On Mutually Nearest and Mutually Furthest Points of Sets in Banach Spaces

F. S. De Blasi
Dipartimento di Matematica, Università di Roma II,
Via Fontanile di Carcaricola, 00133 Roma, Italy

J. Myjak
Dipartimento di Matematica, Università dell’Aquila,
Via Vetoio, 67100 L’Aquila, Italy

AND

P. L. Papini
Dipartimento di Matematica, Università di Bologna,
Piazza Porta S. Donato 5, 40127 Bologna, Italy

Communicated by Frank Deutsch
Received October 24, 1990; revised July 26, 1991

Let A be a nonempty closed bounded subset of a uniformly convex Banach space E. Let $C(E)$ denote the space of all nonempty closed convex and bounded subsets of E, endowed with the Hausdorff metric. We prove that the set of all $X \in C(E)$ such that the maximization problem $\max(A, X)$ is well posed is a $G_δ$ dense subset of $C(E)$. A similar result is proved for the minimization problem $\min(A, X)$, with X in an appropriate subspace of $C(E)$. © 1992 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARIES

Let E be a real Banach space. We denote by $B(E)$ the space of all nonempty closed bounded subsets of E. For $X, Y \in B(E)$, we set

$$\lambda_{XY} = \inf \{ \|x - y\| : x \in X, y \in Y\},$$

$$\mu_{XY} = \sup \{ \|x - y\| : x \in X, y \in Y\}.$$
Given $X, Y \in \mathcal{B}(E)$, we consider the minimization (resp. maximization) problem, denoted $\min(X, Y)$ (resp. $\max(X, Y)$), which consists in finding points $x_0 \in X$ and $y_0 \in Y$ such that $\|x_0 - y_0\| = \lambda_{XY}$ (resp. $\|x_0 - y_0\| = \mu_{XY}$). Any such pair (x_0, y_0) is called a solution of the corresponding problem. Moreover, any sequence $\{(x_n, y_n)\}$, $x_n \in X$, $y_n \in Y$, such that $\lim_{n \to \infty} \|x_n - y_n\| = \lambda_{XY}$ (resp. $\lim_{n \to \infty} \|x_n - y_n\| = \mu_{XY}$) is called a minimizing (resp. maximizing) sequence. A minimization (resp. maximization) problem is said to be well posed if it has a unique solution (x_0, y_0), and every minimizing (resp. maximizing) sequence converges to (x_0, y_0).

Let M be a metric space with distance d. For any $u \in M$ and $r > 0$ we set $B_M(u, r) = \{x \in M \mid d(x, u) < r\}$ and $\overline{B}_M(u, r) = \{x \in M \mid d(x, u) \leq r\}$. If $X \subset M$, by X and $\text{diam } X$ ($X \neq \emptyset$) we mean the closure of X and the diameter of X, respectively. As usual, if $X \subset E$, $\overline{c}X$ stands for the closed convex hull of X. We put, for short, $B = B_\varepsilon(0, 1)$ and $\overline{B} = \overline{B}_\varepsilon(0, 1)$.

We set

$$\mathcal{G}(E) = \{X \subset E \mid X \text{ is nonempty, convex, closed, bounded}\}.$$

In the sequel, we suppose the space $\mathcal{G}(E)$ to be endowed with the Hausdorff distance h. As is well known, under such metric, $\mathcal{G}(E)$ is complete.

In this note we consider problems of minimization, $\min(A, X)$, and of maximization, $\max(A, X)$, where $A \in \mathcal{B}(E)$, $X \in \mathcal{G}(E)$, and E is uniformly convex. More precisely, for a fixed $A \in \mathcal{B}(E)$, set $\mathcal{G}_A(E) = \{X \in \mathcal{G}(E) \mid \lambda_{AX} > 0\}$. Then, it is proved (Theorem 3.3) that the set of all $X \in \mathcal{G}_A(E)$, such that the minimization problem $\min(A, X)$ is well posed, is a dense G_δ-subset of $\mathcal{G}_A(E)$. Furthermore, it is shown (Theorem 4.3) that the set of all $X \in \mathcal{G}(E)$, such that the maximization problem $\max(A, X)$ is well posed, is a dense G_δ-subset of $\mathcal{G}(E)$.

The problems considered in this note are in the spirit of Stečkin [22]. Some further developments of Stečkin's ideas, also in other directions, can be found in [4–6, 12, 14–21] and in the monograph [10], by Dontchev and Zolezzi. Recently, a generic theorem on points of single valuedness of the proximity map for convex sets has been established by Beer and Pai [3], in a setting different from ours. Some other generic results in spaces of convex sets can be found in [2, 8].

2. Auxiliary Results

Let $X \in \mathcal{B}(E)$ and $z \in E$ be arbitrary. We set

$$d(z, X) = \inf \{\|z - x\| \mid x \in X\},$$

$$e(z, X) = \sup \{\|z - x\| \mid x \in X\}.$$
For $X, Y \in \mathcal{B}(E)$ and $\sigma > 0$, we set

$$L_{X,Y}(\sigma) = \{ x \in X \mid d(x, Y) \leq \lambda_{X,Y} + \sigma \},$$

$$M_{X,Y}(\sigma) = \{ x \in X \mid e(x, Y) \geq \mu_{X,Y} - \sigma \}.$$

The sets $L_{X,Y}(\sigma), M_{X,Y}(\sigma)$ are nonempty, closed, and satisfy $L_{X,Y}(\sigma) \subseteq L_{X,Y}(\sigma'), M_{X,Y}(\sigma) \subseteq M_{X,Y}(\sigma')$, if $0 < \sigma < \sigma'$.

Proposition 2.1. Let $X, Y \in \mathcal{B}(E)$ and $z \in E$ be arbitrary. Then we have

$$\lambda_{X,Y} \leq d(z, X) + d(z, Y), \quad (2.1)$$

$$\mu_{X,Y} \geq e(z, Y) - d(z, X). \quad (2.2)$$

Proof. Both inequalities follow easily from the definitions.

Proposition 2.2. Let $X, Y \in \mathcal{B}(E)$ be arbitrary. Then the problem

$$\min(X, Y) \quad \text{(resp. } \max(X, Y) \text{)}$$

is well posed if and only if

$$\inf_{\sigma > 0} \text{diam } L_{X,Y}(\sigma) = 0 \quad \text{and} \quad \inf_{\sigma > 0} \text{diam } L_{Y,X}(\sigma) = 0$$

(resp. $\inf_{\sigma > 0} \text{diam } M_{X,Y}(\sigma) = 0 \quad \text{and} \quad \inf_{\sigma > 0} \text{diam } M_{Y,X}(\sigma) = 0$).

Proof. This is an easy adaptation of an argument due to Furi and Vignoli [13].

The following proposition is a variant of a result due to Zabreiko and Krasnošel’skiĭ [23] and Daneš [7] (see also [8]).

Proposition 2.3. Let $X \in \mathcal{C}(E), \varepsilon > 0$, and $r > 0$ be arbitrary. Then there exists $0 < \tau_0 < r$ such that for every $x \in E$, with $d(u, X) > r$, and for every $0 < r < \tau$, we have

$$\text{diam } C_{X,u}(\tau) < \varepsilon,$$

where

$$C_{X,u}(\tau) = [\overline{C}(X \cup \{ u \}) \setminus [X + (d(u, X) - \tau)B]]. \quad (2.3)$$

Proposition 2.4. Let E be a uniformly convex Banach space. Let $\varepsilon > 0$ and let $r_0, r > 0$, with $r < r_0$, be arbitrary. Then there exists $0 < \sigma_0 < r$ such that for every $x, y \in E$, with $\| y - x \| = r$, and for every $r < r' \leq r_0$ and $0 < \sigma \leq \sigma_0$, we have

$$\text{diam } D(x, y; r', \sigma) < \varepsilon,$$
where
\[D(x, y; r', \sigma) = \bar{B}_x(\bar{y}, r' - \|y-x\| + \sigma) \setminus B_x(x, r'). \]

Proof. Let \(\varepsilon > 0 \) and \(0 < r < r_0 \) be given. Let \(x, y \in \mathcal{E} \) satisfy \(\|y-x\| = r \). Let \(r < r' \leq r_0 \) be arbitrary and let \(y' = (x + y)/2 \). We have \(D(x, y; r', \sigma) \subseteq D(x, y; r', \sigma), \sigma > 0 \). Moreover, by [9, Lemma 2.1], if \(0 < \sigma \leq 2 \|y' - x\| \), we have
\[
\text{diam } D(x, y'; r', \sigma) \leq 2\sigma + 2(r' - \|y' - x\|) \delta^*(\frac{\sigma}{2 \|y' - x\|})
\]
\[
\leq 2\sigma + (2r_0 - r) \delta^*(\frac{\sigma}{r}),
\]
where, for \(\eta > 0 \), \(\delta^*(\eta) = \sup\{\varepsilon : 0 < \varepsilon \leq 2 \text{ and } \delta(\varepsilon) \leq \eta\} \) and \(\delta \) denotes the modulus of convexity of \(\mathcal{E} \). Since the last term in the above inequality vanishes as \(\sigma \to 0 \), to complete the proof it suffices to choose \(\sigma_0 > 0 \) such that \(2\sigma_0 + (2r_0 - r) \delta^*(\sigma_0/r) < \varepsilon \).

3. **MINIMIZATION PROBLEMS**

In this section \(\mathcal{E} \) denotes a uniformly convex Banach space. Let \(A \) be a fixed nonempty closed bounded subset of \(\mathcal{E} \). We put, for short, \(\lambda_X = \lambda_{AX}, \quad X \in \mathcal{A}(\mathcal{E}). \) Define
\[
\mathcal{C}_A(\mathcal{E}) = \{X \in \mathcal{A}(\mathcal{E}) | \lambda_X > 0\}.
\]
Under the Hausdorff distance, \(\mathcal{C}_A(\mathcal{E}) \) is a complete metric space.

For each \(k \in \mathbb{N} \) set \(\varepsilon_k = 1/k \), and define
\[
\mathcal{L}_k = \{X \in \mathcal{C}_A(\mathcal{E}) | \inf_{\delta > 0} \text{diam } L_{XA}(\delta) < \varepsilon_k \text{ and } \inf_{\delta > 0} \text{diam } L_{AX}(\delta) < \varepsilon_k\}.
\]

To prove the main result of this section, Theorem 3.3, we state two lemmas, whose proofs will be given later.

Lemma 3.1. \(\mathcal{L}_k \) is dense in \(\mathcal{C}_A(\mathcal{E}) \).

Lemma 3.2. \(\mathcal{L}_k \) is open in \(\mathcal{C}_A(\mathcal{E}) \).

Theorem 3.3. Let \(\mathcal{E} \) be a uniformly convex Banach space. Let \(A \in \mathcal{A}(\mathcal{E}) \). Then the set
\[
\mathcal{V} = \{X \in \mathcal{C}_A(\mathcal{E}) | \min(A, X) \text{ is well posed}\}
\]
is a dense \(G_\delta \)-subset of \(\mathcal{C}_A(\mathcal{E}) \).
Proof. By Lemmas 3.1 and 3.2, the set
\[L_0 = \bigcap_{k \in \mathbb{N}} L_k \]
is a dense \(G_\delta \)-subset of \(\mathcal{E}(E) \). Moreover, by Proposition 2.2, we have \(\mathcal{V} = L_0 \). Hence \(\mathcal{V} \) is a dense \(G_\delta \)-subset of \(\mathcal{E}(E) \), completing the proof.

Remark 3.4. If \(A = B \) and \(X_0 = \frac{1}{2} \), then for each \(X \in B_{\mathcal{E}(E)}(X_0, \frac{1}{2}) \) the minimization problem \(\min(A, X) \) is not well posed. This shows that Theorem 3.3 does not hold, in general, if the space \(\mathcal{E}(E) \) is replaced by \(\mathcal{E}(R) \).

Set \(\mathcal{E}_0(E) = \{ X \in \mathcal{E}(E) \mid \lambda_X > 0 \} \) and observe that \(\mathcal{E}_0(E) \) is a Baire space, being completely metrizable by Alexandroff's theorem. Then Theorem 3.3 remains valid with \(\mathcal{E}_0(E) \), in the place of \(\mathcal{E}(E) \).

Remark 3.5. For \(A \in \mathcal{B}(E) \), set \(\mathcal{D}_A(E) = \{ X \in \mathcal{E}(E) \mid X \subset E \setminus A \} \). The space \(\mathcal{D}_A(E) \) endowed with the Hausdorff metric is complete and, clearly, \(\mathcal{E}_A(E) \subset \mathcal{D}_A(E) \). Also in the space \(\mathcal{D}_A(E) \) Theorem 3.3 is, in general, false. To see that, set \(A = Q \setminus C \), where \(Q = \{ (x, y) \in \mathbb{R}^2 \mid 0 \leq x \leq 3\pi, -1 \leq y \leq 1 \} \) and \(C = \{ (x, y) \in \mathbb{R}^2 \mid 0 \leq x \leq 3\pi, -|\sin x| \leq y \leq |\sin x| \} \), and let \(X_0 = \{ (x, 0) \in \mathbb{R}^2 \mid \pi/2 \leq x \leq 5\pi/2 \} \). Clearly, \(X_0 \in \mathcal{D}_A(E) \). Moreover, if \(r > 0 \) is sufficiently small, for every \(X \in B_{\mathcal{D}_A(E)}(X_0, r) \) the minimization problem \(\min(A, X) \) is not well posed.

Remark 3.6. Theorem 3.3 remains valid if \(A \) is a nonempty closed subset of \(E \), \(A \neq \emptyset \). In this case, Theorem 3.3 is a multivalued version of a theorem due to Steckin [22]. If \(E \) is an arbitrary Banach space, then Theorem 3.3 is, in general, not true. Take, for example, \(E = \mathbb{R}^2 \) with the norm \(\max \{ |x|, |y| \} \), \((x, y) \in \mathbb{R}^2 \), and set \(A = \overline{B} \), \(X_0 = \{ (0, 2) \} \). Then there exists \(r > 0 \) such that, for every \(X \in B_{\mathcal{E}_A(E)}(X_0, r) \), the minimization problem \(\min(A, X) \) is not well posed.

Proof of Lemma 3.1. Let \(X \in \mathcal{E}_A(E) \) and let \(r > 0 \). We want to show that there exists \(Y \in L_k \) such that \(h(Y, X) \leq r \). Without loss of generality we suppose \(\lambda_X > 0 \) and \(0 < r < \lambda_X \).

By Proposition 2.4, there exists \(0 < \sigma_0 < r \) such that for every \(x, y \in E \) with \(\|x - y\| = r \), and for every \(0 < \sigma \leq \sigma_0 \), we have
\[
\text{diam } D(x, y; \lambda_X, \sigma) < \sigma_k ,
\]
where
\[
D(x, y; \lambda_X, \sigma) = \overline{B}_E(y, \lambda_X - \|y - x\| + \sigma) \setminus B_E(x, \lambda_X).
\]
Set
\[\sigma = \min\{\sigma_0, \kappa \}. \tag{3.2} \]

By Proposition 2.3, there exists \(0 < \tau_0 < r/2 \) such that for every \(u \in \mathbb{E} \) with \(d(u, X) \geq r/2 \), and for every \(0 < \tau \leq \tau_0 \), we have
\[\text{diam } C_{X,u}(\tau) < \frac{\sigma}{2}, \tag{3.3} \]
where \(C_{X,u}(\tau) \) is given by (2.3). Set
\[\tau = \min \left\{ \tau_0, \frac{\sigma}{2} \right\}. \tag{3.4} \]

Now, pick \(\tilde{x} \in X \) and \(\tilde{a} \in A \) such that
\[\|\tilde{x} - \tilde{a}\| \leq \lambda_X + \frac{\tau}{2}. \tag{3.5} \]
Since \(\|\tilde{x} - \tilde{a}\| \geq \lambda_X > r \), in the interval with end points \(\tilde{x} \) and \(\tilde{a} \) there is a point \(u \), say, such that
\[\|\tilde{x} - u\| = r. \tag{3.6} \]
Define \(Y = \overline{d}(X \cup \{u\}) \). Since \(Y \subset \overline{X + rB} \) and \(A \cap (X + \lambda_X B) = \emptyset \), we have \(\lambda_Y \geq \lambda_X - r > 0 \), and so \(Y \in \mathcal{G}_k(\mathbb{E}) \). Clearly \(h(Y, X) \leq r \). Thus, to complete the proof, it suffices to show that \(Y \in \mathcal{L}_k \).

To this end, we start by proving the following inequalities:
\[\lambda_Y \leq \lambda_X + \frac{\tau}{2} - r, \tag{3.7} \]
\[\frac{r}{2} < d(u, X) \leq r. \tag{3.8} \]

Indeed, by virtue of (3.5) and (3.6), we have
\[\|u - \tilde{a}\| = \|\tilde{x} - \tilde{a}\| - \|\tilde{x} - u\| \leq \lambda_X + \frac{\tau}{2} - r, \tag{3.9} \]
from which (3.7) follows, since \(u \in Y \) and \(\tilde{a} \in A \). Furthermore, by virtue of (2.1) and (3.9), we have
\[d(u, X) \geq \lambda_X - d(u, A) \geq \lambda_X - \left(\lambda_X + \frac{\tau}{2} - r \right) = r - \frac{\tau}{2}. \]
and thus \(d(u, X) > r/2 \), for \(\bar{\tau} \leq \tau_0 < r/2 \). Since the right inequality in (3.8) is trivially satisfied, the proof of (3.8) is complete.

Claim 1. We have

\[
L_{Y,A} \left(\frac{\bar{\tau}}{2} \right) \subseteq C_{X,u}(\bar{\tau}). \tag{3.10}
\]

Indeed, suppose (3.10) not true, and let \(y \in L_{Y,A}(\bar{\tau}/2) \setminus C_{X,u}(\bar{\tau}) \) be arbitrary. We have

\[
\lambda_X \leq d(y, \Lambda) + d(y, X) \tag{by (2.1)}
\]

\[
\leq \lambda_y + \frac{\bar{\tau}}{2} + d(y, X) \tag{as \(y \in L_{Y,A}(\bar{\tau}/2) \)}
\]

\[
< \lambda_y + \frac{\bar{\tau}}{2} + d(u, X) - \bar{\tau} \tag{as \(y \notin C_{X,u}(\bar{\tau}) \)}
\]

\[
< \left(\lambda_X + \frac{\bar{\tau}}{2} - r \right) + \frac{\bar{\tau}}{2} + r - \bar{\tau} \tag{by (3.7) and (3.8)}
\]

\[
= \lambda_X.
\]

From the contradiction, (3.10) follows and Claim 1 is proved.

Claim 2. We have

\[
L_{A,Y} \left(\frac{\bar{\tau}}{4} \right) \subseteq D(\bar{x}, u; \lambda_X, \bar{\sigma}). \tag{3.11}
\]

Indeed, let \(a \in L_{A,Y}(\bar{\tau}/4) \) be arbitrary. Evidently, \(a \in \Lambda \) and \(d(a, Y) \leq \lambda_Y + \bar{\tau}/4 \). Now, pick \(y \in Y \) such that \(\|a - y\| \leq \lambda_Y + \bar{\tau}/2 \). This and (3.7) imply

\[
\|a - y\| \leq \lambda_X - r + \bar{\tau}, \tag{3.12}
\]

and thus

\[
d(y, \Lambda) \leq \lambda_X - r + \bar{\tau}. \tag{3.13}
\]

By virtue of (2.1), (3.13), and (3.8), we have

\[
d(y, X) \geq \lambda_X - d(y, \Lambda) \geq \lambda_X - (\lambda_X - r + \bar{\tau}) \geq d(u, X) - \bar{\tau},
\]

which shows that \(y \in C_{X,u}(\bar{\tau}) \). From (3.8) and (3.4), \(d(u, X) > r/2 \) and \(\bar{\tau} \leq \tau_0 \). Thus (3.3) gives \(\text{diam } C_{X,u}(\bar{\tau}) < \bar{\sigma}/2 \), and so

\[
\|y - u\| < \frac{\bar{\sigma}}{2}. \tag{3.14}
\]
Now we have
\[\|a - u\| \leq \|a - y\| + \|y - u\| \]
\[< (\lambda_x - r + \delta) + \frac{\delta}{2} \quad \text{(by (3.12), (3.14))} \]
\[\leq \lambda_x - \|\tilde{x} - u\| + \delta \quad \text{(by (3.6), (3.4)),} \]
which shows that \(a \in \tilde{B}_e(u, \lambda_x - \|\tilde{x} - u\| + \delta) \). Clearly \(\|a - \tilde{x}\| \geq \lambda_x \), that is, \(a \notin \tilde{B}_e(\tilde{x}, \lambda_x) \). Hence \(a \in D(\tilde{x}, u; \lambda_x, \delta) \). As \(a \in L_{\sigma Y}(\delta/4) \) is arbitrary, (3.11) is proved, completing the proof of Claim 2.

As \(\text{diam } C_{X,u}(\tilde{r}) < \delta/2 \) and, by (3.2), \(\delta \leq \varepsilon_k \), from Claim 1 we have
\[\text{diam } L_{\lambda Y} \left(\frac{\tilde{r}}{2} \right) < \varepsilon_k. \quad (3.15) \]

Furthermore, from (3.6) and (3.2), \(\|\tilde{x} - u\| = r \) and \(\tilde{\delta} \leq \sigma_0 \). Thus (3.1) gives \(\text{diam } D(\tilde{x}, u; \lambda_x, \tilde{\delta}) < \varepsilon_k \). Hence, by Claim 2, we have
\[\text{diam } L_{\Lambda Y} \left(\frac{\tilde{r}}{4} \right) < \varepsilon_k. \quad (3.16) \]

From (3.15) and (3.16), it follows that \(Y \in \mathcal{L}_k \), which completes the proof of Lemma 3.1.

Proof of Lemma 3.2. Indeed, let \(X \in \mathcal{L}_k \) be arbitrary. Let \(\eta > 0 \) be such that
\[\theta + 2\eta < \varepsilon_k, \quad \text{where} \quad \theta = \min \{ \inf_{\sigma > 0} \text{diam } L_{X\sigma}(\sigma), \inf_{\sigma > 0} \text{diam } L_{\Lambda X}(\sigma) \}. \quad (3.17) \]

Furthermore, let \(\sigma_1 > 0 \) be such that
\[\text{diam } L_{X\sigma}(\sigma_1) < \theta + \eta, \quad \text{diam } L_{\Lambda X}(\sigma_1) < \theta + \eta. \quad (3.18) \]

Fix \(\sigma_2, 0 < \sigma_2 < \sigma_1 \), and set
\[\delta = \min \left\{ \frac{\sigma_1 - \sigma_2}{2}, \frac{\eta}{2} \right\}. \quad (3.19) \]

We claim that \(B_{\sigma_2 E}(X, \delta) \subseteq \mathcal{L}_k \). To prove that, let \(Y \in B_{\sigma_2 E}(X, \delta) \) be
arbitrary. Let \(y \in L_{Y \Delta}(\sigma_2) \) be arbitrary. As \(h(Y, X) < \delta \), there exists an \(x \in X \) such that \(\|y - x\| < \delta \). We have

\[
d(x, A) < d(y, A) + \delta \\
\leq \lambda_Y + \sigma_2 + \delta \quad \text{(as } y \in L_{Y \Delta}(\sigma_2))
\]

\[
< (\lambda_X + \delta) + \sigma_2 + \delta \quad \text{(as } h(Y, X) < \delta)
\]

\[
\leq \lambda_X + \sigma_1 \quad \text{(by (3.19))},
\]

and so \(x \in L_{X \Delta}(\sigma_1) \). Hence \(y = x + (y - x) \in L_{X \Delta}(\sigma_1) + \delta B \), from which, since \(y \) is arbitrary in \(L_{Y \Delta}(\sigma_2) \), we have \(L_{Y \Delta}(\sigma_2) \subseteq L_{X \Delta}(\sigma_1) + \delta B \). From this, by virtue of (3.18), (3.19), and (3.17), we have

\[
diam L_{Y \Delta}(\sigma_2) \leq diam L_{X \Delta}(\sigma_1) + 2\delta < \theta + 2\eta < \varepsilon_k. \quad (3.20)
\]

Now, let \(a \in L_{A \Delta}(\sigma_2) \) be arbitrary. We have \(d(a, X) \leq d(a, Y) + h(Y, X) \). From this, it follows that

\[
d(a, X) < d(a, Y) + \delta \\
\leq (\lambda_Y + \sigma_2 + \delta) \quad \text{(as } a \in L_{A \Delta}(\sigma_2))
\]

\[
< (\lambda_X + \delta) + \sigma_2 + \delta \quad \text{(as } h(Y, X) < \delta)
\]

\[
\leq \lambda_X + \sigma_1 \quad \text{(by (3.19))},
\]

which shows that \(a \in L_{A \Delta}(\sigma_1) \). As \(a \in L_{A \Delta}(\sigma_2) \) is arbitrary, we have \(L_{A \Delta}(\sigma_2) \subseteq L_{A \Delta}(\sigma_1) \). From this, by virtue of (3.18) and (3.17), we have

\[
diam L_{A \Delta}(\sigma_2) \leq diam L_{A \Delta}(\sigma_1) < \theta + \eta < \varepsilon_k. \quad (3.21)
\]

From (3.20) and (3.21) it follows that \(Y \in \mathcal{L}_k \). As \(Y \in B_{\varepsilon, \delta}(X, \delta) \) is arbitrary, the proof of Lemma 3.2 is complete.

4. Maximization Problems

Also in this section \(\mathcal{E} \) denotes a uniformly convex Banach space. Let \(A \) be a fixed nonempty closed bounded subset of \(\mathcal{E} \). We put, for short, \(\mu_X = \mu_{A \Delta}, X \in \mathcal{B}(\mathcal{E}) \).

For each \(k \in \mathbb{N} \), set \(\varepsilon_k = 1/k \), and define

\[M_k = \{ X \in \mathcal{B}(\mathcal{E}) \mid \inf_{\sigma > 0} \text{diam } M_{X \Delta}(\sigma) < \varepsilon_k \} \quad \text{and} \quad \inf_{\sigma > 0} \text{diam } M_{A \Delta}(\sigma) < \varepsilon_k \}. \]

To prove the main result of this section, Theorem 4.3, we state two lemmas whose proofs will be given later.
Lemma 4.1. \(\mathcal{M}_k \) is dense in \(C(\mathcal{E}) \).

Lemma 4.2. \(\mathcal{M}_k \) is open in \(C(\mathcal{E}) \).

Theorem 4.3. Let \(\mathcal{E} \) be a uniformly convex Banach space. Let \(A \in \mathcal{B}(\mathcal{E}) \). Then the set
\[
\mathcal{V}^* = \{ X \in C(\mathcal{E}) \mid \max(A, X) \text{ is well posed} \}
\]
is a dense \(G_\delta \)-subset of \(C(\mathcal{E}) \).

Proof. By Lemmas 4.1 and 4.2, the set
\[
\mathcal{M}_0 = \bigcap_{k \in \mathbb{N}} \mathcal{M}_k
\]
is a dense \(G_\delta \)-subset of \(C(\mathcal{E}) \). Moreover, by Proposition 2.2, we have \(\mathcal{V} = \mathcal{M}_0 \). Hence \(\mathcal{V} \) is a dense \(G_\delta \)-subset of \(C(\mathcal{E}) \), completing the proof.

Remark 4.4. Theorem 4.3 is a multivalued version of results due to Asplund [1] and Edelstein [11]. Note also that with the notation of the example given in Remark 3.6, there exists \(r > 0 \) such that, for every \(X \in B_{\mathcal{E}}(X_0, r) \), the maximization problem \(\max(A, X) \) is not well posed. This shows that, if \(\mathcal{E} \) is an arbitrary Banach space, then Theorem 4.3 is, in general, not true.

Proof of Lemma 4.1. Let \(X \in C(\mathcal{E}) \) and let \(r > 0 \). We want to show that there exists \(Y \in \mathcal{M}_k \) such that \(h(Y, X) < r \). The case \(\mu_y - 0 \) is trivial. Thus, without loss of generality, we suppose \(\mu_y > 0 \) and take \(r \) such that \(0 < r < \mu_y \).

By Proposition 2.4, there exists \(0 < \sigma_0 < r \) such that for every \(x, y \in \mathbb{E} \), with \(\| y - x \| = r \), and for every \(0 < \sigma \leq \sigma_0 \), we have
\[
\text{diam } D(x, y; \mu_x + \| y - x \| - \sigma, \sigma) < \varepsilon_k, \tag{4.1}
\]
where
\[
D(x, y; \mu_x + \| y - x \| - \sigma, \sigma) = \bar{B}_\varepsilon(y, \mu_x) \setminus \bar{B}_\varepsilon(x, \mu_x + \| y - x \| - \sigma).
\]
Set
\[
\tilde{\sigma} = \min\{\sigma_0, \varepsilon_k\}. \tag{4.2}
\]
By Proposition 2.3, there exists \(0 < \tau_0 < r/2 \) such that for every \(u \in \mathbb{E} \), with \(d(u, X) \geq r/2 \), and for every \(0 < \tau \leq \tau_0 \), we have
\[
\text{diam } C_{X,u}(\tau) < \frac{\tilde{\sigma}}{2}, \tag{4.3}
\]
where $C_{X,u}(\tau)$ is given by (2.3). Set

$$\tau = \min \left\{ \tau_0, \frac{\sigma}{2} \right\}.$$ \hfill (4.4)

Now, pick $\tilde{x} \in X$ and $\tilde{a} \in A$ such that $\|\tilde{x} - \tilde{a}\| \geq \mu_X - \bar{\tau}/4$, and observe that $\tilde{x} \neq \tilde{a}$, for $\mu_X > r > \sigma_0 \geq \sigma > \bar{\tau}$. Set

$$u = \tilde{x} + r \frac{\tilde{x} - \tilde{a}}{\|\tilde{x} - \tilde{a}\|}, \quad Y = \overline{cO}(X \cup \{u\}).$$

Clearly $Y \in \mathcal{S}(\mathbb{E})$, and $h(Y, X) \leq r$. Thus, to complete the proof it suffices to show that $Y \in \mathcal{M}_k$.

To this end, we start by proving the following inequalities:

$$\mu_Y \geq \mu_X + r - \frac{\tau}{4}, \tag{4.5}$$

$$d(u, X) \geq r - \frac{\tau}{4}. \tag{4.6}$$

Indeed, $\|u - \tilde{a}\| = \|u - \tilde{x}\| + \|\tilde{x} - \tilde{a}\| \geq r + (\mu_X - \bar{\tau}/4)$, from which (4.5) follows, for $u \in Y$ and $\tilde{a} \in A$. Furthermore, from (2.2) we have

$$d(u, X) \geq e(u, A) - \mu_X \geq \left(\mu_X + r - \frac{\tau}{4} \right) - \mu_X = r - \frac{\tau}{4},$$

for $e(u, A) \geq \mu_X + r - \bar{\tau}/4$, and so also (4.6) is proved.

Claim 1. We have

$$M_{Y_A} \left(\frac{\bar{\tau}}{2} \right) \subset C_{X,u}(\bar{\tau}). \tag{4.7}$$

Indeed, suppose (4.7) false, and let $y \in M_{Y_A}(\bar{\tau}/2) \setminus C_{X,u}(\bar{\tau})$ be arbitrary. From the definition of $M_{Y_A}(\bar{\tau}/2)$ and from (4.5), we have

$$e(y, A) \geq \mu_Y - \frac{\bar{\tau}}{2} \geq \mu_X + r - \frac{3}{4} \bar{\tau}. \tag{4.8}$$

On the other hand, we have

$$e(y, A) \leq \mu_X + d(y, Y) \tag{by (2.2)}$$

$$< \mu_X + (d(u, X) - \bar{\tau}) \quad \text{as } y \in Y \setminus C_{X,u}(\bar{\tau}))$$

$$\leq \mu_X + r - \bar{\tau} \quad \text{as } d(u, X) \leq r).$$

Since the latter inequality contradicts (4.8), Claim 1 is true.
Claim 2. We have

\[M_{\gamma Y}(\frac{\tilde{\gamma}}{4}) \subseteq D(u, \tilde{x}; \mu_X + \|\tilde{x} - u\| - \hat{\sigma}, \hat{\sigma}). \]
(4.9)

Indeed, let \(a \in M_{\gamma Y}(\frac{\tilde{\gamma}}{4}) \) be arbitrary. As \(e(a, Y) \geq \mu_Y - \frac{\tilde{\gamma}}{4} \), there exists \(y \in Y \) such that

\[\|y - a\| \geq \mu_Y - \frac{\tilde{\gamma}}{2}. \]
(4.10)

By (2.2) we have \(d(y, X) \geq e(y, A) - \mu_X \), from which, by using (4.10) and (4.52), we get

\[d(y, X) \geq \left(\mu_Y - \frac{\tilde{\gamma}}{2} \right) - \mu_Y \geq \left(\mu_X + \frac{r - \tilde{\gamma}}{4} \right) - \frac{\tilde{\gamma}}{2} - \mu_X > r - \frac{\tilde{\gamma}}{2}. \]

From this, since \(r \geq d(u, X) \), we have \(d(y, X) > d(u, X) - \frac{\tilde{\gamma}}{2} \), and so \(y \in C_{X, u}(\tilde{\gamma}) \). From (4.4) and (4.6) we have \(\tilde{\gamma} \leq \tau_0 \) and \(d(u, X) > r/2 \). But, by (4.3), \(\text{diam} \ C_{X, u}(\tilde{\gamma}) < \hat{\sigma}/2 \), which implies

\[\|y - u\| < \frac{\hat{\sigma}}{2}. \]
(4.11)

Now, we have

\[\|a - u\| \geq \|a - y\| - \|y - u\| \]
\[> \left(\mu_Y - \frac{\tilde{\gamma}}{2} \right) - \frac{\hat{\sigma}}{2} \]
(by (4.10) and (4.11))
\[\geq \left(\mu_X + \frac{r - \tilde{\gamma}}{4} \right) - \frac{\tilde{\gamma}}{2} - \frac{\hat{\sigma}}{2} \]
(by (4.5))
\[> \mu_X + r - \frac{\hat{\sigma}}{2} \]
(by (4.4)).

Hence \(a \notin B_L(u, \mu_X + \|\tilde{x} - u\| - \hat{\sigma}) \), for \(\|\tilde{x} - u\| = r \). Clearly, \(a \in \tilde{B}_L(\tilde{x}, \mu_x) \).

Hence \(a \in D(u, \tilde{x}; \mu_X + \|\tilde{x} - u\| - \hat{\sigma}, \hat{\sigma}) \). As \(a \in M_{\gamma Y}(\frac{\tilde{\gamma}}{4}) \) is arbitrary, (4.9) is proved, completing the proof of Claim 2.

As \(\text{diam} \ C_{X, u}(\tilde{\gamma}) < \hat{\sigma}/2 \) and, by (4.2), \(\hat{\sigma} \leq \epsilon_k \), Claim 1 gives

\[\text{diam} \ M_{\gamma A}(\frac{\tilde{\gamma}}{2}) < \epsilon_k. \]
(4.12)
Furthermore, from (4.1) we have $\text{diam} \, D(u, \tilde{x}; \mu_{r} + \| \tilde{x} - u \| - \tilde{\sigma}, \tilde{\sigma}) < \varepsilon_{k}$, since $\| \tilde{x} - u \| = r$ and, by (4.2), $\tilde{\sigma} \leq \sigma_{0}$. Hence, by Claim 2,

$$\text{diam} \, M_{A^{2}} \left(\frac{\tilde{x}}{4} \right) < \varepsilon_{k}.$$

From (4.12) and the latter inequality it follows that $Y \in M_{k}$, which completes the proof of Lemma 4.1.

Proof of Lemma 4.2. This is similar to the proof of Lemma 3.2, and so it is omitted.

References

