ON CERTAIN CONSTRUCTIONS FOR LATIN SQUARES WITH NO LATIN SUBSQUARES OF ORDER TWO

Anton KOTZIG*

Centre de recherches mathématiques, Université de Montréal, Montréal, Québec, Canada

Jean TURGEON**

Département de mathématiques. Université de Montréal, Montréal, Québec, Canada

Received 18 November 1974 / Revised 13 January 1976

A latin square is said to be an N_2 -latin square (see [1] and [2]) if it contains no latin subsquare of order 2. The existence of N_2 -latin squares of all orders except 2^k has been proved in [2]. Trivially, there are no such squares of orders 2 and 4. M. McLeish [3] has shown that there exist N_2 -latin squares of all orders 2^k for $k \ge 6$. The present paper introduces a construction for N_2 -latin squares of all even orders n with $n \ne 0 \pmod{3}$ and $n \ne 3 \pmod{5}$. The problem is thus solved for the orders 2^k and 2^k.

For 2⁴, the only remaining case, Eric Regener of the Faculty of Music, Université de Montréal, has constructed the following example of an N_2 -latin square and kindly granted us the permission to reproduce it here:

1	2	3	4	5	6	7	8
2	3	1	5	6	7	8	4
3	1	4	б	7	8	2	5
4	6	8	2	1	3	5	7
5	8	2	7	3	4	6	1
6	5	7	1	8	2	4	3
7	4	5	н	2	1	3	6
8	7	6	3	4	5	1	2

The existence problem of N₂-latin squares is thus completely solved.

1. Definitions. Introductory remarks

Let *n* be a positive integer. Unless otherwise stated, all congruences shall be taken modulo *n*. So we shall write $x \equiv y$ for $x \equiv y \pmod{n}$.

The $n \times n$ matrix $X = (x_n)$ with $x_n \in M = \{1, 2, ..., n\}$ and $x_n \equiv i + j$, which is the Cayley table of the cyclic group of order n, shall be called in this paper the

* Research supported by Grant DGES-FCAC-74.

^{**} Research supported by Grant NRCC-A7869.

 C_n -matrix. A C_n -matrix is obviously an N_2 -latin square if and only if n is odd (see [2], Lemma 1).

We shall densite by D(m, n) the greatest common divisor of m and n.

Let g < n be a positive integer with the property that D(g, n) = D(g + 1, n) = 1. We denote by

$$E_{k,k}(X) = (l_{k,1}, l_{k,2}, \dots, l_{k,n}), \qquad k = -1, 0, 1$$

the sequence of n entries of the C_n -matrix X defined by

$$l_{k,j} \coloneqq x_{g(j \circ k) \circ k,j}, \qquad j = 1, 2, \ldots, n.$$

the first index being taken modulo n in M. Since X is the C_n -matrix, we have

$$l_{k,j} \equiv [g(j-k)-k]+j \equiv (g+1)(j-k).$$
(1.1)

Theorem 1.1. The sequences $E_{g,-1}(X)$, $E_{g,0}(X)$ and $E_{g,1}(X)$ are disjoint transversals of the C_n -matrix X, i.e. each row and each column of X contains exactly one element of $E_{g,k}(X)$ and $E_{g,k}(X)$ is a permutation of M, for each k = -1, 0, 1, and $l_{-1,p}, l_{0,p}$ and $l_{1,p}$ are distinct for each j = 1, 2, ..., n.

Proof. We have

$$l_{k,j+1} = l_{k,j} \equiv g+1; \quad j = 1, ..., n; \quad k = -1, 0, 1.$$
 (1.2)

Since D(g + 1, n) = 1, $E_{g,k}(X)$ is thus a permutation of M for each K = -1, 0, 1.

Now the sequence $\{g(j-k)-k\}$ of the first indices is an arithmetic progression of ratio g. Since D(g, n) = 1, each row of X contains exactly one element of $E_{r,k}(X)$; k = -1, 0, 1. The same is obviously true of the columns of X.

Finally, by (1.1),

$$l_{1,j} \equiv (g+1)(j+1), \quad l_{0,j} \equiv (g+1)j, \quad l_{1,j} \equiv (g+1)(j-1)$$

so that the three are distinct, for each j = 1, ..., n, since D(g + 1, n) = 1.

Definition 1.2. Let T_* be the set of the twelve distinct latin squares of order 3. Let $T = (t_n) \in T_*$. Let g < n, D(g, n) = D(g + 1, n) = 1. We shall say that the $(n + 3) \times (n + 3)$ matrix $Y = t_s(T, X)$ is obtained by a $t_s(T)$ -extension of the C_n -matrix X if it is obtained from X in the following way.

1.2.1. Each entry of X which belongs to $E_{g,k}(X)$, k = -1, 0, 1, is replaced in Y by the number n + 2 + k (i.e. $y_{g(j-k)-k,j} = n + 2 + k$, the first index being taken modulo n in \mathcal{M}) and the others are left untouched (i.e. $y_{a,b} = x_{a,b}$ if $x_{a,b}$ does not belong to any of the transversals $E_{g,k}(X)$, k = -1, 0, 1).

1.2.2 If
$$x_{a,b}$$
 of X is replaced in Y by $n + 2 + k$ according to 1.2.1, then

 $y_{a,n+2+k} = y_{n+2-k,k} = x_{a,k}$

1.2.3. $y_{n+1,n+j} = n + t_{ij}; i, j \in \{1, 2, 3\}.$

It is clear from 1.1 that this construction yields a latin square of order n + 3 with entries in $\{1, 2, ..., n + 3\}$.

1.3. If n = 3, a $\tau_{g}(T)$ -extension of the C_{n} -matrix is only possible for g = 1. We obtain

$$Y = \tau_1(T, X) = \tau_1 \left(T, \begin{bmatrix} 2 & 3 & 1 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix} \right)$$
$$= \begin{bmatrix} 5 & 4 & 6 & 3 & 2 & 1 \\ 6 & 5 & 4 & 2 & 1 & 3 \\ 4 & 6 & 5 & 1 & 3 & 2 \\ \hline 3 & 2 & 1 & & \\ 2 & 1 & 3 & & \\ 1 & 3 & 2 & & \end{bmatrix}$$

We shall denote the twelve latin squares of T_* as follows:

123	231	312	321	213	132
312	123	231	132	321	213
231	312	123	213	132	321
T,	<i>T</i> :	T ₃	T₄	T 5	T ₆
231	312	123	213	132	32
312	123	231	132	321	213
123	231	312	312	213	132
T ₇	Tş	Т.	T 10	T 11	T ₁₂

For n = 3, one can easily show that Y is an N₂-latin square if and only if T is T₄ or T₆. This settles the ease n = 3.

In general, the conditions n > 2, g > 0 and D(g, n) = D(g + 1, n) = 1 imply that n is odd. So we shall assume in the sequel that n is odd and greater than 3.

2. N₂-latin squares obtained by $\tau_g(T)$ -extensions

Theorem 2.1. Let g and n be integers, 1 < g < n. Suppose

D(g-1, n) = D(g, n) = D(g+1, n) = D(g+2, n) = D(2g+1, n) = 1.

Let $T \in \{T_4, T_5\}$ and let X be the C_n -matrix. Then $Y = \tau_g(T, X)$ is an N_2 -latin square.

For the proof of Theorem 2.1 we shall need the following lemma.

2.2. Let g and n be integers such that 0 < g < n and D(g, n) = D(g + 1, n) = 1. Let $T \in \{T_4, T_6\}$ and let X be the C_n -matrix. Let $M = \{1, 2, ..., n\}$ and $W = \{n + 1, n + 2, n + 3\}$. Suppose $Y = \tau_g(T, X)$ has a subsquare Z with entries

 $y_{p,r} = y_{q,r} = u$ and $y_{p,r} = y_{q,r} = v$.

Then the following five assertions are true.

(1) If $p, q, r, s \in M$, then either g = 1 or g > 1 and D(g - 1, n) > 1.

- (2) If $p, q, r \in M$ and $s \in W$, then D(2g + 1, n) > 1.
- (3) If p, r, s, $\in M$ and $q \in W$, then D(g+2, n) > 1.
- (4) $|\{p, r\} \cap M| \cdot |\{q, s\} \cap W| < 4$.
- (5) $|\{p,q\} \cap M| \cdot |\{r,s\} \cap M| > 0.$

Proof of 2.2(1). Since X is an N_2 -latin square, at most one of u and v is in M. Hence at least one of u and v, say v = n + 2 + k, is in W. So

$$p \equiv g(s-k) - k \quad \text{and} \quad q \equiv g(r-k) - k. \tag{2.1}$$

Suppose $u \in W$. Then $u \equiv n + 2 + h$ for some $h \neq k$, $h \in \{-1, 0, 1\}$. So

$$p \equiv g(r-h) - h$$
 and $q \equiv g(s-h) - h$. (2.2)

From (2.1) and (2.2) we obtain

$$g(h-k)+h-k \equiv p-q \equiv g(k-h)+k-h$$

or $2(p-q) \equiv 0$. Hence $(p-q) \equiv 0$, since n is odd, and the supposition that $u \in W$ leads to a contradiction. So $u \in M$ and

 $u = y_{p,r} = x_{p,r} = p + r$ and $u = y_{q,r} = x_{q,r} = q + s$

so that $p + r \equiv q + s$, i.e. $p - q \equiv s - r$. From (2.1) we obtain

$$(g-1)(s-r) \equiv 0.$$
(2.3)

Since $(s-r) \neq 0$, (2.3) is only possible if either g = 1 or g > 1 and D(g-1, n) > 1.

Proof of 2.2(2). Since $s \in W$, both $y_{q,s}$ and $y_{p,s}$ are in M, so that $\{u, v\} \subset M$; cf. 1.2.2. Hence

$$u = y_{p,r} = x_{p,r} \equiv p + r$$
 and $v = y_{q,r} \equiv x_{q,r} \equiv q + r$ (2.4)

and there exist indices t and w in M such that

$$q + w \equiv u$$
 and $p + t \equiv v$ (2.5)

and such that $x_{p,r}$ and $x_{q,n}$ are replaced in Y by n + 2 + k, $k \in \{-1, 0, 1\}$. But then

$$g(t-k)-k \equiv p \quad \text{and} \quad g(w-k)-k \equiv q. \tag{2.6}$$

Replacing w and t in (2.6) according to the congruences

$$w \equiv p - q + r$$
 and $t \equiv -p + q + r$

which follow from (2.4) and (2.5), we obtain

$$g(-p+q+r-k)-k \equiv p$$
 and $g(p-q+r-k)-k \equiv q$.

Hence

$$(2g+1)(q-p)\equiv 0,$$

which is only possible if D(2g+1, n) > 1.

Proof of 2.2(3). Since $q \in W$, we have $\{y_{q,v}, y_{q,v}\} \subset M$, so that $\{u, v\} \subset M$ and

$$u = y_{p,s} = x_{p,s} \equiv p + r$$
 and $v = y_{p,s} = x_{p,s} = p + s.$ (2.7)

Also, q = n + 2 - k for some $k \in \{-1, 0, 1\}$. Suppose $x_{a,r}$ and $x_{b,s}$ are replaced in Y by n + 2 + k. Then

$$a \equiv g(r - k) - k \quad \text{and} \quad b \equiv g(s - k) - k. \tag{2.8}$$

Also.

$$u \equiv b + s$$
 and $v \equiv a + r$. (2.9)

From (2.7) and (2.9) we obtain

$$a \equiv p \cdot r + s$$
 and $b \equiv p + r - s$

so that, by (2.8),

$$g(r-k)-k \equiv p-r+s$$
 and $g(s-k)-k \equiv p+r-s$.

Hence $(g + 2)(s - r) \equiv 0$ and D(g + 2, n) > 1.

Proof of 2 2(4). Suppose $p, r \in M$ and $q, s \in W$. Then

$$u = y_{q,i} = n + 2 + k \tag{2.10}$$

for some $k \in \{-1, 0, 1\}$ (cf. 1.2.3) and $u \in W$. Since $p \in M$, $s \in W$, we have $v \in M$ (cf. 1.2.2).

It follows from the definition of $l_{k,i}$ that if $x_{a,b}$ is replaced in Y by n + 2, then $x_{a+1,b-1}$ is replaced by n + 1 and $x_{a-1,b+1}$ is replaced by n + 3 (all indices being taken modulo n in M). Then Y contains the entries y_{ij} ordered as follows:

	i = j =	b - 1	b	<i>b</i> + 1	• • •	n+1	n + 2	n + 3
	a – 1	•	•	n + 3		$z - 2\eta$	z η	z
1	a	•	n + 2	•		$z - \eta$	z	$z + \eta$
	<i>a</i> + 1	n + 1	•	•	• • •	Z	$z + \eta$	$z + 2\eta$
	•	•	•	•		. •	•	•
	•	•				•	•	•
	•	•	•	•		•	•	•
	n + 1	$z - 2\varepsilon$	$z - \varepsilon$	z	• • •	$n + t_{1,1}$	$n + t_{1,2}$	$n + t_{1,3}$
	<i>n</i> + 2	$z - \varepsilon$	z	$z + \varepsilon$	• • •	$n + t_{2,1}$	$n + t_{2,2}$	$n + t_{2,3}$
	n + 3	Z	$z + \varepsilon$	$z + 2\varepsilon$	•••	$n + t_{3,1}$	$n + t_{3,2}$	$n + t_{3,3}$

where $z \equiv a + b$ and $\varepsilon \equiv g + 1$; cf. (1.2). To determine η , we note that the entry of the line a + 1 of X which is replaced by n + 2 is $x_{a+1,b+c}$ where $cg \equiv 1$ (since the sequence (g(j-k)-k) of the first indices of the elements of $E_{g,k}$ is an arithmetic progression, modulo n, of ratio g). The value of this entry is

$$x_{a+1,b+c} \equiv a+b+c+1 \equiv z+\eta$$

where $\eta \equiv c + 1$ and $(\eta - 1)g \equiv 1$, i.e.

$$\eta g \equiv g + 1. \tag{2.11}$$

Clearly, $\varepsilon \neq 0$, $\eta \neq 0$ and $\{\varepsilon, \eta\} \subset M$. Each replaced entry, and hence the entry $y_{\rho,n}$ belongs to exactly one triple $\{y_{\alpha-1,b+1}, y_{\alpha,b}, y_{\alpha+1,b+1}\}$. Thus

$$z \notin \{z - 2\varepsilon, z - \varepsilon, z + \varepsilon, z + 2\varepsilon, z - 2\eta, z - \eta, z + \eta, z + 2\eta\}.$$
 (2.12)

Since $T \in \{T_4, T_6\}$, we have

$$1 \not\in \{t_{1,2}, t_{2,3}, t_{3,1}\}$$
(2.13)

$$2 \not\in \{t_{1,3}, t_{2,2}, t_{3,3}\}$$
(2.14)

and

$$3 \notin \{t_{1,3}, t_{2,1}, t_{3,2}\}.$$
(2.15)

If u = n + 1, then p = a + 1, r = b - 1 and, by (2.12) and (2.13), either q = s = n + 2or q = n + 1 and s = n + 3; in both cases,

$$\varepsilon + \eta \equiv 0. \tag{2.16}$$

If u = n + 2, then p = a, r = b and, by (2.12) and (2.14), either q = n + 3, s = n + 1or q = n + 1, s = n + 3 and (2.16) holds again. Finally, if u = n + 3, then p = a - 1, r = b + 1 and, by (2.12) and (2.15), either q = n + 3, s = n + 1 or q = s = n + 2 and we have again (2.16). So, in all cases,

$$\eta \equiv -(g+1) \tag{2.17}$$

By adding the respective sides of (2.11) and (2.17) we obtain $\eta(g+1) \equiv 0$. But this is not possible since D(g+1, n) = 1 and $0 < \eta < n$.

Proof of 2.2(5). We have to show that at least one number of $\{p, q\}$ and at least one of $\{r, s\}$ belongs to M. Suppose on the contrary that $\{p, q\} \subset W$. Then

$$m = |\{r, s\} \cap M| \neq 0$$

because T is an N₂-latin square. If m = 1, say $r \in M$, $s \in W$, then $\{y_{p,r}, y_{q,r}\} \subset M$ whereas $\{y_{p,n}, y_{q,r}\} \subset W$; so $m \neq 1$. Finally, $m \neq 2$ because the submatrix $Y' = (y_{ij})$ with $i \in W$, $j \in M$ is isomorphic to a submatrix of the C_n -matrix consisting of three of its rows. Therefore $\{p, q\} \cap M \neq \emptyset$. By the same argument, $\{r, s\} \cap M \neq \emptyset$.

Proof of 2.1. Suppose Y has a subsquare Z with entries

$$u = y_{p_1} = y_{q_2}$$
, and $v = y_{p_2} = y_{q_2}$.

Then, by 2.2(5),

$$|\{p,q\} \cap M| \cdot |\{r,s\} \cap M| > 0.$$

The case

$$|\{p,q\} \cap M| = |\{r,s\} \cap M| = 1$$

is not possible, by 2.2(4). The case

 $|\{p,q\} \cap M| = 2, \quad |\{r,s\} \cap M| = 1$

is excluded oy 2.2(2), since D(2g + 1, n) = 1, and

$$|\{p,q\} \cap M| = 1, \quad |\{r,s\} \cap M| = 2$$

is excluded by 2.2(3), since D(g+2, n) = 1. Finally, since D(g-1, n) = 1 and g > 1, 2.2(1) excludes the case

 $|\{p,q\} \cap M| = |\{r,s\} \cap M| = 2.$

Therefore Y is an N_2 -latin square.

2.3. It can be proved that all the conditions stated in 2.1 are necessary for $Y = \tau_{R}(T, X)$ to be an N_2 -latin square, i.e. that if any of g, n or T does not satisfy one of the conditions stated, then Y contains a subsquare Z of order 2 (the type of Z depending on the missing property). This assertion is made without proof because it is not necessary for what follows.

3. The effectiveness of the method

Let g be an integer, g > 1. Let P_g be the set of all integers n > 3 such that the $\tau_g(T_4)$ - and $\tau_g(T_6)$ -extensions of the C_n -matrix are N_2 -latin squares. By 2.1, $n \in P_g$ if 1 < g < n - 2 and

$$D(g-1,n) = D(g,n) = D(g+1,n) = D(g+2,n) = D(2g+1,n) = 1.$$

In particular, $n \in P_g$ must be odd and not divisible by 3 or 5.

Theorem 3.1. P_2 contains every odd integer m > 1 which is not divisible by 3 or 5.

Proof. By assumption.

$$D(1, m) = D(2, m) = D(3, m) = D(4, m) = D(5, m) = 1.$$

Hence, by 2.1, the $\tau_2(T_4)$ - and $\tau_2(T_6)$ -extensions of the C_m -matrix are N_2 -latin squares and $m \in P_2$.

Theorem 3.2. $P_s \subset P_2$ for every integer g > 2.

Proof. This follows from 3.1 and the discussion preceding it.

3.3. In spite of 3.2, the study of $\tau_g(T)$ -extensions can still be useful for g > 2, Such $\tau_g(T)$ -extensions cannot give N_2 -latin squares of orders that cannot be obtained by $\tau_2(T)$ -extensions, but can give new non-isomorphic N_2 -latin squares.

Theorem 3.4. Let h be an integer, h > 3, $h \neq 3 \pmod{4}$. Let $n = 2^h - 3$. Then the $\tau_2(T_4)$ - and $\tau_2(T_6)$ -extensions of the C_n -matrix are N_2 -latin squares.

Proof. Clearly, $2^h - 3$ is odd and not divisible by 3. Also, $2^h - 3$ is divisible by 5 if and only if $h \equiv 3 \pmod{4}$. Therefore, by 3.1, $2^h - 3 \in P_2$.

3.5. It follows from 3.4 that N_2 -latin squares of orders 2^4 and 2^5 can be obtained by $\tau_2(T)$ -extensions. Since $2^4 - 3 = 13$ and $2^5 - 3 = 29$ are prime numbers, the conditions of 2.1 are also satisfied by other values of g, and we obtain several non-isomorphic solutions for the orders 2^4 and 2^5 . Note that $\tau_g(T)$ -extensions also provide a simple method of construction for many other cases.

References

- [1] J. Dénes and A.D. Keedwell, Latin Squares and their Applications (Academic Press, New York, 1974).
- [2] A. Kotzig, C.C. Lindner and A. Rosa, Latin squares with no latin squares of order two and disjoint Steiner triple systems, Utilitas Mathematica 7 (1975) 287-294.
- [3] M. McLeish. On the existence of latin squares with no subsquares of order two (submitted for publication).