ON CERTAIN CONSTRUCTIONS FOR LATIN SQUARES WITH NO LATIN SUBSQUARES OF OFDER TWO

Anton KOTZIG*
Centre de recherches matinématiques. Université de Montréal. Montríal. Québec, Canada
Jean TURGEON**
Departement de mathemutuques. Unitersité de Montréal. Montréal. Ouébec, Canada

Recerved is Nowember 1974:
Reved is Jamars 197n

Abstract

A latin spuare in said to be an \mathbf{N}_{2}-latin square (see [1] anc [2]) if it contains no latin subsquare of order 2. The existence of $\boldsymbol{N}_{\text {- }}$-latin squares of all orders except 2^{k} has been proved in [2]. Trivially, there are no such squares of orders 2 and 4. M. McLeish [3] has shown that there exist N_{r}-latin squares of all orders 2^{4} for $k \geqslant 6$. The present paper introduces a construction for solved for the orders 2^{4} and 2^{\prime}. For 2'. the only rematnitig case. Eric Regener of the Faculty of Music, Universite de Montreal, has constructed the following example of an $\mathbf{N}_{\text {: }}$-latin square and kindly granted us the permission to reproduce it here: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 1 | 5 | 6 | 7 | 8 | 4 |
| 3 | 1 | 4 | 6 | 7 | 8 | 2 | 5 |
| 4 | 6 | 8 | 2 | 1 | 3 | 5 | 7 |
| 5 | 8 | 2 | 7 | 3 | 4 | 6 | 1 |
| 6 | 5 | 7 | 1 | 8 | 2 | 4 | 3 |
| 7 | 4 | 5 | 4 | 2 | 1 | 3 | 6 |
| 8 | 7 | 6 | 3 | 4 | 5 | 1 | 2 |

The existence prohlem of \mathbf{N}-latin squares is thus completely solved.

1. Definitions. Introductory remarks

Let n be a positive integer. Unless otherwise stated, all congruences shall be taken modulo n. So we shall write $x \equiv y$ for $x \equiv y(\bmod n)$.

The $n \times n$ matrix $X=\left(x_{11}\right)$ with $x_{y} \in M=\{1,2, \ldots, n\}$ and $x_{i y} \equiv i+j$, which is the Cayley table of the cyclic group of order n, shall be called in this paper the

[^0]C_{n}-matrix A \boldsymbol{C}_{n}-matrix is obviously an $\boldsymbol{N}_{\boldsymbol{t}}$-latin square if and only if \boldsymbol{n} is odd (see [2]. Lemma 1).

We shall dentic by $D(m, n)$ the greatest common divisor of m and n.
Let $g<n$ be a positive integer with the property that $D(g, n)=D(g+1, n)=1$. We denote by

$$
E_{k, t}(X)=\left(l_{k, 1}, l_{k, 2}, \ldots, l_{k, n}\right), \quad k=-1,0,1
$$

the sequence of n entries of the C_{n}-matrix X defined by

$$
l_{k}=x_{\mathrm{g}(1,4)}, k, n \quad j=1,2, \ldots, n .
$$

the first index being taken modulo n in M. Since X is the C_{n}-matrix, we have

$$
\begin{align*}
l_{4} & \equiv[g(j-k)-k]+j \\
& \equiv(g+1)(j-k) . \tag{1.1}
\end{align*}
$$

Theorem 1.1. The sequences $E_{k,-1}(X), E_{g, 0}(X)$ and $E_{R, 1}(X)$ are disjoint transversals of the C_{n}-matrix X. i.e. each row and each column of X contains exactly one element or $E_{k}(X)$ and $E_{k k}(X)$ is a permutation of M, for each $k=-1,0,1$, and $I_{-1,1} I_{0}$, and I_{1}, are distinct for each $j=1,2, \ldots, n$.

Proof. We have

$$
\begin{equation*}
l_{4,,-1}-l_{k,}=g+1 ; \quad j=1, \ldots, n ; \quad k=-1,0, i . \tag{1.2}
\end{equation*}
$$

Since $D(g+1, n)=1, E_{g, k}(X)$ is thus a permutation of M for each $K=-1,0.1$.
Now the sequence $\{g(j-k)-k\}$ of the first indices is an arithmetic progression of ratio g . Since $D(g, n)=1$, each row of X contains exactly one element of $E_{k}(X): k=-1,0,1$. The same is obviously true of the columns of X.

Finally. by (1.1),

$$
l_{1,} \equiv(g+1)(j+1), \quad l_{0,1} \equiv(g+i) j, \quad l_{1,1} \equiv(g+1)(j-1)
$$

so that the three are distinct, for each $j=1, \ldots, n$, since $D(g+1, n)=1$.
Definition 1.2. Let T_{*} be the set of the tweive distinct latin squares of order 3. Let $T=\left(t_{n}\right) \in T_{*}$. Let $g<n, D(g, n)=D(g+1, n)=1$. We shall say that the $(n+3) \times(n+3)$ matrix $Y=t_{\mathrm{f}}(T, X)$ is obtained by a $t_{n}(T)$-extension of the C_{n}-matrix X if it is obtained from X in the following way.
1.2.1. Each entry of X which belongs to $E_{k} k(X), k=-1,0,1$, is replaced in Y by the number $n+2+k$ (i.e. $y_{g!}, k-k_{1}=n+2+k$, the first index being taken modulo n in M) and the others are left untouched (i.e. $y_{a, b}=x_{a, b}$ if $x_{a, b}$ does not belong to any of the transtersals $E_{k}(X), k=-1.01$).
1.2.2. If $x_{4} b$ of X is replaced in Y by $n+2+k$ according to 1.2.1, then

$$
y_{a, n+2+k}=y_{n+2-k}=x_{a, b} .
$$

1.2.3. $y_{n \cdot n_{n, 1}}=n+t_{11} ; i, j \in\{1,2,3\}$.

It is clear from 1.1 that this construction yields a latin square of order $n+3$ with entries in $\{1,2, \ldots, n+3\}$.
1.3. If $n=3$, a $\tau_{\mathrm{R}}(T)$-extension of the C_{n}-matrix is only possible for $g=1$. We ubtain

$$
\begin{aligned}
& Y=\tau_{1}(T, X)=\pi_{1}\left(T,\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 1 & 2 \\
1 & 2 & 3
\end{array}\right]\right) \\
& =\left[\begin{array}{lllll}
5 & 4 & 6 & 3 & 2 \\
6 & 5 & 4 & 2 & 1 \\
4 & 6 & 5 & 1 & 3 \\
\hline & 2 & & \\
\hline 2 & 1 & 1 & & \\
1 & 3 & 2 & &
\end{array}\right]
\end{aligned}
$$

We shall denote the twelve latin squares of T_{*} as follows:

123	231	312	321	213	132
312	123	231	132	321	213
231	312	123	213	132	321
T_{1}	T_{5}	T_{1}	T_{4}	T_{5}	T_{6}
231	312	123	213	132	322
312	123	231	132	321	213
123	231	312	312	213	132
T_{7}	$T r$	T_{4}	T_{16}	T_{11}	T_{12}

For $n=3$, one can ex sily show that Y is an N_{2}-latin square if and only if T is T_{4} or T_{n}. This settles the sese $n=3$.

In general, the conditions $n>2, g>0$ and $D(g, n)=D(g+1, n)=1$ imply that \boldsymbol{n} is odd. So we sha! assume in the sequel that \boldsymbol{n} is odd and greater than 3 .

2. N_{2}-latin squares obtained by $\tau_{\mathrm{k}}(7)$-extensions

Theorem 2.1. Let g and n be integers, $1<g<n$. Suppose

$$
D(g-1, n)=D(g, n)=D(g+1, n)=D(g+2, n)=D(2 g+1, n)=1
$$

Let $T \in\left\{T_{4}, T_{n}\right\}$ and let X be the C_{n}-maris. Then $Y=\tau_{g}(T, X)$ is an N_{s}-latin square.

For the proof of Theorem 2.1 we shall need the following lemma.
2.2. Let g and n be integers such that $0<g<n$ and $D(g, n)=D(g+1, n)=1$. Let $T \in\left\{T_{4}, T_{0}\right\}$ and let X be the C_{n}-matrix. Let $M=\{1,2, \ldots, n\}$ and $W=$ $\{n+1, n+2, n+3\}$. Suppose $Y=\tau_{g}(T, X)$ has a subsquare Z with entries

$$
y_{p,}=y_{3,}=u \quad \text { and } \quad y_{p, 5}=y_{4,}=v
$$

Then the following five assertions are true.
(1) If m.q. r. $s \in M$, then either $g=1$ or $g>-1$ and $D(g-1, n)>1$.
(2) If p.q. r. $\in M$ and $s \in W$. then $D(2 g+1, n)>1$.
(3) If p.r, s. $\in M$ and $q \in W$, then $D(g+2, n)>1$.
(4). $|\{p, r\} \cap M| \cdot|\{q, s\} \cap W|<4$.
(5) $|\{p, q\} \cap M| \cdot|\{r, s\} \cap M|>0$.

Proof of 2.2(1). Since X is an N_{2}-latin square, at most one of u and v is in M. Hence at 'east one of u and t, say $i=n+2+k$, is in W. So

$$
\begin{equation*}
p \equiv g(s-k)-\dot{k} \quad \text { and } \quad q \equiv g(r-k)-k \tag{2.1}
\end{equation*}
$$

Suppose $u \in \mathbb{W}$. Then $u \equiv n+2+h$ for some $h \neq k, h \in\{-1,0,1\}$. So

$$
\begin{equation*}
p \equiv g(r-h)-h \quad \text { and } \quad q \equiv g(s-h)-h . \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2) we obtain

$$
g(h-k)+h-k \equiv p-q \equiv g(k-h)+k-h
$$

or $2(p-q) \equiv 0$. Hence $(p-q) \equiv 0$, since n is odd, and the supposition that $u \in W$ ieads to a contradiction. So $u \in M$ and

$$
u=y_{p,}=x_{p,},=p+r \text { and } u=y_{q, 1}=x_{4,}=q+s
$$

so that $p+r \equiv q+s$, i.e. $p-q \equiv s-r$. From (2.1) we obtain

$$
\begin{equation*}
(g-1)(s-r) \equiv 0 . \tag{2.3}
\end{equation*}
$$

Since $(s-r) \neq 0,(2.3)$ is only possible if either $;=1$ or $g>1$ and $D(g-1, n)>1$.
Proof of 2.2(2). Since $s \in W$, both $y_{4,}$ and $y_{\text {, s }}$ are in M, so that $\{u, v\} \subset M$; cf. 1.2.2. Hence

$$
\begin{equation*}
u=y_{p, r}=x_{p, r} \equiv p+r \quad \text { and } \quad v=y_{q},=x_{q .} \equiv q+r \tag{2.4}
\end{equation*}
$$

and there exist indices t and \boldsymbol{w} in M such that

$$
\begin{equation*}
q+w \equiv u \quad \text { and } \quad p+t \equiv v \tag{2.5}
\end{equation*}
$$

and such that x_{n}, and $x_{4}=$ are replaced in Y by $n+2+k, k \in\{-1,0,1\}$. But then

$$
\begin{equation*}
g(t-k)-k \equiv p \quad \text { and } \quad g(w-k)-k \equiv a \tag{2.6}
\end{equation*}
$$

Replacing w and t in (2.6) according to the congruences

$$
w \equiv p-q+r \quad \text { and } \quad t \equiv-p+q+r
$$

which follow from (2.4) and (2.5), we obtain

$$
g(-p+q+r-k)-k \equiv p \quad \text { and } \quad g(p-q+r-k)-k \equiv q .
$$

Hence

$$
(2 s+1)(q-p)=0 .
$$

which is only possible if $D(2 g+1, n)>1$.
Proof of 2.2(3). Since $q \in W$, we have $\left\{y_{4}, y_{4},\right\} \subset M$, so that $\{u, v\} \subset M$ and

$$
\begin{equation*}
u=y_{p}=x_{r}, \equiv p+r \quad \text { and } \quad v=y_{p}=x_{r}, p+s \tag{2.7}
\end{equation*}
$$

Also, $q=n+2-k$ for some $k \in\{-1,0.1\}$. Suppose $x_{n,}$, and $x_{h,}$, are replaced in Y hy $n+i+k$. Then

$$
\begin{equation*}
a \equiv g(r-k)-k \quad \text { and } \quad b \equiv g(s-k)-k . \tag{2.8}
\end{equation*}
$$

Also.

$$
\begin{equation*}
u \equiv b+s \quad \text { and } \quad v \equiv a+r . \tag{2.9}
\end{equation*}
$$

From (2.7) and (2.9) we obtain

$$
a \equiv p \cdot r+s \quad \text { and } \quad b \equiv p+r-s
$$

so that, by (2.S),

$$
g(r-k)-k \equiv p-r+s \quad \text { and } \quad g(s-k)-k \equiv p+r-s .
$$

Hence $(g+2)(s-r) \equiv 0$ and $D(g+2, n)>1$.
Proof of 2 2(4). Suppose $p . r \in M$ and $q, s \in W$. Then

$$
\begin{equation*}
u=y_{4}:=n+2+k \tag{2.10}
\end{equation*}
$$

for some $k \in\{-10,1\}$ (cf. 1.2.3) and $u \in W$. Since $p \in M, s \in W$, we have $v \in M$ (cf. 1.2.2).

It follows from the definition of I_{k}, that if $x_{a, b}$ is replaced in Y by $n+2$, then $x_{a+1, n,}$ is replaced by $n+1$ and $x_{a, b, 1}$ is replaced by $n+3$ (all indices being taken modulo n in M). Then Y contains the entries y_{i} ordered as follows:

$i=j=$	$b-1$	b	$b+1$	\cdots	$n+1$	$n+2$	$n+3$
a - 1		-	$n+5$	\cdots	$z-2 \eta$	$z \cdots \eta$	z
a	-	$n+2$.	\cdots	$z-\eta$	z	$z+\eta$
$a+1$	$n+1$	-	-	\cdots	z	$z+\eta$	$z+2 \eta$
-	-	-	.			-	-
-	-	.	.		-	-	
-		-				-	
$n+1$	$z-2 \varepsilon$	$z-\varepsilon$	z		$n+t_{1.1}$	$n+t_{1,2}$	$n+r_{1.3}$
$n+2$	$z-\varepsilon$	z	$z+\varepsilon$		$\boldsymbol{n}+\mathrm{t}_{2,1}$	$n+t_{2.2}$	$\boldsymbol{n}+\mathrm{t}_{2,3}$
$n+3$	z	$z+\varepsilon$	$z+2 \varepsilon$		$n+t_{3,1}$	$n+t_{1.2}$	$n+t_{1,}$

where $z \equiv a+b$ and $\varepsilon \equiv g+1$; cf. (1.2). To determine η. we note that the entry of the line $a+1$ of X which is replaced by $n+2$ is $x_{a+1, b+c}$ where $c g \equiv 1$ (since the sequence $(g(j-k)-k)$ of the first indices of the elements of $E_{p, k}$ is an arithmetic progression, modulo n, of ratio g). The value of this entry is

$$
x_{a, 1 b \cdot c} \equiv a+b+c+1 \equiv z+\eta
$$

where $\eta \equiv c+1$ and $(\eta-1) g \equiv 1$. i.e.

$$
\begin{equation*}
r_{g} \equiv g+1 \tag{2.11}
\end{equation*}
$$

Clearly, $\varepsilon \neq 0, \eta \neq 0$ and $\{\varepsilon, \eta\} \subset M$. Each replaced entry, and hence the entry $y_{p, n}$ belongs to exactly one triple $\left\{y_{a-1, n+1}, y_{a, b} y_{a+1, n,}\right\}$. Thus

$$
\begin{equation*}
z \notin\{z-2 \varepsilon, z-\varepsilon, z+\varepsilon, z+2 \varepsilon, z-2 \eta, z-\eta, z+\eta, z+2 \eta\} . \tag{2.12}
\end{equation*}
$$

Since $T \in\left\{T_{A}, T_{k}\right\}$, we have

$$
\begin{align*}
& 1 \notin\left\{t_{1,2,}, t_{2,3,} t_{3.1}\right\} \tag{2.13}\\
& 2 \notin\left\{t_{1, t}, t_{2,2}, t_{3,3}\right\} \tag{2.14}
\end{align*}
$$

and

$$
\begin{equation*}
3 \notin\left\{t_{1,3}, t_{2,1}, t_{1,2}\right\} . \tag{2.15}
\end{equation*}
$$

$\| \frac{1}{f} u=n+1$, tii $\because n=a+1, r=b-1$ and, by (2.12) and (2.13), either $q=s=n+2$ or $q=n+1$ and $s=n+3$; in both cases,

$$
\begin{equation*}
\varepsilon+\eta \equiv 0 \tag{2.16}
\end{equation*}
$$

If $u=n+2$, then $p=a, r=b$ and, by (2.12) and (2.14), either $q=n+3, s=n+1$ or $q=n+1, s=n+3$ and (2.16) holds again. Finally, if $u=n+3$, then $p=a-1$. $r=b+1$ and, by (2.12) and (2.15), either $q=n+3, s=n+1$ or $q=s=n+2$ and we have again (2.16, So, in all cases,

$$
\begin{equation*}
\eta \equiv-(g+1) \tag{2.17}
\end{equation*}
$$

By adding the respective sides of (2.11) and (2.17) we obtain $\eta(g+1) \equiv 0$. But this, is not possible since $D(g+1, n)=1$ and $0<\eta<n$.

Proof of 2.2(5). We have to show that at least one number of $\{p, q\}$ and at least one of $\{r, s\}$ belongs to M. Suppose on the contrary that $\{p, q\} \subset W$. Then

$$
m=\{\{r, s\} \cap M \mid \neq 0
$$

because T is an N_{2}-latin square. If $m=1$, say $r \in M, s \in W$, then $\left\{y_{p, r}, y_{q, r}\right\} \subset M$ whereas $\left\{y_{p, n}, y_{q},\right\} \subset W$; so $m \neq 1$. Finally, $m \neq 2$ because the submatrix $Y^{\prime}=\left(y_{i j}\right)$ with $i \in W, j \in M$ is isomorphic to a submatrix of the C_{n}-matrix consisting of three of its rows. Therefore $\{p, q\} \cap M \neq \emptyset$. By the same argument, $\{r, s\} \cap M \neq \emptyset$.

Proof of 2.1. Suppose Y has a subsquare Z with entries

$$
u=y_{p},=y_{4,} \quad \text { and } \quad v=y_{p,}=y_{4, \cdot}
$$

Then, by 2.2(5).

$$
|\{p, q\} \cap M| \cdot|\{p, s\} \cap M|>0 .
$$

The case

$$
\{\{p, q\} \cap M\}=\{\{r, s\} \cap M\}=1
$$

is not possible, by 2.2(4). The case

$$
|\{p, q\} \cap M|=2, \quad|\{r, s\} \cap M|=1
$$

is excluded ay $2.2(2)$, since $D(2 g+1, n)=1$, and

$$
|\{p, q\} \cap M|=1, \quad|\{r, s\} \cap M|=2
$$

is excluded by $2.2(3)$, since $D(g+2, n)=1$. Finally, since $D(g-1, n)=1$ and $g>1,2.2(1)$ excludes the case

$$
|\{p, q\} \cap M|=|\{r, s\} \cap M|=2 .
$$

Therefore \boldsymbol{Y} is an N_{2}-latin square.
2.3. It can be proved that all the conditions stated in 2.1 are necessary for $Y=\tau_{R}(T, X)$ to be an N_{Z}-latin square, i.e. that if any of g, n or T does not satisfy one of the conditions stated then Y contains a subsquare Z of order 2 (the type of Z depending on the missing property). This assertion is made without proof because it is not necessary for winat follows.

3. The effectiveness of the method

Let g be an integer, $g>1$. Let P_{g} be the set of all integers $n>3$ such that the $\tau_{\mathrm{g}}\left(T_{4}\right)$ - and $\tau_{8}\left(T_{6}\right)$-extensions of the C_{n}-matrix are N_{2}-latin squares. By $2.1, n \in P_{s}$ if $1<g<n-2$ and

$$
D(. ;-1, n)=D(g, n)=D(g+1, n)=D i(g+2, n)=D(2 g+1, n)=1 .
$$

In particular, $n \in P_{k}$ must be odd and not divisible by 3 or 5 .
Theorern 3.1. P_{2} contains every odd integer $m>1$ which is not divisible by 3 or 5 .

Proof. By assumption,

$$
D(1, m)=D(2, m)=D(3, m)=D(4, m)=D(5, m)=1 .
$$

Hence, by 2.1, the $\tau_{2}\left(T_{4}\right)$ - and $\tau_{3}\left(T_{6}\right)$-extensions of the C_{m}-matrix are N_{r}-latin squares and $m \in P_{2}$.

Theorem 3.2. $P_{g} \subset P_{2}$ for every integer $g>2$.
Proof. This follows from 3.1 and the discussion preceding it.
3.3. In spite of 3.2. the study of $\tau_{8}(T)$-extensions can stiit he useful for $g>2$. Such $\tau_{R}(T)$-extensions cannot give N_{z}-latin squares of orders that cannot be obtained by $\tau,(T)$-extensions, but can give new non-isomorphic \boldsymbol{N}_{2}-latin squares.

Theorem 3.4. Let h be an integer, $h>3, h \neq 3(\bmod 4)$. Let $n=2^{n}-3$. Then the $\tau_{i}\left(T_{s}\right)$ and $\tau_{i}\left(T_{n}\right)$-extensions of the C_{n}-matrix are N_{2}-latin squares.

Proof. Clearly. $2^{h}-3$ is odd and not divisible by 3 . Also, $2^{n}-3$ is divisible by 5 if and only if $h \equiv 3(\bmod 4)$. Therefore, by $3.1,2^{h}-3 \in P_{2}$.
3.5. It follows from 3.4 that N_{2}-latin squares of orders 2^{4} and $2^{\prime \prime}$ can he obtained by $\tau_{2}(T)$-extensions. Since $2^{4}-3=13$ and $2^{5}-3=29$ are prime numbers, the conditions of 2.1 are also satisfied by other values of g, and we obtain several non-isomorphic solutions for the orders 2^{4} and $2^{\prime \prime}$. Note that $T_{k}(T)$-extensions also provide a simple method of construction for many other cases.

References

[1] J Dénes and A.D. Keedwell. Latin Squares and their Applications (Academic Press, New York. (474).
[2] A. Kotzig. C.C. Lininer and A. Rosa. Latin squares with no latin squares of order two and disjount Setner triple systems. Utititas Mathematica 7 (1975) 287-294
[?] M Mcleish. On the existence of latin squares with no subsquares of order two (submitted for publication).

[^0]: * Research supported by Grant DGES-FCAC-74.
 ** Research supported by Grant NRCC-A7869.

