖L∞(Ω) and ‖∇Φ‖
C1,α(Rn−1)

lies in the remark on page 98
of [11]. Namely, the constant K on page 98 of [11] is bounded here by ‖∇Φ‖

C1,α(Rn−1)
, which is finite, thanks to (5).

As a notational remark, we also notice that, here below, we will call C different constants, which only depend on n,
‖u‖L∞(Ω) and ‖∇Φ‖

C1,α(Rn−1)
. No confusion should arise from this slight abuse of notation.

2 Notice that we apply here Lemma 6.37 of [11] to a domain with an unbounded boundary. To do this, one has to take
a locally finite partition of unity in the argument of page 137 of [11]. See also Footnote 1.
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Ψk(0) is bounded. (30)

To prove (30), we suppose the converse. Then, by (29), we would have that Ψk(0) → −∞, up to
a subsequence.

Hence, by (18), we would have that Ψk(x
′) → −∞ locally uniformly.

Therefore, by (28), ũk would converge, up to a subsequence, in C2
loc(R

n) to some u∞ ∈
C2(Rn) which solves

�u∞ = G′(u∞) in R
n. (31)

By taking the limit in (27), we would also have that Po = P(u∞,0), and so, by (24), that

∣∣∇u∞(0)
∣∣2 − 2G

(
u∞(0)

)
> 0.

This and (31) are in contradiction with Lemma 4.11 in [9], so (30) is proved.
As a consequence of (18) and (30), we conclude that Ψk converges in C2

loc(R
n−1), up to a

subsequence, to a function Ψ∞ ∈ S.
Thus we write

Ω∞ := {
xn > Ψ∞

(
x′)}.

Also, recalling (28), we have that ũk converges, up to a subsequence, in C
2,α
loc (Rn) to some u∞,

with

‖u∞‖C2,α(Rn) � C. (32)

We have that u∞ is a solution of

�u∞ = G′(u∞) in Ω∞. (33)

Indeed, if x = (x′, xn) ∈ Ω∞, then x′ > Ψ∞(x′) and so x′ > Ψk(x
′) for large k, that gives

�u∞(x) = lim
k→+∞�uk(x) = lim

k→+∞G′(uk(x)
) = G′(u∞(x)

)
,

that is (33).
Moreover, for any x′ ∈ R

n−1,

∣∣u∞
(
x′,Ψ∞

(
x′))∣∣ �

∣∣u∞
(
x′,Ψ∞

(
x′)) − uk

(
x′,Ψ∞

(
x′))∣∣

+ ∣∣uk

(
x′,Ψ∞

(
x′)) − uk

(
x′,Ψk

(
x′))∣∣ + ∣∣uk

(
x′,Ψk

(
x′))∣∣

� sup
B1(x

′,Ψ∞(x′))
|u∞ − uk| + C

∣∣Ψ∞
(
x′) − Ψk

(
x′)∣∣ + 0.

Hence, by sending k → +∞, we obtain that u∞(x′,Ψ∞(x′)) = 0, that is that

u∞ vanishes on ∂Ω∞. (34)
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In particular, u∞ ∈ F.
Passing to the limit in (27) and recalling (24), we also obtain that

∣∣∇u∞(0)
∣∣2 − 2G

(
u∞(0)

) = P(u∞,0) = Po > 0. (35)

Also, by (34),

∂νu∞(x) � 0 for any x ∈ ∂Ω∞. (36)

Here above and in the sequel, ν denotes the interior normal of ∂Ω∞.
We now claim that

inf
Ω∞

|∇u∞| = 0. (37)

To prove (37), we argue by contradiction once more. Namely, we suppose that

inf
Ω∞

|∇u∞| � c (38)

for some c > 0, we fix Q inside Ω∞ and we consider the solution γ ∈ C1(R,Ω∞) of the ODE

⎧⎨
⎩γ ′(t) = ∇u∞(γ (t))

|∇u∞(γ (t))| ,
γ (0) = Q.

Note that γ is globally defined and it does not hit ∂Ω∞ because of (36) and (38).
Consequently, utilizing (38) once more, we obtain that, for any t > 0,

2‖u‖L∞(Ω) � u∞
(
γ (t)

) − u∞
(
γ (0)

) =
t∫

0

∇u∞
(
γ (s)

) · γ ′(s) ds =
t∫

0

∣∣∇u∞
(
γ (s)

)∣∣ds � ct.

Since this is a contradiction for large t , we conclude that (37) holds true.
Now, we claim that

if P(u∞, y) = Po for some y ∈ Ω∞, then y ∈ ∂Ω∞. (39)

To prove this, we argue again by contradiction, and we suppose that y lies inside Ω∞.
Then,

the set U := {
x ∈ Ω∞ s.t. P(u∞, x) = Po

}
is nonempty. (40)

Hence, for any x ∈ U ,

0 < Po = P(u∞, x) = ∣∣∇u∞(x)
∣∣2 − G

(
v(x)

)
�

∣∣∇u∞(x)
∣∣2

,

thanks to (13) and (24).
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This shows that

if x ∈ U, then
∣∣∇u∞(x)

∣∣ > 0. (41)

Moreover, since u∞ ∈ C2(Rn), we have that

U is closed in Ω∞. (42)

We plan to prove that

U is also open. (43)

For this, we take x in U and employ (41) to deduce that

inf
Brx (x)

|∇u∞| > 0

for some small rx > 0. This, (17) and the Strong Maximum Principle (see Theorem 8.19 of [11])
imply that P(y,u∞) = Po for any y ∈ Brx (x).

This proves (43).
From (40), (42), (43) and the fact that Ω∞ is an epigraph (hence, it is connected), we conclude

that

U = Ω∞. (44)

We now recall (37) and we take xj ∈ Ω∞ such that

lim
j→+∞

∣∣∇u∞(xj )
∣∣ = 0. (45)

Then, from (13), (40) and (44)

Po = P(u∞, xj ) = ∣∣∇u∞(xj )
∣∣2 − 2G

(
u∞(xj )

)
�

∣∣∇u∞(xj )
∣∣2

for any j ∈ N.
Therefore, by (45), we obtain Po � 0, in contradiction with (24).
This proves (39).
Accordingly, from (35) and (39), we deduce that

0 ∈ ∂Ω∞ (46)

and that

P(u∞,0) = Po > P(u∞, x) for any x ∈ Ω∞. (47)

We now observe that

∂νu∞(0) > 0. (48)
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Indeed, if (48) did not hold, recalling (36), we would have that ∂νu∞(0) = 0 and so ∇u∞(0) = 0,
which, together with (35), gives that G(u∞(0)) < 0, in contradiction with (13). Hence, (48) holds
true.

Consequently, (17), (48), (47), and the Hopf Principle (see Theorem 5.5.1 on page 120 of [17])
give that3

∂νP (u∞,0) < 0. (49)

Moreover, from (14),

1

2
∂νP (u∞, x) = ∇u∞(x) · ∇(

∂νu∞(x)
) − G′(u∞(x)

)
∂νu∞(x) (50)

for any x ∈ Ω∞.
Also, from (34), ∇u∞ = (∂νu∞)ν on ∂Ω∞, and so (46) and (50) give that

1

2
∂νP (u∞,0) = ∂νu∞(0)

(
∂2
ννu∞(0) − G′(u∞(0)

))
. (51)

We now take normal coordinates for ∂Ω∞ at 0, that is endow R
n with coordinates (X1, . . . ,Xn)

in such a way that the last coordinate is parallel to ν and we write, near 0, ∂Ω∞ as the graph of
a smooth function Θ in the ν-direction.

Namely, we say that, for some εo > 0,

Ω∞ ∩ Bεo(0) = {(
X′,Xn

) ∈ R
n s.t. Xn > Θ

(
X′)},

with Θ(0) = 0 and

∂iΘ(0) = 0 for any i = 1, . . . , n − 1. (52)

With a slight abuse of notation we write u∞(X) when we compute u∞ with respect to this new
system of coordinates.

Indeed, due to the rotational invariance of the Laplacian, it is convenient to compute �u∞ in
this coordinate system: by (34),

u∞
(
X′,Θ

(
X′)) = 0

when X′ is near 0, therefore, for any i = 1, . . . , n − 1,

∂iu∞
(
X′,Θ

(
X′)) + ∂nu∞

(
X′,Θ

(
X′))Θi

(
X′) = 0.

Differentiating once more,

3 We would like to stress that the use of the Hopf Principle here is somewhat a delicate issue. Indeed, it requires to
observe first that |∇u∞| > 0 near 0, due to (48), which gives that G′(u∞)∇u∞ · ∇P/|∇u∞|2 is bounded near 0. Then,
we look at (17), which holds in the weak sense, and apply to it the general Hopf Principle in Theorem 5.5.1 on page 120
of [17].
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∂2
iiu∞

(
X′,Θ

(
X′)) + 2∂2

inu∞
(
X′,Θ

(
X′))Θi

(
X′) + ∂2

nnu∞
(
X′,Θ

(
X′))Θ2

i

(
X′)

+ ∂nu∞
(
X′,Θ

(
X′))Θii

(
X′) = 0

for any i = 1, . . . , n − 1, when X′ is near 0.
Then, by (52),

∂2
iiu∞(0) + ∂nu∞(0)Θii(0) = 0

for any i = 1, . . . , n − 1 and so, by summing up in i,

�u∞(0) − ∂2
ννu∞(0) + ∂nu∞(0)�Θ(0) = 0. (53)

Notice that, by (52), the mean curvature of Ω∞ at 0 is exactly �Θ (or it is proportional to it,
depending on the convention chosen to define the mean curvature).

Hence, recalling (19), we have that

�Θ � 0. (54)

Also, from (48),

∂nu(0) = ∂νu(0) > 0. (55)

Therefore, (53), (54) and (55) give that

�u∞(0) � ∂2
ννu∞(0).

So, by (33),

G′(u∞(0)
) = �u∞(0) � ∂2

ννu∞(0).

As a consequence of this, of (48) and of (51), we see that ∂νP (u∞,0) � 0.
Since this is in contradiction with (49), the proof of (23) – and therefore of (3) – is finished.
We recall that the proof above was performed under the assumption that Ω is an epigraph.

If, on the other hand, Ω = Ωo × R
n−no , where Ωo ⊂ R

no is a bounded domain, the above proof
also goes through, with the following minor modifications:

• The definition in (20) is replaced by

F := {
v ∈ C2(U ) solutions of �v = G′(v) in U ,

with 0 � v � ‖u‖L∞(U ), v = 0 on ∂U , and U ∈ D
}
,

with D being the collection of all the translation of Ω , namely

D := {
p + Ω, with p ∈ R

n
}
.
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• The sets Ωuk
would now belong to D and so they are of the form pk + Ω . Of course, since

Ωuk
is a cylinder, we may suppose that pk = (p′

k,0) ∈ R
no × R

n−no .
From (26), there must exist ωo ∈ Ωo such that R

no  0 = p′
k + ωo.

Accordingly, p′
k is bounded and so

pk is bounded.

This replaces (30).

Keeping in mind these modifications, the above proof shows that (3) also holds for Theo-
rem 1(i). �
Proof of Theorem 2. First of all, we prove the following result.

Let p ∈ Ω .

Suppose that either p ∈ Ω or that (7) holds true.

Assume that F
(
u(p)

) = cu and F ′(u(p)
) = 0.

Then u is constant. (56)

To prove this, we set r := u(p), and we fix any q ∈ Ω .
We prove that u(q) = r . Since q is an arbitrary point of Ω , this would show that (56) holds

true.
For this, by connectedness, we take T > 0 and a smooth curve γ : [0, T ] → Ω , parameterized

by arclength, such that γ (0) = p and γ (T ) = q . Notice that we can take γ (t) ∈ Ω for any
t ∈ (0, T ], and, in fact, γ (t) ∈ Ω for any t ∈ [0, T ] if p ∈ Ω . Also, when p ∈ ∂Ω , we have that
γ is smooth up to t = 0 thanks to (7).

For any t ∈ [0, T ], we define

φ(t) := u
(
γ (t)

) − r.

From (3), and noticing that F ′(r) = F ′(u(p)) = 0, we have that

(
φ̇(t)

)2 = ∣∣∇u
(
γ (t)

) · γ̇ (t)
∣∣2 �

∣∣∇u
(
γ (t)

)∣∣2 � 2
(
cu − F

(
u
(
γ (t)

)))

= 2
(
F(r) − F

(
u
(
γ (t)

))) = −2

u(γ (t))∫
r

F ′(τ ) dτ

� 2‖F‖C1,1(0,‖u‖L∞(Ω))

∣∣u(
γ (t)

) − r
∣∣2 = (

Cφ(t)
)2

,

with C :=
√

2‖F‖C1,1(0,‖u‖L∞(Ω))
.

As a consequence, the function [0, T ]  t �→ (φ(t))2e−2Ct is decreasing, and so

(
u(q) − r

)2
e−2CT = (

φ(T )
)2

e−2CT �
(
φ(0)

)2 = (
u(p) − r

)2 = 0.
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This shows that u(q) = r , proving (56).
Let us now prove (6), by assuming, with no loss of generality, that u is not constant, and by

arguing by contradiction. If (6) were false, we would obtain from (2) that

cu = max
r∈[0,‖u‖L∞(Ω)]

F(r) = F(ro), (57)

with

ro ∈ (
0,‖u‖L∞(Ω)

)
.

This says that ro is an interior maximum of F and so

F ′(ro) = 0. (58)

Now, recalling that u = 0 on ∂Ω and using the continuity of u, we can take p ∈ Ω such that
u(p) = ro. Then, (57) and (58) say that F(u(p)) = cu and F ′(u(p)) = 0.

Consequently, (56) gives that u is constant, against our assumption.
This shows that (6) holds.
Let us now suppose that (8) holds true. Then, in this case, we claim that

if cu = F(0), then u vanishes identically in Ω . (59)

To prove this, suppose that

cu = max
r∈[0,‖u‖L∞(Ω)]

F(r) = F(0).

Then 0 is a boundary maximum for F and so F ′(0) � 0.
This and (8) give that F ′(0) = 0 and, since ∂Ω �= ∅, we know that there exists p ∈ ∂Ω such

that u(p) = 0.
Then, F(u(p)) = F(0) = cu and F ′(u(p)) = F ′(0) = 0, so (56) gives that u is constant and

so it vanishes identically.
This proves (59).
Hence, (6) and (59) imply (9) and so the proof of Theorem 2 is completed. �

Proof of Theorem 3. Let us suppose that equality in (3) holds at some point p ∈ Ω ∩ {∇u �= 0},
and let C be the open connected component of {∇u �= 0} containing p.

First, we prove that

equality in (3) holds in the whole C. (60)

For this, we observe that P(u,x) has an interior maximum at x = p, thanks to (23). Thus
by (17) and the Strong Maximum Principle, P(u,x) vanishes in C, so (60) holds true.

Now, we observe that, by definition of C,

∇u(x) = 0 for any x ∈ ∂C ∩ Ω. (61)
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Of course, ∂C ∩ Ω may well be empty, but in this case (61) would still be true.
Therefore, by (60),

F
(
u(x)

) = cu for any x ∈ ∂C ∩ Ω. (62)

Since ∂C ⊆ ∂Ω ∪ Ω , we obtain from (6) and (62) that

if β is a connected component of ∂C,

then u is constantly equal to either 0 or ‖u‖L∞(Ω) in β. (63)

Moreover, we observe that (1) and (60) imply that

�u + F ′(u) = 0 and |∇u| = g(u) in C ⊆ {∇u �= 0},
where g(r) := √

2(cu − F(r)). We remark that g ∈ C1((0,‖u‖L∞(Ω))), due to (6).
This says that the level sets of u in C are a family of isoparametric hypersurfaces (see [14,21]

or page 353 in [8]), thence these level sets in C possess planar, spherical or cylindrical symmetry,
viz., up to change of variables, only one of the following three cases occur:

(C1) there exists uo : R → R such that u(x) = uo(xn) for any x = (x′, xn) ∈ C ⊆ R
n−1 × R,

(C2) there exists uo : R → R such that u(x) = uo(|x|) for any x ∈ C,
(C3) there exist m ∈ N, 1 � m � n, and uo : R × R

n−m → R such that u(x) = uo(|x′|) for any
x = (x′, x′′) ∈ C ⊆ R

m × R
n−m.

In fact, the case m = 1 in (C3) reduces to (C1), so we may assume with no loss of generality that

m � 2 in (C3). (64)

With this convention, we claim that

(C3) cannot occur. (65)

The proof of (65) is by contradiction. Suppose that (C3) holds. Then, by (60), we have that

0 = 1

2

∣∣u̇o

(∣∣x′∣∣)∣∣2 − cu + F
(
uo

(∣∣x′∣∣)) for any x = (
x′, x′′) ∈ C. (66)

Since p ∈ C and C is open, we can take po = (p′
o,p

′′
o) ∈ C with p′

o �= 0 and we evaluate (66) at
x = po + t (p′

o/|p′
o|,0): we conclude that

0 = 1

2

∣∣u̇o

(∣∣p′
o

∣∣ + t
)∣∣2 − cu + F

(
uo

(∣∣p′
o

∣∣ + t
))

for any t sufficiently close to 0.

Therefore, by differentiating the above formula in t , using (1), and writing the Laplacian in
cylindrical coordinates,

0 = (
üo

(∣∣p′
o

∣∣ + t
) + F ′(uo

(∣∣p′
o

∣∣ + t
)))

u̇o

(∣∣p′
o

∣∣ + t
) = − m − 1

′
∣∣u̇o

(∣∣p′
o

∣∣ + t
)∣∣2

. (67)
|po| + t
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From (64) and the fact that C ⊆ {∇u �= 0}, we deduce that the last quantity in (67) is strictly
negative: this contradiction proves (65).

An analogous argument (just writing x instead of x′, n instead of m and dropping x′′) shows
that

(C2) cannot occur. (68)

So, thanks to (65) and (68), we know that case (C1) holds4 and so we can write

u(x) = uo(xn) for any x ∈ C.

Therefore, by the Unique Continuation Principle (see e.g. [13,12] for a general statement),

u(x) = uo(xn) for any x ∈ Ω. (69)

We now observe that

∂C ∩ {u = 0} �= ∅. (70)

Indeed, if (70) were false, we would have that u is constantly equal to ‖u‖L∞(Ω) on ∂C, thanks
to (63), and so ∇u would vanish somewhere in C, due to Rolle Theorem. Since this is in contra-
diction with the fact that C ⊆ {∇u �= 0}, the proof of (70) is finished.

Also, ∇u vanishes at points of {u = 0}∩Ω , since u attains its minimum there, therefore, since
C ⊆ {∇u �= 0}, we have that

u > 0 in C. (71)

Our goal is now to reconstruct Ω from the connected component C ⊆ {∇u �= 0}.
From (70) and (71), we have that there exists to ∈ R such that

uo(to) = 0 (72)

and (possibly reverting the orientation of en) T > 0 such that

uo(t) > 0 and u′
o(t) > 0 for any t ∈ (to, to + T ). (73)

We now take T as large as possible in (73) above.
If we can take T up to +∞, viz. if (73) holds for any t > to, we have that case (a�), and so in

particular (a), holds in Theorem 3.
Therefore, we may and do suppose that

either uo(to + T ) = 0 or u′
o(to + T ) = 0. (74)

Notice however that it cannot be that uo(to + T ) = 0, otherwise (72) and Rolle Theorem would
give that u′

o(τ�) = 0 for some τ� ∈ (to, to + T ), in contradiction with (73).

4 For a different proof of this, see the comments at the end of this proof.
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Accordingly, (74) says that

u′
o(to + T ) = 0. (75)

Thus, in order to complete the proof of Theorem 3, we classify the solutions uo ∈ C2(R) of
the ODE {

üo(t) = −F ′(uo(t)
)

for any t ∈ R,

uo(to) = 0,
(76)

under condition (75).
Classifying solutions of (76) is, of course, a widely studied topic: we perform here a detailed

and self-contained analysis, for the reader’s facility.
For this, we first observe that uo is even with respect to its critical points, that is

if u̇o(t̄) = 0 for some t̄ ∈ R, then uo(t̄ − t) = uo(t̄ + t) for any t ∈ R. (77)

Indeed, the functions γ±(t) := uo(t̄ ± t) are solutions of the ODE γ̈±(t) = −F ′(γ±(t)) for any
t ∈ R, with γ±(0) = uo(t̄) and γ̇±(0) = ±u̇o(t̄) = 0, and so, by Cauchy Uniqueness Theorem,
γ+(t) = γ−(t) for any t ∈ R, which proves (77).

Moreover,

if uo has two critical points, say u̇o(t1) = 0 = u̇o(t2) for some t2 > t1,

then it is 2(t2 − t1)-periodic. (78)

Indeed, (77) gives that uo(tj − t) = uo(tj + t) for any t ∈ R and j = 1,2, and so

uo

(
t + (t2 − t1)

) = uo

(
t2 + (t − t1)

) = uo

(
t2 − (t − t1)

)
= uo

(
t1 − (t − t2)

) = uo

(
t1 + (t − t2)

) = uo

(
t − (t2 − t1)

)
,

which proves (78).
From (75) and (77), we obtain that

uo is even with respect to to + T . (79)

In particular, recalling (72),

uo(to + 2T ) = uo(to) = 0 (80)

and

u′
o(to + 2T ) = −u′

o(to). (81)

We now distinguish two cases: either u′
o(to) = 0 or u′

o(to) �= 0.
If u′

o(to) = 0, then uo is 2T -periodic, due to (75) and (78). Also, uo is even with respect to
to +T + 2kT , for any k ∈ Z, due to (77), and it is positive outside {to + 2kT , k ∈ Z}, due to (73).
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This says that we are either in case (a) or (b) of Theorem 3.
More precisely, if (11) holds, we are in case (b�), while if (12) holds, the periodicity of uo is

given by the observations above.
On the other hand, if u′

o(to) �= 0, we have that u′
o(to + 2T ) �= 0, because of (81). Hence, uo is

negative in (to − ε, to) ∪ (to + 2T , to + 2T + ε) for some ε > 0, due to (80).
Since u � 0 in Ω , the latter observation and (73) give that Ω is a strip of width 2T on which

u > 0, that is case (a) in Theorem 3 holds (notice that in this case (12) cannot hold). In fact,
alternative (a�) must hold in this case, thanks to (79).

This completes the proof of Theorem 3. �
We would like to give now a different argument which shows that once equality holds in (3),

then the solution is one dimensional (that is, case (C1) holds).
This argument does not use the notion of isoparametric hypersurfaces, but it employs a geo-

metric identity found in [19,20].
The alternative proof goes like that. Suppose that equality in (3) holds at some point p ∈

Ω ∩ {∇u �= 0}. Then, from (60), it holds in the whole connected component C of {∇u �= 0}.
Therefore, the function

x �→ |∇u(x)|2
2

+ F
(
u(x)

)
is constant for any x ∈ C.

Thus, by taking the gradient and the Laplacian of such a function, we obtain that

0 = ∇
( |∇u|2

2
+ F(u)

)
= |∇u|∇|∇u| + F ′(u)∇u = |∇u|∇|∇u| − �u∇u (82)

and

0 = �

( |∇u|2
2

+ F(u)

)
= ∣∣D2u

∣∣2 + ∇(�u) · ∇u + F ′′(u)|∇u|2 + F ′(u)�u

= ∣∣D2u
∣∣2 − (�u)2 (83)

in the weak sense and thus almost everywhere (indeed, we remark that, by standard elliptic
regularity, all the first derivatives of u are in H 2

loc(Ω)).
In fact, by the continuity of the second derivatives of u, we obtain that the above equality

holds everywhere in Ω .
Here above, we have used the PDE in (1) and the Bochner–Weitzenböck formula (see, for

instance, [4] and references therein) to compute �|∇u|2.
Also, the standard notation

∣∣D2u
∣∣ :=

√ ∑
1�i,j�n

(
∂2
ij u

)2

was employed.



2826 A. Farina, E. Valdinoci / Advances in Mathematics 225 (2010) 2808–2827
From (82),

�u|∇u|2 = |∇u|∇|∇u| · ∇u,

and plugging it into (83), we obtain

0 = ∣∣D2u
∣∣2 −

∣∣∣∣∇|∇u| · ∇u

|∇u|
∣∣∣∣
2

�
∣∣D2u

∣∣2 − ∣∣∇|∇u|∣∣2 = K2|∇u|2 + ∣∣∇L|∇u|∣∣2
, (84)

in C, where in the last step we have used formula (2.1) of [19].
In the above notation, K is the length of the second fundamental form of the level sets of u

and ∇L is the tangential gradient along such level sets in C (see [19,20,9] for further details).
Therefore, from (84), we see that both K and |∇L|∇u|| vanish identically on C.
Accordingly, from Lemma 2.3 of [10], we have that u(x) = uo(xn), up to rotation, for any

x ∈ C. This gives an alternative proof of (C1).
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