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Abstract

The conservation of continuous symmetries in two-dimensional systems with interaction is a

classical subject of statistical mechanics. So far, all results of this sort required some

smoothness properties of the interaction. Only recently Ioffe et al. (Comm. Math. Phys. 226

(2002) 433) succeeded to treat the case of lattice systems with continuous, rather than smooth,

interaction. Here we establish a similar result for Gibbsian systems of point particles with

internal degrees of freedom.
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1. Introduction

Gibbsian processes were introduced by Dobrushin (see [1,2]), Lanford and Ruelle
(see [10]) as a model for equilibrium states in statistical physics. (For general results
on Gibbs measures on a d-dimensional lattice we refer to the detailed book of
Georgii [5], which covers a wide range of phenomena.) The first results concerned
existence and uniqueness of Gibbs measures and the structure of the set of Gibbs
measures related to a given potential. The question of uniqueness is of special
see front matter r 2004 Elsevier B.V. All rights reserved.
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importance, as the nonuniqueness of Gibbs measures can be interpreted as a certain
type of phase transition occurring within the particle system. A phase transition
occurs whenever a symmetry of the potential is broken, so it is natural to ask, under
which conditions symmetries are broken or conserved. The answer to this question
depends on the type of the symmetry (discrete or continuous), the number of spatial
dimensions and smoothness and decay conditions on the potential (see [5, Chapters
6.2, 8, 9 and 20]). It turns out that the case of continuous symmetries in two
dimensions is especially interesting. The first progress in this case was achieved by
Mermin and Wagner, who showed for special two-dimensional lattice models that
symmetries are conserved [12,13]). In [3] Dobrushin and Shlosman established
conservation of symmetries for more general potentials which satisfy smoothness
and decay conditions, and Pfister improved this result in [14]. The case of marked
point particles in the continuum was considered by Shlosman [16], Fröhlich and
Pfister [4] and Georgii [6]. All these results rely on the smoothness of the interaction,
and only recently Ioffe et al. showed that mere continuity suffices in the lattice model
[9] using a perturbation expansion and percolation theory.
Our aim is to generalise the last result from a lattice to a continuous model. Using

superstability techniques and percolation arguments, we will show how to combine ideas
of Pfister [14], Fröhlich and Pfister [4] and Ioffe et al. [9] in order to obtain this result.
In Section 2 we will describe the situation considered and state the result obtained.

The precise setting is then given in Section 3. In Section 4 a proof of a special case of
the result is given. The proofs of all lemmas are relegated to Section 5, and in Section
6 we will show how to deal with the general case.
2. The result

We consider infinitely many particles in the plane, where a particle has a position
in R2 and internal degrees of freedom. These can be modeled by assigning to the
particle a value from some measurable spin space (or mark space) S. The particles
may interact via a pair potential U. So U is a measurable function

U : ðR2 � SÞ2! R̄ :¼R [ fþ1g;

such that Uðy1; y2Þ ¼ Uðy2; y1Þ for all ðy1; y2Þ 2 D; i.e. U is symmetric. Here we
assume U to be of the form

Uðx1;s1; x2; s2Þ ¼ Jðx1 � x2Þ ~Uðs1; s2Þ þ Kðx1 � x2Þ; (2.1)

such that the functions ~U : S2! R; J : R2! R and K : R2! R̄ are measurable
and symmetric, and J is c-dominated, i.e.

jJðxÞjð1þ kxk2ÞpcðkxkÞ 8x 2 R2;

where c : Rþ :¼ ½0;1½ ! Rþ is a given decreasing function such thatZ 1
0

cðrÞrdr :¼cso1:
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We will call a potential U of the above form (2.1) a c-dominated potential
corresponding to J;K ; ~U :
Since K may take the value þ1 we need not restrict ourselves to the case of

bounded or finite potentials, but are also able to consider hardcore potentials and
potentials with a singularity at 0, which are the more interesting cases.
We are only interested in the equilibrium states of a thermodynamical system as

described above, and as a model for these we take the concept of Gibbs measures.
Supposing that the given potential has some internal symmetry, we would like to
know whether the possible equilibrium states inherit this symmetry necessarily. For
example, considering a potential which does not change under rotation of spins,
under what conditions are the equilibrium states invariant under spin rotation? Here
we are concerned with continuous symmetries only, so that we can model the
symmetries by a Lie-group G acting on the spin space S. Our result is then the
following:

Theorem 1. Let ðS;BðSÞ; lSÞ be a probability space such that S is a compact

topological space and BðSÞ its Borel-s-algebra. Let G be a compact connected Lie-

group operating on S such that the operation is continuous and the reference measure lS

is G-invariant. Let U be a superstable, lower regular, c-dominated potential

corresponding to J;K ; ~U such that ~U is continuous and G-invariant. Then every

tempered Gibbs measure corresponding to U is G-invariant.

The exact definitions of the objects and properties in the formulation of the above
theorem will be given in the next section.
3. The setting

3.1. Configurations of particles

We consider the plane R2 with maximum norm k:k: Let

Lt :¼ ½�t; t½2 for t 2 Rþ and Cr :¼ rþ �1
2
; 1
2

� �2
for r 2 Z2

be subsets of R2: On R2 let B2 be the Borel-s-algebra, and B2
b � B2 the set of all

bounded Borel sets. The Lebesgue measure on ðR2;B2Þ will be denoted by l2:
For describing the marks or spins of the particles let S be a topological space,BðSÞ

the Borel-s-algebra on S and lS a normed reference measure on ðS;BðSÞÞ: As lS is
the only measure to be considered on ðS;BðSÞÞ; we will simply write ds :¼dlSðsÞ
when integrating with respect to lS:
A configuration Y of marked particles is described by a subset of R2 � S which is

locally finite, in that jY \ ðL� SÞjo1 for all L 2 B2
b; and simple, in that for all

ðx1; s1Þaðx2;s2Þ 2 Y we have x1ax2: The configuration space Y is defined to be the
set of all locally finite and simple subsets of R2 � S: A configuration Y 2 Y is said to
be finite if jY jo1: Given a particle y 2 R2 � S; we want to consider the position
yo 2 R2 and the spin sy 2 S of the particle, and given a configuration Y 2 Y let
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Y o :¼fx 2 R2 : 9 s 2 S : ðx; sÞ 2 Y g: For Y 2 Y and x 2 R2 such that ðx; sÞ 2 Y let
sxðY Þ :¼s and sx :¼sxðY Þ if it is clear which configuration is to be considered.
For Y 2 Y;L 2 B2;B 2 BðSÞ let YL;B :¼Y \ ðL� BÞ and YL :¼YL;S the restric-

tion of Y to L� S and L respectively, YL :¼fY 2 Y : Y � L� Sg the set of all
configurations in L; NL;BðY Þ :¼jYL;Bj the number of particles of Y in L with marks
in B and NL :¼NL;S: The counting variables NL;B generate a s-algebra FY on Y:
For L 2 B2 let F0Y;L be the s-algebra on YL obtained by restricting FY to YL; and
let FY;L :¼ e�1L F0Y;L be the s-algebra on Yobtained from F0Y;L by the restriction
mapping eL : Y! YL;Y 7!YL: For disjoint sets L1;L2 2 B2 and configurations
Y ; Ȳ 2 Y let YL1

ȲL2
:¼YL1

[ ȲL2
:

The mean quadratic particle density per unit square for Y 2 Y is defined by

snðY Þ :¼
1

l2ðLnþ1=2Þ

X
r2Z2\Lnþ1=2

N2
Cr
ðY Þ:

A configuration Y 2 Y is said to be tempered if sðY Þ :¼ supn2NsnðY Þo1: Let Yt 2

FY be the set of all tempered configurations.
Now similar objects can be considered for particles without marks. Let X :¼fX �

R2: jX \ Ljo1 8L 2 B2
bg be the configuration space of particle positions. The

restrictions XL; the set of configurations in L XL; the counting variables NL; the s-
algebras FX; F

0
X;L and FX;L and XL1

X̄L2
are then defined analogously to the

objects above. The projection o : Y! X; Y 7!Y o obviously is measurable, so FX

can be considered as a subset of FY via the identification of a set X1 2FX with
o�1X1 2FY: For example we have that Yt 2FX: For any X 2 X and a family of
marks ðsxÞx2X let ðX ;sÞ :¼fðx;sxÞ : x 2 X g the configuration determined by X and s:
Let z40 be an activity parameter which will be fixed throughout this paper. Let

n :¼ nz be the distribution of the Poisson point process on ðY;FYÞ with intensity z

and distribution of marks lS; and no :¼ no
z be the distribution of the Poisson point

process on ðX;FXÞ with intensity z. SoZ
f dno ¼ e�zl2ðLÞ

X
kX0

zk

k!

Z
Lk

dx1 � � � dxk f ðfxi : 1pipkgÞ;

for any FX;L-measurable nonnegative function f : X! Rþ andZ
f dn ¼

Z
noðdX Þ

Z
SXL

dsXL f ððXL;sÞÞ

for any FY;L-measurable nonnegative function f : Y! Rþ:

3.2. Configurations of bonds

For any set Z and distinct z1; z2 2 Z let z1z2 :¼fz1; z2g be the bond joining z1 and
z2: Let EðZÞ :¼fz1z2: z1; z2 2 Z; z1az2g be the set of all bonds in Z. On EðR2Þ the s-
algebra

FEðR2Þ :¼ffx1x2 2 EðR2Þ : ðx1;x2Þ 2 Bg: B 2 ðB2Þ
2
g
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is given. Let

E :¼fE � EðR2Þ : jfxy 2 E : xy � Bgjo1 8B 2 B2
bg

be the configuration space of bonds, i.e. the set of all locally finite bond sets. On E the
s-algebra FE is defined to be generated by the counting variables NE0 : E! N;
E 7!jE0 \ Ej ðE0 2FEðR2ÞÞ:
For a countable set E 2 E one can also consider the Bernoulli-s-algebra BE on

EE :¼PðEÞ � E; which is defined to be generated by the family of sets ðfE0 � E :
e 2 E0gÞe2E : It is easy to check that the inclusion ðEE ;BEÞ ! ðE;FEÞ is measurable.
Thus any probability measure on ðEE ;BEÞ can trivially be extended to ðE;FEÞ:
Given a countable set E and a family ð�eÞe2E of real numbers in ½0; 1� the Bernoulli

measure on ðPðEÞ;BEÞ is defined as the unique probability measure for which the
events ðfE0 � E : e 2 E0gÞe2E are independent with probabilities ð�eÞe2E :

3.3. Interaction and superstability

Our next step is to introduce the interaction between particles. As mentioned
before we will consider a c-dominated potential corresponding to J;K ; ~U as defined
in and below of (2.1). The energy of a finite configuration Y 2 Y is defined as

HU ðY Þ :¼
X

y1y22EðY Þ

Uðy1; y2Þ

and for two finite configurations Y ;Y 0 2 Y let

W U ðY ;Y 0Þ :¼
X
y12Y

X
y22Y 0

Uðy1; y2Þ (3.1)

be the interaction energy of the configurations. Definition (3.1) can be extended to
infinite configuration Y 0 whenever W U ðY ;Y 0LÞ converges as L " R

2 through the net
B2

b:
For a configuration Y 2 Y let Z2ðY Þ :¼fr 2 Z2 : NCr

ðY Þ40g be the minimal set of
lattice points such that the corresponding squares cover Y. Then a potential is called
superstable if there are real constants A40 and BX0 such that for all finite
configurations Y 2 Y

HU ðY ÞX
X

r2Z2ðY Þ

½ANCr
ðY Þ2 � BNCr

ðY Þ�:

A potential is called lower regular if there is a decreasing function C : N! Rþ such
that X

r2Z2

CðkrkÞo1

and

W U ðY ;Y 0ÞX�
X

r2Z2ðY Þ

X
s2Z2ðY 0Þ

Cðkr� skÞ 1
2
NCr
ðY Þ2 þ 1

2
NCs
ðY 0Þ2

� �
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for all finite configurations Y ;Y 0 2 Y: Note that any c-dominated potential
corresponding to J;K ; ~U such that also KðxÞX� cðkxkÞ for all x 2 R2 is lower
regular.
It is well known that for any superstable and lower regular potential U, any finite

configuration Y 2 Y and any tempered configuration Y 0 2 Yt the interaction energy
W U ðY ;Y 0Þ exists in � �1;1� (see [15] for example).

3.4. Gibbs measures

Given a superstable and lower regular potential U, the Hamiltonian of a
configuration Y 2 Y in L 2 B2

b with boundary condition ȲLc 2 Yt is defined by

HU
L ðYLȲLc Þ :¼HU ðYLÞ þW U ðYL; ȲLc Þ ¼

X
y1y22EðYLȲLc Þ:y

o
1
yo
2
\La;

Uðy1; y2Þ:

The integral

ZU
L ðȲ Þ :¼

Z
nðdY Þ e�HU

L ðYLȲLc Þ

is called the partition function in L 2 B2
b for the boundary condition ȲLc 2 Yt:

Using superstability and lower regularity of U and temperedness of Ȳ one can show
that ZU

L ðȲ Þ is finite (see [15] for example), and considering the empty configuration Y

one can show that ZU
L ðȲ Þ is positive. The Gibbs distribution gU

L ð:jȲ Þ in L 2 Bb with
boundary condition ȲLc 2 Yt; potential U and activity z is thus well defined by

gU
L ðAjȲ Þ :¼ZU

L ðȲ Þ
�1

Z
nðdY Þ e�HU

L ðYLȲLc Þ1AðYLȲLc Þ for A 2FY:

gU
L is a probability kernel from ðY;FYÞ to ðY;FYÞ: Let gL :¼ gU

L if it is clear which
potential is considered. Let

GðUÞ :¼fm 2 PðY;FYÞ : mðYtÞ ¼ 1

mðAjFY;R2nLÞ ¼ gU
L ðAj:Þ m-a.s.8A 2FY;L 2 B2

bg

be the set of all tempered Gibbs measures for the potential U and the activity z. It is
easy to see that for any probability measure m 2 PðY;FYÞ such that mðYtÞ ¼ 1 the
equivalence

m 2 GðUÞ () ðmgU
L ¼ m 8L 2 B2

bÞ

holds. So for every m 2 GðUÞ; f : Y! Rþ measurable and L 2 B2
b we haveZ

mðdY Þ f ðY Þ ¼

Z
mðdȲ Þ

Z
gU
L ðdY jȲ Þ f ðYLȲLc Þ: (3.2)

For a superstable and lower regular potential U and a tempered Gibbs measure
m 2 GðUÞ; the correlation function rU ;m of m is defined by

rU ; mðY Þ ¼ e�HU ðY Þ

Z
mðdȲ Þe�W U ðY ;Ȳ Þ
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for any finite configuration Y. It is a remarkable consequence of Ruelle’s
superstability estimates that there is a constant x 2 R such that

rU ; mðY ÞpxjY j (3.3)

for any finite configuration Y 2 Y: (For a proof see [15].) We will call a x 2 R

satisfying (3.3) a Ruelle bound. Actually we will need this bound on the correlation
function in the following way.

Lemma 1. Let U be a superstable and lower regular potential, m 2 GðUÞ a tempered

Gibbs measure and x 2 R a Ruelle bound. Then we haveZ
mðdY Þ

Xa

x1;...; xm2Y o

f ðx1; . . . ;xmÞpðzxÞm
Z

dx1 � � � dxm f ðx1; . . . ; xmÞ (3.4)

for every integer mX0 and every measurable function f : ðR2Þ
m
! Rþ:

We use
Pa as a shorthand notation for a multiple sum such that the summation

indices are assumed to be pairwise distinct.

3.5. Transformations of spins

Now let the spin space S be a compact topological space, and G be a compact,
connected Lie-group operating on S,

op : G � S! S; ðt; sÞ 7!opðt;sÞ¼: tðsÞ;

such that the operation is measurable.
For every t 2 G we also consider ~t : Y! Y; ~tðY Þ ¼ fðx; tðsÞÞ : ðx;sÞ 2 Y g; and

t̄ : D! D; t̄ðx1; s1; x2;s2Þ ¼ ðx1; tðs1Þ; x2; tðs2ÞÞ: Usually these mappings will again
be denoted by t: Furthermore, for a configuration Y 2 Y and t : Y o ! G we write
tY :¼ tðY Þ :¼fðx; tðxÞðsÞÞ : ðx; sÞ 2 Y g:

t 2 G is called a symmetry of a given pair potential U if U � t ¼ U : If this holds
for every t 2 G; then U is said to be G-invariant. The reference measure lS is called
G-invariant if lS � t�1 ¼ lS for all t 2 G; and a Gibbs measure m 2 GðUÞ is called G-
invariant if m � t�1 ¼ m for all t 2 G:

4. The case of S1-action

We will first consider the mark space ðS;BðSÞ; lSÞ :¼ðS
1;BðS1Þ; lS1Þ; where S1 is the

unit circle, BðS1Þ is the Borel-s-algebra on S1 and lS1 is the Lebesgue-measure on S1;
and transformations t 2 G :¼fts : s 2 S1g; where ts is defined to be the rotation with
angle s: For s;s0 2 S1 ¼ R=ð2pZÞ we write tsðs0Þ ¼:s0 þ s: In order to simplify
notation we identify a rotation with its angle, i.e. we identify S1 ¼ R=ð2pZÞ with ½0; 2p½;
and so we consider functions on S1 as 2p-periodic functions on R whenever possible.
If all rotations t 2 G are symmetries of the c-dominated potential U correspond-

ing to J;K ; ~U ; then U can also be written in the form

Uðx1;s1; x2; s2Þ ¼ Jðx1 � x2ÞV ðs1 � s2Þ þ Kðx1 � x2Þ;



ARTICLE IN PRESS

T. Richthammer / Stochastic Processes and their Applications 115 (2005) 827–848834
where V : S! R is defined by V ðsÞ :¼ ~Uðs; 0Þ: On the other hand a potential of the
above form is G-invariant. It is called the c-dominated potential corresponding to
J;K ;V : As an additional preliminary simplification we assume that JX0: So we
consider the following special case of Theorem 1.

Theorem 2. Let U be a superstable, lower regular c-dominated potential corresponding

to J;K ;V such that JX0 and V is continuous.
Then every tempered Gibbs measure corresponding to U is G-invariant.

In the following subsections we will give a proof of this theorem.

4.1. Constants and decomposition of V

Let U be a potential with the properties stated in Theorem 2, m 2 GðUÞ a tempered
Gibbs measure and x 2 R a Ruelle bound satisfying (3.3) and 1o2zx; where again z

is the intensity of the underlying Poisson point process. As a consequence of the c-
domination of J and the integrability condition on c there is a real constant cJ such
that

1þ cð0Þ þ
Z

JðxÞð1þ kxk2ÞdxpcJ

and there are real constants cðRÞ for RX0 such that limR!1 cðRÞ ¼ 0 and for all
RX0 Z

1fjxjXRgJðxÞdxpcðRÞ: (4.1)

We want to show the G-invariance of m by an argument similar to the one given in
[5, Chapter 9.1, Proposition 9.1]. So we fix a transformation t 2�0;p½; a test cylinder
event B 2FY; Ln0

ðn0 2 NÞ and a real d40: Furthermore let 14�40 such that

cJ�o2cJzx�o1: (4.2)

As the above parameters are fixed for the whole proof we will ignore the dependence
of any variable on any of the above parameters.
As V is a continuous function on S1; V can be approximated by trigonometric

polynomials due to the WeierstraX theorem. So we have the decomposition V ¼
~V � ~v; such that ~V is smooth (i.e. twice continuously differentiable), and j~vjo�=2:
Defining v :¼ ~vþ �=2 and V̄ :¼ ~V þ �=2 we get the decomposition

V ¼ V̄ � v with smooth V̄ and 0ovo�:

By symmetrizing V̄ and v we can assume V̄ and v to be symmetric. Let Ū be the c-
dominated potential corresponding to J;K ; V̄ :

4.2. Decomposition of m and the bond process

For n 2 N and X 2 X we consider the bond set

EðX ; nÞ :¼fx1x2 2 EðX Þ : Jðx1 � x2Þa0;x1x2 \ Lna;g:
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In order to be able to extend the decomposition of the potential function V to a
decomposition of the Hamiltonian we need:

Lemma 2. For each n 2 N there is a set Xn 2FX such that mðXnÞ ¼ 1 andX
x1x22EðX ; nÞ

Jðx1 � x2Þo1 8X 2 Xn:

Now let n 2 N and Y 2 Xn be fixed. Because of Lemma 2 we have

HU
Ln
ðY Þ ¼ HŪ

Ln
ðY Þ �

X
x1x22EðY o;nÞ

Jðx1 � x2Þvðsx1 ðY Þ � sx2ðY ÞÞ

and therefore

e�HU
Ln
ðY Þ ¼

X0

A�EðY o;nÞ

VnðA;Y Þ; (4.3)

where we have used the shorthand notation

VnðA;Y Þ :¼ e�HŪ
Ln
ðY Þ

Y
x1x22A

½eJðx1�x2Þ vðsx1
ðY Þ�sx2

ðY ÞÞ � 1�

for n 2 N; Y 2 Y and finite A � EðY o; nÞ: The summation symbol
P0 in (4.3)

indicates that the sum extends over finite subsets only. For n 2 N; X 2 XLn
; Ȳ 2 YLc

n

such that XȲ
o
2 Xn; finite A � En :¼EðXȲ

o
; nÞ; E0 2 BEn

and D 2FY we define

WnðX ; Ȳ Þ :¼

Z
dsXe

�HU
Ln
ððX ;sÞȲ Þ;

WnðA;X ; Ȳ Þ :¼

Z
dsX VnðA; ðX ; sÞȲ Þ;

pnðE
0jX ; Ȳ Þ :¼

X
A2E0

0WnðA;X ; Ȳ Þ

WnðX ; Ȳ Þ
;

anðDjA;X ; Ȳ Þ :¼
1

WnðA;X ; Ȳ Þ

Z
dsXVnðA; ðX ;sÞȲ Þ1DððX ;sÞȲ Þ:

As J and v are nonnegative the above factors and integrands are nonnegative, too,
and so all products and integrals are well defined. If WnðX ; Ȳ Þ ¼ 0 or XȲ

oeXn we
define pnð:jX ; Ȳ Þ to be the probability measure on ðEEn

;BEn
Þ with whole weight on

the empty set. If WnðA;X ; Ȳ Þ ¼ 0 or XȲ
oeXn or A 2 E is not a finite subset of En

let anð:jA;X ; Ȳ Þ be an arbitrary fixed probability measure on ðY;FYÞ: For n 2 N;
X 2 XLn

and Ȳ 2 YLc
n
such that WnðX ; Ȳ Þ40 and XȲ

o
2 Xn we have by (4.3)

pnðEEn
jX ; Ȳ Þ ¼

1

WnðX ; Ȳ Þ

X0

A�En

Z
dsXVnðA; ðX ;sÞȲ Þ ¼ 1:

Therefore pnð:jX ; Ȳ Þ is a probability measure on ðEEn
;BðEEn

ÞÞ and can be considered
as a probability measure on ðE;FEÞ as remarked earlier. All above functions are
measurable in their arguments with respect to the given s-algebras, which is an easy
application of the measurability parts of Fubini’s theorem and Campbell’s theorem
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(see [11, Proposition 5.1.2]. for example). Hence both pn and an are probability
kernels. By the above definitions and by (4.3) for every D 2FY and Ȳ 2 Y one has
the decomposition

gLn
ðD \XnjȲ Þ

¼
1

ZU
Ln
ðȲ Þ

Z
noðdX Þ

Z
SXLn

dsXLn
e
�HU

Ln
ððXLn ;sÞȲLcn

Þ
1ðD\XnÞððXLn

;sÞȲLc
n
Þ

¼

Z
go
Ln
ðdX jȲ Þ1Xn

ðXLn
Ȳ

o

Lc
n
Þ

Z
pnðdAjXLn

; ȲLc
n
ÞanðDjA;XLn

; ȲLc
n
Þ; ð4:4Þ

where go
Ln
ð:jȲ Þ :¼ gLn

ð:jȲ Þ � o�1: Now we want to examine the percolation process
given by pn: So let n 2 N; Y 2 Y and En :¼EðY o; nÞ: pnð:jY

o
Ln
;YLc

n
Þ has its whole

weight on the countable set of finite subsets A � En; but this measure shows a strong
dependence of different bonds. Fortunately, this measure is stochastically dominated
(�) by a Bernoulli measure, where the order on the underlying space EEn

is given by
the inclusion. This stochastic domination will be an important tool for evaluating
bond probabilities. For a definition of stochastic domination see [7], for example.
More precisely, for given X 2 X let pð:jX Þ be the Bernoulli measure on ðEEðX Þ;BEðX ÞÞ

with bond probabilities �x1x2 :¼ Jðx1 � x2Þ� for x1x2 2 EðX Þ: Note that 0p�x1x2p1 for
all bonds x1x2 2 EðX Þ; which is a consequence of the condition on � in (4.2), and even
0o�x1x2 for all x1x2 2 EðX ; nÞ: Again pð:jX Þ can be considered as a probability measure
on ðE;FEÞ; and indeed is a probability kernel. We now have:

Lemma 3. For all n 2 N and Y 2 Y;

pnð:jY
o
Ln
;YLc

n
Þ � pð:jY oÞ: (4.5)

4.3. Deforming the spin transformations

For a configuration of positions X 2 X and a bond set A � EðX Þ let !
A

:¼  !
A;X

be the equivalence relation on X such that for all x1;x2 2 X we have x1 !
A;X

x2 iff
either x1 ¼ x2 or there is a finite path in X joining x1 and x2 and using bonds in A

only. For x1ax2 2 X ; the inequality

pðx1 !
:

x2jX Þp
X
mX1

Xa

x0
0
;...;x0m2X :

x0
0
¼x1;x0m¼x2

�m
Ym
i¼1

Jðx0i � x0i�1Þ (4.6)

is an easy consequence of the above definition. For a configuration X 2 X; a bond
set A � EðX Þ and a point x 2 X let

CA;X ðxÞ :¼fx
0 2 X : x !

A
x0g

be the percolation cluster of x in ðX ;AÞ: Furthermore, we want to consider the range

of clusters, so for x 2 X and L 2 B2
b let

rA;X ðxÞ :¼ supfkx0k : x0 2 CA;X ðxÞg
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and

rA;X ðLÞ :¼
maxfrA;X ðx

0Þ : x0 2 L \ X g for L \ Xa;;

0 for L \ X ¼ ;:

�

Obviously kxkprA;X ðxÞp1 and rA;X ðLÞp1: Now we have an estimate for the range

of the cluster of the given set Ln0 ; where n0 is the natural number fixed in Section 4.1.

Lemma 4. There exists an integer R4n0 and a set XR 2FX such that mðXRÞX1� 2d
and, for every Y 2 XR and nXn0;

pnðfA : rA;Y oðLn0 ÞXRgjY o
Ln
;YLc

n
Þpd: (4.7)

From now on let an integer RX2 with the above property be fixed. In order to
construct the spin deformation we define the functions q : R! R; Q : R! R; r :
R� Rþ ! R and tn : R2! S1 for n4R by

qðsÞ :¼ 1fsp2g þ
1

s logðsÞ
1fs42g; QðkÞ :¼

Z k

0

qðsÞds;

rðs; kÞ :¼ 1fsp0g þ

Z k

s

qðs0Þ

QðkÞ
ds01f0osokg; tnðxÞ :¼ t � rðkxk � R; n� RÞ:

Lemma 5. For all n4R and x;x0 2 R2 such that kx0kXkxk we have

0ptnðxÞ � tnðx
0Þptkx� x0k

qðkxk � RÞ

Qðn� RÞ
; (4.8)

limn!1QðnÞ ¼ 1;
tnðxÞ ¼ t for kxkpR and tnðxÞ ¼ 0 for kxkXn: (4.9)

However, what we really need here is a spin deformation which is constant on
points joined by a bond of a given set A. So, for n 2 N; X 2 X and A � EðX ; nÞ we
define tX ;A

n : X ! S1 by

tX ;A
n ðxÞ :¼ minftnðx

0Þ : x0 2 X and x !
A

x0 g:

This spin deformation can be seen to be measurable in x;X and A with respect to the
given s-algebras using Campbell’s theorem. Because of (4.9) we have tnðx

0Þ ¼ 0 for
kx0kXn; so the minimum is attained at some point tAðxÞ 2 X (tAðxÞ :¼x for kxkXn).
By construction we have

ktAðxÞkXkxk; tAðxÞ !
A

x; tX ;A
n ðxÞ ¼ tnðtAðxÞÞ 8x 2 X

and tX ;A
n ðxÞ ¼ tX ;A

n ðx
0Þ 8x;x0 2 X such that x !

A
x0:

(4.10)

4.4. Proof of Theorem 2

In order to simplify notation, for n 2 N; X 2 X and En :¼EðX ; nÞ let f n;X : EEn
!

R be defined by

f n;X ðAÞ :¼
X

xx02En

Jðx� x0ÞðtX ;A
n ðxÞ � tX ;A

n ðx
0ÞÞ

2: (4.11)
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Lemma 6. There exists an integer n4R and a set of configurations XR;n 2FX such

that mðXR;nÞX1� d and, for every Y 2 XR;n;

pn f n;Y oX
2

kV̄
00
k

����Y o
Ln
;YLc

n

	 

pd: (4.12)

Let such an n be fixed for the rest of the proof, let Xd :¼XR;n \XR \Xn be the set
of good configurations of positions, and for X 2 X let

An;X :¼ A � EðX ; nÞ : rA;X ðLn0 ÞoR; f n;X ðAÞo
2

kV̄
00
k

� �

be the set of good bond sets.

Lemma 7. For every Y 2 Xd and A 2An;Y o we have

mðXdÞX1� 3d and pnðAn;Y o jY o
Ln
;YLc

n
ÞX1� 2d; (4.13)

tY o;A
n ðxÞ ¼ t 8x 2 Y o

Ln0
and tY o;A

n ðxÞ ¼ 0 8x 2 Y o
Lc

n
; (4.14)

e

2
e�HŪ

Ln
ððtYo ;A

n Þ
�1Y Þ þ

e

2
e�HŪ

Ln
ðtYo ;A

n Y Þ
Xe�HŪ

Ln
ðY Þ: (4.15)

All these facts together imply

Lemma 8. For the integer n and the set Xd we have

e

2
gLn
ðt�1B \XdjȲ Þ þ

e

2
gLn
ðtB \XdjȲ ÞXgLn

ðB \XdjȲ Þ � 2d: (4.16)

Now integrating (4.16)—using property (3.2) of m and (4.13)—yields

e

2
mðt�1BÞ þ

e

2
mðtBÞXmðBÞ � 5d

for arbitrary m 2 GðUÞ; t 2 G; n0 2 N; B 2FY; Ln0
and d40: Letting d! 0 the

assertion of the theorem follows by using results from the general theory of Gibbs
measures (see [5], Chapter 9.1, Proposition 9.1) for example.
5. Proofs of the lemmas

5.1. Property of the correlation function: Lemma 1

Let U be a superstable and lower regular potential, m 2 GðUÞ a tempered Gibbs
measure, x 2 R a correlation bound, mX0 an integer and f : ðR2Þ

m
! Rþ a

measurable function. The Poisson point process n satisfies for every N 2 N and every
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measurable g : YLN
! RþZ

nðdY Þ
Xa

x1;...; xm2Y o
LN

f ðx1; . . . ;xmÞgðY Þ

¼ zm

Z
Lm

N

dx1 � � �dxm

Z
Em

ds1 � � � dsm f ðx1; . . . ; xmÞ

Z
nðdY 0ÞgððX ;sÞmY 0Þ;

where ðX ;sÞm :¼fðxi;siÞ : 1pipmg: Using this equality, the characterisation of
Gibbs measures (3.2), the definition of the conditional Gibbs distribution and the
definition of the correlation function we getZ

mðdY Þ
Xa

x1;...; xm2Y o
LN

f ðx1; . . . ;xmÞ

¼

Z
mðdȲ Þ

1

ZU
LN
ðȲ Þ

Z
nðdY Þ

Xa

x1;...; xm2Y o
LN

f ðx1; . . . ; xmÞe
�HU

LN
ðYLN

ȲLc
N
Þ

¼

Z
Lm

N

dx1 � � � dxm

Z
ds1 � � � dsmf ðx1; . . . ;xmÞz

mrU ; mððX ;sÞmÞ

pðzxÞm
Z
Lm

N

dx1 � � � dxmf ðx1; . . . ; xmÞ;

where we have used bound (3.3) on the correlation function in the last step. Letting
N !1 the assertion (3.4) follows from the monotone limit theorem.

5.2. Convergence of energy sums: Lemma 2

Let n 2 N: For every X 2 X we haveX
x1x2�EðX ; nÞ

Jðx1 � x2Þp
Xa

x1; x22X

1fx12Lng Jðx1 � x2Þ;

so Z
mðdY Þ

X
x1x2�EðY o; nÞ

Jðx1 � x2ÞpðzxÞ2
Z

dx1dx21fx12LngJðx1 � x2Þ

by Lemma 1, and the right-hand side of the last inequality is at most cJð2nzxÞ2o1:
So the assertion is true for

Xn :¼ X 2 X:
X

x1x2�EðX ; nÞ

Jðx1 � x2Þo1

( )
:

5.3. Stochastic domination: Lemma 3

A general sufficient condition for stochastic domination in a situation like the one
considered is given by Holley (see e.g. [8]). The result is the following:



ARTICLE IN PRESS

T. Richthammer / Stochastic Processes and their Applications 115 (2005) 827–848840
Lemma 9. Let Z ¼ fe1; e2; � � �g be a countable set, ð�eÞe2Z a family of reals in �0; 1�; BZ

the Bernoulli-s-algebra on PðZÞ; and let A and A� be random variables with values in

ðPðZÞ;BZÞ such that A� is a Bernoulli process with bond probabilities �e; and for every

e 2 Z we have Pðe 2AjAneÞp�e a.s. . Then LðAÞ �LðA�Þ:

Proof. Let all assumptions of the lemma hold. First we consider the finite sets
ZðnÞ :¼fe1; . . . ; eng and let AðnÞ;AðnÞ� be the restrictions of A;A� to ZðnÞ; i.e. AðnÞ ¼
A \ ZðnÞ and AðnÞ� ¼A� \ ZðnÞ: For any n 2 N and e 2 ZðnÞ we have Pðe 2AðnÞj
AðnÞneÞp�e a.s., which is a straightforward consequence of Pðe 2AjAneÞp�e a.s.
and the properties of conditional probabilities. Now the criterion of Holley (as
presented in [7, Theorem 4.8], for example) givesLðAðnÞÞ �LðAðnÞ� Þ: IfLðA

ðnÞÞ and
LðAðnÞ� Þ are considered as measures on ðPðZÞ;BZÞ we observe that

LðAðnÞÞ !LðAÞ and LðAðnÞ� Þ !LðA�Þ weakly as n!1:

As stochastic domination is preserved under weak limits (see [7, Corollary 4.7], for
example) we get LðAÞ �LðA�Þ: &

Now, turning to the proof of Lemma 3 let n 2 N; Y 2 Y and En :¼EðY o; nÞ: In
order to show that pnð:jY

o
Ln
;YLc

n
Þ � pð:jY oÞ we may consider both measures as

measures on ðEEn
;BEn
Þ: We also may assume that Y o 2 Xn and WnðYLn

;Y o
Lc

n
Þ40:

By Lemma 9 it is sufficient to show that, for every bond x1x2 2 En and every finite
bond set D � Ennfx1x2g;

pnðfx1x2g [D jY o
Ln
;YLc

n
Þp�x1x2pnðfD; fx1;x2g [Dg jY o

Ln
;YLc

n
Þ:

(Here we have used that the whole weight of pnð:jY
o
Ln
;YLc

n
Þ is on the countable set of

finite bond sets.) So let x1x2 2 En and D � Ennfx1x2g be finite. By the definition of pn

the last inequality is equivalent toZ
dsY o

Ln
VnðD; ðY o

Ln
;sÞYLc

n
Þ½�x1x2

þ ð�x1x2 � 1Þðe
Jðx1�x2Þvðsx1

ððY o
Ln

;sÞȲLcn
Þ�sx2

ððY o
Ln

;sÞȲLcn
ÞÞ
� 1Þ�X0:

But since 0o�x1x2p1 and 0ovo�; the term in the brackets is at least

�x1x2 þ ð�x1x2 � 1Þðe�x1x2 � 1ÞX0;

which completes the proof of the Lemma 3.
5.4. Cluster bounds: Lemma 4

Let nXn0 be a fixed integer. For a given configuration X 2 X and a bond set
A 2 EðX ; nÞ we consider the cardinality of the cluster of points from L :¼Ln0 ; which
is defined by

CLðAÞ :¼
[

x2XL

CA;X ðxÞ

�����
�����:
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For all X 2 X we have the estimateZ
pðdAjX ÞCLðAÞp

Z
pðdAjX Þ

X
x2XL

X
x02X

1
fx !

A
x0g

¼
X

x2XL

X
x02X

pðx !
:

x0jX Þ

p
X
mX0

�m
Xa

x0;...; xm2X

1x02L

Ym

i¼1
Jðxi � xi�1Þ¼: f ðX Þ;

where we have used (4.6). By Lemma 1 we have

Z
mðdY Þ f ðY oÞp

X
mX0

�mðzxÞmþ1
Z

dx0 � � � dxm1x02L

Ym
i¼1

Jðxi � xi�1Þ

pzxð2n0Þ2
X
mX0

ðzx�cJ Þ
m
¼: co1

due to (4.2). Letting

X0R :¼ X 2 X: f ðX Þp
c

d

n o
;

we get mðX0RÞX1� d from Chebyshev’s inequality, and for any X 2 X0R we have
again by Chebyshev’s inequality that

p CL4
2c

d3

����X
	 


p
d3

2c

Z
pðdAjX ÞCLðAÞp

d2

2
:

Now let nXn0; R4n0 and X 2 X0R: Then, by the above estimate,

pðr:; X ðLÞXR jX Þ

pp CL4
2c

d3

����X
	 


þ p CLp
2c

d3
; r:;X ðLÞXR

����X
	 


p
d2

2
þ p A : 91pmp

2c

d3
9distinct x0; . . . ;xm 2 X :

�	

91pjpm : x0 2 L; kxj � xj�1kX
ðR� n0Þd3

2c
; xi�1xi 2 A 8i

�����X



p
d2

2
þ
X
mX1

Xm

j¼1

Xa

x0;...; xm2X

1
x02L;kxj�xj�1kX

ðR�n0 Þd3

2c

� � �m
Ym
i¼1

Jðxi � xi�1Þ

¼:
d2

2
þ f RðX Þ
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and Lemma 1 yieldsZ
mðdY Þ f RðY

oÞp
X
mX1

�m
Xm

j¼1

ðzxÞmþ1
Z

dx0 � � � dxm

� 1
x02L;kxj�xj�1kX

ðR�n0 Þd3

2c

� �Ym
i¼1

Jðxi � xi�1Þ

" #

pzx
X
mX1

ðzx�Þmmð2n0Þ2cm�1
J c

ðR� n0Þd3

2c

	 

:

In the last step, the integrals have been estimated backwards from xm to x0; where
integration over xj gives the constant cððR� n0Þd3=2cÞ defined in (4.1). As
limR!1cð½ðR� n0Þd3�=2cÞ ¼ 0 and the sum over m is finite by condition (4.2), we
can fix an R4n0 such thatZ

mðdY Þ
d2

2
þ f RðY

oÞ

	 

pd2: (5.1)

Now let

X00R :¼ X 2 X:
d2

2
þ f RðX Þpd

� �

andXR :¼X00R \X
0
R; then by Chebyshev’s inequality and (5.1) we have mðX

00
RÞX1� d;

and hence mðXRÞX1� 2d: For every Y 2 XR the event fA : rA;Y o ðLÞXRg is
increasing, so by stochastic domination (4.5) we have

pnðfA : rA;Y o ðLÞXRgjY o
Ln
;YLc

n
ÞppðfA : rA;Y o ðLÞXRgjY oÞ

p
d2

2
þ f RðY

oÞpd:

5.5. Properties of tn and Q: Lemma 5

(4.9) is evident from the definition of tn; and limn!1QðnÞ ¼ 1 is a consequence of
log log npQðnÞ for nX2: For (4.8) let x;x0 2 R2 such that kx0kXkxk: The left
inequality is trivial and for the right inequality we may assume that kx0k4R and
kxkon because of (4.9). Hence

rðkxk � R; n� RÞ � rðkx0k � R; n� RÞ

¼

Z minfkx0k;ng

maxfR;kxkg

qðs0 � RÞ

Qðn� RÞ
ds0

pðkx0k � kxkÞ
qðkxk � RÞ

Qðn� RÞ
pkx0 � xk

qðkxk � RÞ

Qðn� RÞ
;
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where we have used the monotonicity of q and the triangle inequality. Now (4.8)
follows immediately.
5.6. Probability of bad bond sets: Lemma 6

First of all we state two easy facts. First,

kxm � x0k
2pm

Ym
i¼1

ðkxi � xi�1k
2 þ 1Þ 8mX1; x0; . . . ; xm 2 R

2; (5.2)

by the triangle inequality and the arithmetic–quadratic mean inequality. Secondly,Z
Ln

dxqðkxk � RÞ2p8ðRþ 3Þ2 þ 8RQðn� RÞ 8nXR; (5.3)

which is obtained by the substitution t :¼kxk:Z
Ln

dxqðkxk � RÞ2p
Z Rþ3

0

dt 8tþ

Z n�R

3

dt 8ðtþ RÞqðtÞ2

p8ðRþ 3Þ2 þ 8R

Z n�R

0

qðtÞdt ¼ 8ðRþ 3Þ2 þ 8RQðn� RÞ;

where we have used in the first step that qðtÞp1 8t 2 R; and in the second step that
tþ RptR for t;RX2; and tqðtÞp1 8tX3:
Now for the proof of Lemma 6 let n4R and Y 2 Y be arbitrary. Using the

arithmetic–quadratic mean inequality to estimate ðtX ;A
n ðxÞ � tX ;A

n ðx
0ÞÞ

2 we get

f n;Y oðAÞp6
X

x; x02Y o

1fxax0gJðx� x0ÞðtnðtAðxÞÞ � tnðxÞÞ
2

þ 3
X

x; x02Y o

1fkxkpkx0kgJðx� x0ÞðtnðxÞ � tnðx
0ÞÞ

2:

Substituting z :¼ tAðxÞ and introducing 1fz¼tAðxÞg in the first sum we need only consider

z 2 Y o such that kxkpkzk and xaz: By distinguishing the cases zax;x0 and z ¼ x0

and by using fA : tAðxÞ ¼ zg � fA: x !
A

zg we can estimate the expectation value of
f n;Y o byZ

pnðdAjY o
Ln
;YLc

n
Þf n;Y o ðAÞ

p6
Xa

x; x0; z2Y o

1fkxkpkzkgJðx� x0ÞðtnðzÞ � tnðxÞÞ
2pnðx !

:
zjY o

Ln
;YLc

n
Þ

þ 9
Xa

x;z2Y o

1fkxkpkzkgJðx� zÞðtnðxÞ � tnðzÞÞ
2:

Next we use the stochastic domination (4.5) for the increasing events x !
:

z to

estimate pnðx !
:

zjY o
Ln
;YLc

n
Þ; and we use (4.8) from Lemma 5, noting that



ARTICLE IN PRESS

T. Richthammer / Stochastic Processes and their Applications 115 (2005) 827–848844
tnðxÞ ¼ 0 ¼ tnðzÞ for nokxkpkzk: So we getZ
pnðdAjY o

Ln
;YLc

n
Þ f n;Y o ðAÞ

p6
Xa

x; x0 ; z2Y o

1fx2LngJðx� x0Þt2kx� zk2
qðkxk � RÞ2

Qðn� RÞ2
pðx !

:
zjY oÞ

þ 9
Xa

x; z2Y o

1fx2LngJðx� zÞt2kx� zk2
qðkxk � RÞ2

Qðn� RÞ2

¼:S1ðY
o; nÞ þ S2ðY

o; nÞ:

In order to deal with S1ðY
o; nÞ we distinguish the paths x0; . . . ;xm from x to z

analogously to (4.6) and distinguish the cases xj ¼ x0 and xjax0 8j: Hence

S1ðY
o; nÞp6

X
mX1

�m
Xa

x0 ; x0;...; xm2Y o

1fx02LngJðx0 � x0Þ

t2kx0 � xmk
2 qðkx0k � RÞ2

Qðn� RÞ2

Ym
i¼1

Jðxi � xi�1Þ

þ 6
X
mX1

�m
Xm�1
j¼1

Xa

x0;...; xm2Y o

1fx02LngJðx0 � xjÞ

t2kx0 � xmk
2 qðkx0k � RÞ2

Qðn� RÞ2

Ym
i¼1

Jðxi � xi�1Þ:

Applying Lemma 1 we thus findZ
mðdY ÞS1ðY

o; nÞ

p6
X
mX1

�mðzxÞmþ1
Z

dx0 � � � dxm 1fx02Lngt
2kx0 � xmk

2 qðkx0k � RÞ2

Qðn� RÞ2

"

Ym
i¼1

Jðxi � xi�1Þ zx
Z

dx0Jðx0 � x0Þ þ
Xm�1
j¼1

Jðx0 � xjÞ

 !#
:

After applying (5.2) to kx0 � xmk
2 and estimating the parentheses ð:Þ by zxcJm we

evaluate the integrals backwards from xm to x1:Z
mðdY ÞS1ðY

o; nÞ

p6
X
mX1

m2�mcJðzxÞ
mþ2
ð2cJÞ

mt2
Z

dx1fx2Lng

qðkxk � RÞ2

Qðn� RÞ2

p6cJðxztÞ2
X
mX1

m2ð2�cJxzÞm

" #
8ðRþ 3Þ2 þ 8RQðn� RÞ

Qðn� RÞ2
;
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where we have used (5.3) in the last step. The expectation value of S2 can be treated
similarly, and the estimates together giveZ

mðdY Þ½S1ðY
o; nÞ þ S2ðY

o; nÞ�

p 6
X
mX1

m2ð2�cJxzÞm þ 9

" #
cJ ðtzxÞ2

8ðRþ 3Þ2 þ 8RQðn� RÞ

Qðn� RÞ2
:

The sum over m is finite by the choice of � (4.2), and because of limk!1QðkÞ ¼ 1 the
fraction on the right-hand side can be made arbitrarily small choosing n large
enough. So there is an integer n4R such that

Z
mðdY Þ½S1ðY

o; nÞ þ S2ðY
o; nÞ�p

2d2

kV 00k
: (5.4)

Let

XR;n :¼ X 2 X: S1ðX ; nÞ þ S2ðX ; nÞp
2d
kV 00k

� �
;

then we have found n and XR;n as desired, as by (5.4) and Chebyshev’s inequality we
have mðXR;nÞX1� d; and for every Y 2 XR;n we have by the definition of XR;n; S1

and S2 and again by Chebyshev’s inequality

pn f n;Y oX
2

kV̄
00
k

����Y o
Ln
;YLc

n

	 

pd:
5.7. Properties of good configurations and bond sets: Lemma 7

Let Y 2 Xd; A 2An;Y o and En :¼EðY o; nÞ: Inequalities (4.13) then follow
immediately from Lemmas 4 and 6. (4.14) follows from (4.9) because
rA;Y oðLn0 ÞoR: For (4.15) we consider V̄ as a 2p-periodic function on R: By the
smoothness of V̄ we can use a Taylor expansion to obtain for all a; b 2 R

V̄ ðaþ bÞ þ V̄ ða� bÞ � 2V̄ ðaÞpkV̄ 00kb2;

where kV̄
00
ko1; as V̄

00
is continuous on a compact space. W.l.o.g. we may assume

the right-hand side of (4.15) to be positive, hence jHŪ
Ln
ðY Þjo1: So we have,

introducing Zx1; x2
:¼sx1 ðY Þ � sx2 ðY Þ and Wx1; x2 :¼ tX ;A

n ðx1Þ � tX ;A
n ðx2Þ;

HŪ
Ln
ððtX ;A

n Þ
�1Y Þ þHŪ

Ln
ðtX ;A

n Y Þ � 2HŪ
Ln
ðY Þ

¼
X

x1x22En

Jðx1 � x2Þ V̄ ðZx1;x2 � Wx1;x2Þ þ V̄ ðZx1;x2 þ Wx1;x2Þ � 2V̄ ðZx1;x2Þ
� �

p
X

x1x22En

Jðx1 � x2ÞkV̄
00
kW2x1; x2

¼ kV̄
00
kf n;Y o ðAÞ:
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By the convexity of the exponential function we conclude
e

2
e�HŪ

Ln
ððtX ;A

n Þ
�1Y Þ þ

e

2
e�HŪ

Ln
ðtX ;A

n Y Þ

Xe1�ð1=2ÞH
Ū
Ln
ððtX ;A

n Þ
�1Y Þ�ð1=2ÞHŪ

Ln
ðtX ;A

n Y Þ

Xe1�
kV̄
00
k

2 f n;Yo ðAÞ � e�HŪ
Ln
ðY Þ

Xe�HŪ
Ln
ðY Þ:

5.8. Inequality for the specifications: Lemma 8

By (4.4) it is sufficient to prove that for every Y 2 Xd we haveZ
pnðdAjY o

Ln
;YLc

n
Þ
e

2
anðt�1BjA;Y o

Ln
;YLc

n
Þ

h
þ
e

2
anðtBjA;Y o

Ln
;YLc

n
Þ � anðBjA;Y o

Ln
;YLc

n
Þ

i
þ 2dX0;

and because of (4.13) it suffices to show that, for every Y 2 Xd and every finite
A 2An;Y o such thatWnðA;Y o

Ln
;YLc

n
Þ40; the term in square brackets is nonnegative.

By definition of an; this will follow once we have shown that for every X 2 XLn
;

Y 2 YLc
n
and every finite A 2An;XY o we haveZ
ds0Xe

�HŪ
Ln
ðYs0Þ e

2
1t�1BðYs0Þ þ

e

2
1tBðYs0Þ � 1BðYs0Þ

� �
�
Y

x1x22A

ðeJðx1�x2Þvðsx1
ðYs0Þ�sx2

ðYs0ÞÞ � 1ÞX0; ð5:5Þ

where we have used the notation Ys :¼ðX ; sÞY : So let X, Y and A as above. The
integral on the left-hand side of (5.5) can be split into the three parts I�; Iþ and I0
corresponding to the terms t�1B; tB and B, and for any x 2 X we make the
substitutions sx :¼s0x þ tX ;A

n ðxÞ and sx :¼s0x � tX ;A
n ðxÞ in I� and Iþ; respectively.

Because of (4.14) the spin transformation tX ;A
n has no effect outside of Ln; so that

Ys0 ¼ ðtX ;A
n Þ

�1
ðYsÞ and Ys0 ¼ tX ;A

n ðYsÞ; respectively. Because of (4.14) we have
t�1B ¼ ðtA

n Þ
�1B and tB ¼ tA

n B; so that after the substitution the indicator functions
simplify to 1BðYsÞ: Because of (4.10), tX ;A

n is constant on particles joined by bonds in
A, so in I� we have

sx1 ðYsÞ � sx2ðYsÞ ¼ sx1ðt
X ;A
n ðYs0ÞÞ � sx2 ðt

X ;A
n ðYs0ÞÞ

¼ sx1ðYs0Þ þ tX ;A
n ðx1Þ � sx2ðYs0Þ � tX ;A

n ðx2Þ

¼ sx1ðYs0Þ � sx2 ðYs0Þ;

for every s 2 ðS1Þ
X and for every bond x1x2 2 A; and the same holds for Iþ:

Therefore the left-hand side of (5.5) is equal toZ
dsX 1BðYsÞ

Y
x1x22A

ðeJðx1�x2Þvðsx1
ðYsÞ�sx2

ðYsÞÞ � 1Þ

"

�
e

2
e�HŪ

Ln
ððtX ;A

n Þ
�1
ðYsÞÞ þ

e

2
e�HŪ

Ln
ðtX ;A

n ðYsÞÞ � e�HŪ
Ln
ðYsÞ

� �#
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which is nonnegative by (4.15) from Lemma 7. This proves (5.5) and completes the
proof of the Lemma 8.
6. Proof of Theorem 1

Let the assumptions of Theorem 1 hold. First we observe that for every t 2 G

there is a torus T such that t 2 T and T is a subgroup of G. Every torus is a finite
product of compact one-dimensional subgroups of G, so w.l.o.g. we may assume that
t is contained in such a subgroup, i.e. we may assume that G is a compact one-
dimensional Lie-group, and hence that G ¼ S1 (for details see [3] for example).
For general S we have to modify the decomposition of V. What we need is a

decomposition V ¼ V̄ � v as guaranteed by Lemma 10 presented below.
In order to deal with general J we have to construct two different decompositions of

V: For ðx1; s1Þ; ðx2; s2Þ 2 R2 � S such that Jðx1 � x2ÞX0 we decompose as before:
V ðs1;s2Þ ¼ V̄þðs1;s2Þ � vþðs1;s2Þ; but if Jðx1 � x2Þo0 we decompose V ðs1;s2Þ ¼
V̄�ðs1;s2Þ þ v�ðs1;s2Þ; where v� and V̄� have the same properties as vþ and V̄þ;
respectively. This decomposition is also obtained analogously to the following lemma.
The rest of the proof simply carries over. &

We still need

Lemma 10. Let E be a compact topological space and let S1 operate on E continuously.

Let V : E2! R be a continuous mapping. Then we have a decomposition V ¼ V̄ � v

such that 0ovo�; V̄ is symmetric and S1-invariant and such that V̄ ða; tbÞ is twice

continuously differentiable with respect to t such that @2tV̄ ða; tbÞ is bounded uniformly

in a and b.

Proof. Here we consider S1 ¼ R=Z and we identify functions on S1 with periodic
functions on R: As a function of all three arguments V ða; tbÞ is continuous on the
compact space E2 � S1; and therefore uniformly continuous. Hence there exists a
d40 such that

8a; b 2 E 8t0; t 2 R: jt0 � tjo2d) jV ða; t0bÞ � V ða; tbÞjo
�

2
: (6.1)

For this d we choose a twice continuously differentiable symmetric probability
density f d : R! Rþ with support in ½�d; d�; for example

f dðtÞ :¼ c � 1��d;d½ðtÞ � e
�d2=ðd2�t2Þ with c :¼

Z d

�d
e�d

2=ðd2�t2Þ dt:

Setting

V̄ ða; bÞ :¼

Z
dt f dðtÞV ða; tbÞ þ

�

2
and v :¼ V̄ � V

gives us the desired decomposition. V̄ is measurable by Fubini’s theorem,
and symmetric, because V is symmetric and S1-invariant and f d is symmetric. V̄ is
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S1-invariant because V is. 0ovo� is a straightforward consequence of (6.1) and the
small support of f d: Finally,

V̄ ða; tbÞ ¼

Z
dt f dðt� tÞV ða; tbÞ þ

�

2
;

which is twice continuously differentiable with respect to t such that @2tV̄ ða; tbÞ ¼R
dtf 00dðt� tÞV ða; tbÞ is bounded by 2dkf 00dk kVk: &
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