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SUMMARY

Mammary epithelial stem cells are vital to tissue
expansion and remodeling during various phases of
postnatal mammary development. Basal mammary
epithelial cells are enriched in Wnt-responsive cells
and can reconstitute cleared mammary fat pads
upon transplantation into mice. Lgr5 is a Wnt-regu-
lated target gene and was identified as a major
stem cell marker in the small intestine, colon,
stomach, and hair follicle, as well as in kidney neph-
rons. Here, we demonstrate the outstanding regener-
ative potential of a rare population of Lgr5-express-
ing (Lgr5+) mammary epithelial cells (MECs). We
found that Lgr5+ cells reside within the basal popula-
tion, are superior to other basal cells in regenerating
functional mammary glands (MGs), are exceptionally
efficient in reconstituting MGs from single cells, and
exhibit regenerative capacity in serial transplanta-
tions. Loss-of-function and depletion experiments
of Lgr5+ cells from transplanted MECs or from
pubertal MGs revealed that these cells are not only
sufficient but also necessary for postnatal mammary
organogenesis.
INTRODUCTION

Adult stem cells are characterized by their ability to both self-

renew and to differentiate into specialized cells. Unraveling the

hierarchy of mammary stem and progenitor cells has been of

great interest because the mammary gland (MG) undergoes

extensive tissue expansion and remodeling at various phases

throughout adult life. Moreover, deciphering the stem cell

players contributing to normal mammary development is key

to understanding subsequent pathologies, such as cancer

transformation. During pubertal development, which happens

between 3 and 8 weeks of age in mice, the mammary epithelium

undergoes glandular expansion. This yields a branching network

of ducts composed of two primary epithelial cell lineages: myoe-
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pithelial/basal, and luminal. During pregnancy, the epithelium

goes through additional lobuloalveolar differentiation to allow

lactation (Deome et al., 1959; Shackleton et al., 2006; Stingl

and Caldas, 2007; Stingl et al., 2006; Visvader and Lindeman,

2006; Welm et al., 2003; Woodward et al., 2005). The MG can

be regenerated efficiently by transplanting mammary epithelial

cells (MECs) into cleared mammary fat pads. Serial transplan-

tation and limiting dilution assays of primary cultures derived

from clonal outgrowths have pointed to the existence of a rare

subset of mammary cells that function as stem cells and recon-

stitute functional MGs (Kordon and Smith, 1998). This basal pop-

ulation, which includes mammary stem cells, is characterized by

the surface antigen profile Lin�CD24+CD29high or Lin�CD24low

CD49fhigh (Shackleton et al., 2006; Stingl et al., 2006) and is

enriched in Wnt-responsive cells (Zeng and Nusse, 2010).

Wnt signaling has been implicated in different stages of mam-

mary development as well as in mammary oncogenesis (Boras-

Granic et al., 2006; Brisken et al., 2000; Chu et al., 2004; Lindvall

et al., 2006, 2009; Nusse and Varmus, 1982; Roelink et al., 1990).

The Wnt coreceptor Lrp5 has been described as a marker of

mammary stem cells (Badders et al., 2009), and secreted Wnt

proteins are proposed as important self-renewal factors for

MG stem cells (Zeng and Nusse, 2010). Lgr5, a downstream

target of Wnt, was identified as a marker of adult stem cell

populations in the small intestine, colon (Barker et al., 2007),

stomach (Barker et al., 2010), and hair follicle (Barker et al.,

2008), organs that undergo extensive postnatal regenera-

tion. Recently, lineage-tracing experiments revealed that Lgr5+

stem/progenitor cells also contribute to nephron formation

during kidney development (Barker et al., 2012). Here, we

unmask the regenerative potential of a rare Lgr5-expressing

(Lgr5+) mammary cell population and its indispensable contribu-

tion to pubertal mammary development.
RESULTS

Lgr5Expression Is Restricted to aRare Subpopulation of
Cytokeratin 14+, Lin�CD24+CD49fhigh Basal Cells
To identify cells that express Lgr5 in the MG, we used the Lgr5

knockin mouse model in which EGFP reporter gene expression

is driven by the endogenous Lgr5 regulatory sequences (Barker
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Figure 1. Lgr5 Expression Is Restricted to a Rare Subpopulation of Cytokeratin 14+, Lin�CD24+CD49fhigh Mammary Basal Cells

(A) The expression of Lgr5was examined in cryosections from 7-week-old Lgr5-EGFP MGs with an anti-GFP antibody (green). Carmine stain of a representative

MGwhole mount demonstrates that Lgr5+ ducts are located to the nipple area, but not to the invading front. Around the lymph node (LN), there are some positive

and negative ducts.

(B) Cryosections costained with anti-GFP and anti-K14. Lgr5+ cells (green) are located to the suprabasal layer of the ducts and are a subpopulation of the

myoepithelial K14+ cells (red).

(C) MGs were isolated from Lgr5-EGFPmice and analyzed by flow cytometry for the expression of the cell surface markers Ter119, CD45, CD31 (Lin), CD24, and

CD49f. Lgr5+ cells (GFP+) were part of the Lin�CD24+CD49fhigh cells (stem cell-enriched population). Lgr5+ cells are 0.3% of total mammary cells and 2.5% of

Lin�CD24+CD49fhighbasal cells. GFP+ cells within the luminal population are 0.009% of total.

(D) Summary of flow cytometry data in Figure 1C, Lgr5+ cells in 7.5-week-old pubertal female mice, percentage (%) of Lgr5+ cells of total (n = 14), and of

Lin�CD24+CD49fhighbasal cells (n = 7). See also Figure S1.

(E) Real-time, quantitative PCR analysis of the Lgr5+ cell population (relative to Lgr5�mammary cells) revealed that they are high for basal but not luminal markers.

PR, progesterone receptor; ERa, estrogen receptor a. See also Table S1.

Bars represent SE.
et al., 2007). In adult pubertal MGs, only 14% (±2% SE) of ducts

had Lgr5+ cells, and they were all localized to the nipple side

(taking the lymph node as a point of reference), as previously

illustrated by Van Keymeulen et al. (2011). The nipple is where

the fetal epidermis initially invaginates into the mammary fat

pad and is the origin growth point of the mammary epithelium

(Figure 1A). Lgr5+ cells were a subset of cytokeratin 14-positive

(K14+) cells and were localized to the suprabasal position (Fig-

ure 1B), similar to that previously described for mammary stem

cells by Sleeman et al. (2007). In MGs, adult stem cells have

been defined by flow cytometry as a rare subset of Lin�CD24+

CD29high (Shackleton et al., 2006) or Lin�CD24lowCD49fhigh

basal cells (Stingl et al., 2006), and a subpopulation of such cells

exhibits the capacity to regenerate an entire MG in vivo. The vast

majority of Lgr5+ cells were basal, Lin�CD24+CD49fhigh (Fig-

ure 1C and Figure S1) and were quite rare, comprising 0.26%

(one Lgr5+ cell per 386 cells) of total dissociated cells in pubertal

MGs (Figure 1D). Previous studies have estimated the frequency

of mammary stem cells or mammary repopulating units (MRUs)

from adult virgin mouse MG to be 1 per 1,400 dissociated cells
(for FVB background; Stingl et al., 2006); in contrast, 3%–7%

of cells in intestinal crypts express Lgr5 (Barker et al., 2007). In

pubertal glands, among the mammary basal cells, only 6%

were Lgr5+ (Figure 1D); this was corroborated by the expression

profile of Lgr5+ cells, which showed high levels of basal but low

levels of luminal epithelial markers (Figure 1E).

Within the Lin�CD24+CD49fhigh Basal Population, Lgr5+

Cells Are Highly Potent in Generating Functional
Mammary Outgrowths
The analysis described above revealed that Lgr5+ cells are a

subset of the Lin�CD24+CD49fhigh basal cells previously re-

ported to include stem cells (Shackleton et al., 2006). To assess

MG reconstitution competence, we challenged the Lgr5+ cells

for mammary regeneration and compared them to Lgr5-negative

(Lgr5�) basal cells in limiting dilution experiments (Figure 2A). In

these experiments, we transplanted 10, 50, and 100 Lgr5+

versus Lgr5� basal cells into cleared fat pads. The number of

cells transplanted was chosen on the lower range to increase

the stringency of the assay, focus on a small subset of basal
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Figure 2. Within the Lin�CD24+CD49fhigh Basal Population, Lgr5+

Cells Are Highly Potent in Generating Functional Mammary

Outgrowths

(A) Lgr5+ (GFP+) and nonexpressing (GFP�) cells from Lgr5-EGFP were iso-

lated by flow cytometry from the Lin�CD24+CD49fhigh basal population and

injected (10, 50, or 100 cells) into clearedmammary fat pads. Outgrowths were

analyzed 6 weeks posttransplantation.

(B) Transplanted basal Lgr5+ cells have higher numbers of outgrowths

compared to the basal Lgr5� cells. Data are pooled from three different

experiments.

(C) Whole-mount carmine-stained representative outgrowths show that ten

basal Lgr5+ cells are able to reconstitute a full MG versus no outgrowth for

basal Lgr5-transplanted cells.

(D) Mice transplanted with ten Lgr5+ cells were mated with males, and their

MGs were analyzed on day 18.5 (E18.5) of pregnancy.

(E) Whole-mount carmine-stained mammary epithelial outgrowths from E18.5

pregnant female mice transplanted with ten basal Lgr5+ cells that under-

went full lobuloalveolar differentiation (basal Lgr5+), comparable to the en-

dogenous epithelium in MG #3 of the recipient mouse (upper panels). MG
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cells, and avoid false negatives owing to Lgr5+ cells that express

low levels of GFP and could therefore be sorted into the Lgr5�

group. We found that within the basal population, Lgr5+ cells

generated MGs far more efficiently than did basal Lgr5� cells.

On average, 27% (±5% SE) of Lgr5+ cells were able to regen-

erate a full MG, within the 10–100 cell range, or 1 MRU per 3.7

Lgr5+ cells (Figures 2B and 2C). We then tested functionality

upon pregnancy (Figure 2D) and found that these outgrowths

were able to undergo full lactational lobuloalveolar differentiation

and express the milk protein, b-casein (Figure 2E). Characteriza-

tion of single basal Lgr5+ cells versus basal Lgr5� cells revealed

that the different functional mammary reconstitution abilities of

the two subsets are based on differences in gene expression

of lineage differentiation, stem cell, and pluripotency markers,

demonstrating that these populations are distinct (Figure S2).

Lgr5+ Cells Can Regenerate a MG from a Single Cell and
Maintain a Regenerative Potential through Serial
Transplantations
Because Lgr5+ cells within the basal cell population were highly

efficient in regenerating a full MG in limiting dilution experiments,

we tested them for classical stem cell characteristics of multipo-

tency and self-renewal. First, we assessed their ability to regen-

erate fully differentiated MGs from single cells (Figure 3A). We

observed that 13 outgrowths were generated from 54 single

Lgr5+ transplanted cells (Figure 3B), demonstrating that 24%

of Lgr5+ single cells were able to regenerate a full MG equivalent

to 1 MRU per 4.2 Lgr5+ cells. These results are similar to those

of the limiting dilution experiments (Figure 2). On close examina-

tion, we observed substantial epithelial outgrowth in the mam-

mary fat pads (Figures 3C and S3) and demonstrated that these

single transplanted Lgr5+ cells were multipotent because they

were able to differentiate into both mammary epithelial lineages

(myoepithelial/basal K14+ and luminal K8+ cells) (Figure 3D). In

addition, when we serially transplanted epithelial outgrowths

from primary transplants of Lgr5+ cells (Figure 3E), the Lgr5+ out-

growths retained their regenerative potential through secondary

and tertiary transplants, demonstrating a long-term, regenera-

tive potential (Figures 3F and 3G).

Depletion Experiments Demonstrate that Lgr5+ Cells
Are Necessary for Postnatal MG Organogenesis
To determine whether Lgr5+ cells are not only sufficient but also

necessary for postnatal MG organogenesis, we used the Lgr5-

DTR:GFP mice to deplete Lgr5+ cells following administration

of diphtheria toxin (DTx) (Figure 4A). This mouse model was

used previously to demonstrate the dispensability of intestinal

Lgr5+ cells under steady-state conditions (Tian et al., 2011).

However, depletion of Lgr5+ cells from transplanted MECs im-

mediately posttransplantation impaired the outgrowth of Lgr5-

DTR:GFP donor epithelium, compared to the contralateral MG

transplanted withWTMECs (Figure 4B). As an additional control,

we found that the majority of MECs from Lgr5-DTR:GFP and WT

mice not treated with DTx (i.e., in the presence of Lgr5+ cells)
sections from the same mice stained positive for the milk protein, b-casein

(lower panels; brown).

See also Figure S2 and Table S2.



Figure 3. Lgr5+ Cells Can Regenerate a MG from a Single Cell and Maintain Regenerative Potential through Serial Transplantations

(A) Single mammary Lgr5+ (GFP+) cells from Lgr5-EGFP crossed into the LifeAct-RFP mice were isolated by flow cytometry into 96-well plates and transplanted

into cleared mammary fat pads. Outgrowths were analyzed at 8 weeks posttransplantation.

(B) From transplants of single adult mammary Lgr5+ cells in 54 MGs, 13 mammary outgrowths were observed.

(C) A representative RFP+mammary outgrowth from a single Lgr5+ cell, exhibiting a full epithelial tree (left) with ductal structures at higher magnification of boxed

area (right).

(D) Outgrowths from single Lgr5+ cells differentiate into the myoepithelial (K14+ in red) and luminal (K8+ in green) lineages (left). Boxed area magnified (right). See

also Figure S3.

(E) Mammary outgrowths from two mice transplanted with 100 Lgr5+ cells (isolated from Lgr5-EGFP crossed into the LifeAct-RFP mice) were collected and

retransplanted into ten mice each for secondary and the same for tertiary outgrowths.

(F and G) Lgr5+ outgrowths retain their regenerative potential through secondary (F) and tertiary (G) transplants. RFP images are representative of the mammary

outgrowths.
were able to reconstitute mammary outgrowth (Figure 4C). Un-

cleared, endogenous mammary tissue from the WT recipient

mice was not affected by DTx administration (Figure S4B). The

total outgrowth area for Lgr5-DTR:GFP epithelial transplants

(including impaired ducts, as shown in Figure S4A) was also

significantly reduced in DTx-treated mice relative to the contra-

lateral WT transplants (Figure 4D). These experiments indicate

that, although all other epithelial cells were not depleted, the

absence of Lgr5+ cells was detrimental to adequate MG recon-

stitution. This protocol allowed targeted MG Lgr5+ cell depletion

because the recipient mice do not carry the Lgr5-DTR:GFP

transgene. Mammosphere-forming assays in culture confirmed

the indispensability of Lgr5+ cells (Figure S4C).

To complement the results above, we examined the role of

Lgr5+ cells in postnatal MG organogenesis, in a more physiolog-
ical setting, by injecting DTx to pubertal mice that were either

Lgr5-DTR:GFP or WT littermates (Figure 5). Depletion of Lgr5+

cells during pubertal MG development resulted in impaired

ductal invasion (Figures 5A and 5B) and, interestingly, also in

a significant reduction in the number of terminal end buds

(TEBs) at the epithelial invading front (Figures 5C and 5D),

even though Lgr5+ cells (Figure 1A) and their lineage-specific

progeny (Figures 5E and S5) are absent from the TEBs. In

this context, although Lgr4 has been shown to play a minor

role in MG development (Oyama et al., 2011), Lgr4+ cells were

not interchangeable with Lgr5+ cells because a significant

phenotype was observed upon Lgr5+ cell depletion. These

data show that under normal physiology, although all other

cells (including additional progenitor cells) were not depleted,

the presence of Lgr5+ cells is necessary for MG pubertal
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Figure 4. Depletion Experiments Demonstrate that Lgr5+ Cells Are Necessary for MG Epithelial Reconstitution

(A) Depletion of Lgr5+ cells was achieved utilizing Lgr5-DTR:GFP crossed into actin-RFPmice, injected with 50 ng/g BWDTx, analyzed 24 hr post-DTx i.p. (Lgr5+

cells are 0.1% of total dissociated mammary cells versus 0% in DTx-injected mice).

(B) Isolated primary MECs of Lgr5-DTR:GFP mice or WT littermates transplanted into contralateral precleared mammary fat pads with or without DTx admin-

istration. MGs collected 3 weeks posttransplantation had significantly impaired outgrowths in the Lgr5-DTR:GFP transplants versus the WT controls.

(C) To assess the growth potential of the Lgr5-DTR:GFP and control littermate, mice transplanted with the same cells as in (B) but not treated with DTx reveal no

difference between the two contralateral sides.

(D) Outgrowth area for Lgr5-DTR:GFP epithelial transplants (including impaired ducts) relative to the contralateral WT transplants is significantly reduced in

DTx-treated mice (*p = 0.006). Bars represent SE.

See also Figure S4.
development and reinforce the depletion results in the trans-

plantation setting.

DISCUSSION

Classically, stem cells are characterized by their ability to self-

renew as well as to differentiate into specialized cells. According

to these criteria, Lgr5+ cells have been identified as adult stem

cells in the small intestine, colon (Barker et al., 2007), stomach

(Barker et al., 2010), and hair follicle (Barker et al., 2008). Our

study now shows that Lgr5+ cells are also adult stem cells

in the MG. By transplantation assays, we demonstrated that
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most Lgr5+ cells are a subset of the basal population previously

shown to include the mammary stem cells, exhibiting superior

reconstitution capabilities as compared to other cells within

that population and are also extremely efficient in regenerating

a MG from a single cell. The reconstituted MG epithelial tree

was also functional because it was able to undergo adequate

differentiation during pregnancy and produce a milk protein.

Lgr5+ cells were multipotent and maintain regenerative potential

in serial transplantations and, therefore, sufficient for postnatal

MG organogenesis. They were also necessary for MG organo-

genesis as shown in depletion assays in both transplantation

and physiological settings.



Figure 5. Depletion of Lgr5+ Cells during

Pubertal Development Results in Impaired

Ductal Invasion and TEB Formation

(A) Carmine-stained MG of 4.5-week-old Lgr5-

DTR:GFP mice (n = 6) or WT littermates (n = 4) that

were i.p. injected with DTx demonstrates sig-

nificantly reduced ductal invasion in the Lgr5-

DTR:GFP mice.

(B) Quantification of data presented in (A).

*p = 0.004.

(C) Depletion of Lgr5+ cells from Lgr5-DTR:GFP

mice resulted in significant reduction in the

number of TEBs per MG versus WT littermates.

Arrows indicate the TEBs.

(D) Quantification of data presented in (C).

*p = 0.0015.

(E) Whole mounts of 5-week-old Lgr5-EGFP-

IRES-creERT2/Rosa-Tomato mice 1 week past

start of Tamoxifen (TAM) induction indicated that

Lgr5+ cell progeny is close to the nipple area (left)

and, according to its localization and shape, mark

myoepithelial cells (middle, enlargement of red

boxed area in left) and not TEBs in the invading

front (carmine-stained tissue on right).

Bars represent SE. See also Figure S5.
The frequency of MRUs was previously estimated to be

between 1 MRU per 8–17 cells using transplants of single cells

or 1 per 64 cells within the Lin�CD24+CD29high population of

mammary cells (Shackleton et al., 2006) or 1 per 60 cells (for

FVB background) and 1 per 90 cells (for C57BL/6 background)

within the Lin�CD24+CD49fhigh cells (Stingl et al., 2006) in limiting

dilution experiments. More recently, the stem cell frequency

within the adult Lin�CD24+CD49fhigh population was estimated

as 1 per 50 cells when coinjected with Matrigel (Spike et al.,

2012). The reconstitution capabilities of one per four cells that

we observed are remarkable, bringing us closer to obtaining

a homogeneous population of MRUs.

Although previous transplant experiments suggested a com-

mon progenitor for both major mammary epithelial lineages

(myoepithelial/basal and luminal) (Shackleton et al., 2006; Stingl

et al., 2006), a recent study that utilized lineage-tracing assays

pointed to two different progenitors for these lineages as early

as birth (Van Keymeulen et al., 2011) and, therefore, suggested

a more restricted fate for the Lgr5+cells, which was reinforced

in a recent study by de Visser et al. (2012) and also in our study.

These data point to important differences between lineage-

tracing and transplantation techniques. Indeed, individual stem

cells can have different roles under physiological, homeostatic

conditions visualized by lineage tracing (van Amerongen et al.,

2012), compared to when they are challenged to regenerate an

entire organ in the transplant assays (Keller et al., 2011). Thus,
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lineage-tracing experiments using an

Lgr5-CreER line show that Lgr5+ cells

give rise only to myoepithelial cells in

pubertal MGs (Van Keymeulen et al.,

2011), whereas our transplant experi-

ments demonstrated that a single Lgr5+

cell is sufficient to regenerate a complete
mammary epithelium and differentiates into both myoepithelial

and luminal cells. The transplant assays might therefore uncover

a regenerative potential of Lgr5+ cells that would be inhibited

during MG pubertal development. However, in all the previous

studies, depletion of a specific cell population in the presence

of all the other cells was not attempted. We now have demon-

strated that, in the MG, the unique approach of specific Lgr5+

cell depletion resulted in significantly impaired organogenesis,

indicating that Lgr5+ cells are required during both regeneration

from transplanted MECs but also, and more importantly, during

physiological pubertal development.

Previous studies indicate that mammary stem cells are likely to

be present in any portion of the epithelial branches (Kordon and

Smith, 1998). Our study showed that Lgr5+ cells, although able to

regenerate a full MG, are clustered toward the nipple area in

pubertal MGs, where the branching of the epithelium originates,

and they or their progeny is not found at the invading front of the

ductal tree. However, Lgr5+ cell depletion in the transplants re-

sulted in significantly impaired reconstitution, although all other

epithelial cells were not targeted for depletion. Moreover, Lgr5+

cell depletion during physiological MG organogenesis also

resulted in impaired ductal invasion and specifically was charac-

terized by diminished TEBs. TEBs are essential to pubertal

MG development and contain additional progenitor populations

(as Axin 2+ cells; van Amerongen et al., 2012). Our data indi-

cate that even if there are additional stem/progenitor cells that
8, January 31, 2013 ª2013 The Authors 75



contribute to MG organogenesis, Lgr5+ cells are not only suffi-

cient but also essential for this process and suggest a cross-

talk between various stem/progenitor cells during normal MG

development.

Stem cells are key for understanding both normal develop-

ment as well as associated pathologies. In fact, Lgr5 was first

described as a gene expressed in colon cancer cells (van de

Wetering et al., 2002). Moreover, it has since been postulated

that transformation of Lgr5+ stem cells drivesmalignant progres-

sion in the small intestine and colon (Barker et al., 2009), and

stem cell activity has been demonstrated in Lgr5+ cells in mouse

intestinal adenoma (Schepers et al., 2012). Lgr5 is also overex-

pressed in other cancers (McClanahan et al., 2006; Oskarsson

et al., 2011; Yamamoto et al., 2003), including breast cancer

(Oskarsson et al., 2011). The fact that Lgr5+ cells are particularly

efficient in regenerating a full MG suggests that they could also

effectively play an active role in breast cancer once they are

transformed. Because Wnt signaling has been implicated in

different stages of mammary oncogenesis, future studies should

explore the role of Lgr5+ cells as breast cancer stem cells. More-

over, R-spondins were recently shown to potentiate Wnt/b-cat-

enin signaling through Lgr5 (Carmon et al., 2011; de Lau et al.,

2011; Gong et al., 2012). Because local epithelial R-spondin 1

signaling is required for normal development of the MG (Chadi

et al., 2009), future studies evaluating the role of Lgr5 as a re-

ceptor for R-spondin during mammary development and cancer

are worth pursuing.

EXPERIMENTAL PROCEDURES

Mouse Strains

C57BL/6J (Jackson Laboratories), b-actin-RFP (Long et al., 2005), LifeAct-

RFP (Riedl et al., 2010), Lgr5-EGFP-IRES-creERT2 (Lgr5-EGFP) (Barker

et al., 2007), Lgr5-DTR:GFP (Tian et al., 2011), and Ai14 Rosa-Tomato (Madi-

sen et al., 2010) mice were bred and maintained in the UCSF animal facility

according to IACUC guidelines. All mice were maintained in C57BL6J back-

ground. b-Actin-RFP and LifeAct-RFP reporter mice were used interchange-

ably to specifically identify and visualize mammary outgrowths from the

donor mice.

Mammary Cell Preparations

MGs were dissected from pubertal (7- to 9-week-old) female mice. For flow

cytometry and limiting dilution experiments, after mechanical dissociation

with a scalpel, the tissue was placed in culture medium (DMEM/F12 with

5 ng/ml insulin and 50 ng/ml gentamycin (UCSF Cell Culture Facility) contain-

ing 2 mg/ml collagenase-1 (Sigma-Aldrich), and digested for 30 min at 37�C.
The resulting suspension was sequentially resuspended in 2 U/ml DNase for

3 min at room temperature (RT), washed and dissociated with 2 ml 0.05%

trypsin/EDTA (UCSF Cell Culture Facility) for 10 min at 37�C, and filtered

through a 70 mm filter. Erythrocytes were lysed with Red Blood Cell Lysis

Buffer (protocol ID PS00000002; Gilman et al., 2002) for 1 min at RT. For the

DTx depletion experiments, epithelium-enriched organoids were prepared

as described previously by Ewald et al. (2008), then dissociated with 2 ml

0.05% trypsin/EDTA and filtered as described above.

Cell Labeling, Flow Cytometry, and Sorting

Antibodies against the mouse antigens CD45, CD31, TER119, CD49f, and

CD24 were purchased from eBioscience. For the single-cell transplants,

single Lgr5-GFP+ cells were sorted into 96-well plates in minimal medium

plus 2.5 nM FGF2 (Ewald et al., 2008). Flow cytometry was performed with

the use of LSRII for data analysis and FACS ARIA for cell sorting (BD

Biosciences).
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Mammary Fat Pad Transplantation

Cleared fat pads from 3-week-old female nude mice (Simenson) were trans-

planted with 1–100 MECs in 50/50 Matrigel/minimal medium plus 2.5 nM

FGF2 (Ewald et al., 2008). The tissues cleared from the MGs were carmine

stained as described below to validate adequate clearing of the native epithe-

lium (to ensure that the native epithelium had not yet reached the lymph

node). The transplanted mammary epithelium was allowed to grow from 3

to 8 weeks, and mammary outgrowths were analyzed by whole-mount stain-

ing with carmine, whole-mount fluorescence, or flow cytometry. For the

secondary and tertiary transplants, pieces of mammary fat pad containing

epithelium were transplanted into cleared fat pads from 3-week-old female

nude mice. Mammary outgrowths were analyzed 5 weeks after transplants.

Outgrowths were considered positive when the epithelium invaded at least

half of the fat pad. For single-cell transplants and serial transplantation exper-

iments, Lgr5-EGFP-IRES-creERT2 mice were crossed into the LifeAct-RFP

reporter mice, and for Lgr5 depletion experiments, Lgr5-DTR:GFP mice

were crossed into the b-actin-RFP reporter mice to allow easier and reliable

detection of outgrowths.

Histochemistry, Immunohistochemistry, and Immunofluorescence

Mammary whole mounts were stained with carmine Alum (Sigma-Aldrich).

Cryo- or paraffin sections from the inguinal (#4) MGs of Lgr5-EGFP mice or

from mammary outgrowths were labeled using the following primary anti-

bodies: GFP (Abcam; ab5450, 1:200); cytokeratin 14 (Covance; PRB-155P,

1:500); cytokeratin 8 (Troma 1, Developmental Studies Hybridoma Bank,

Iowa; 1:50); and b-casein (ABBIOTEC; #250558, 1:200).

Real-Time PCR

Sorted cell populations were lysed, and RNA was extracted using a QIAGEN

mini kit (74104). cDNA synthesis was performed using the Invitrogen Super-

Script III system (18080-051), and quantitative reverse-transcription PCR

was done via the SYBR Green (Applied Biosystems; 4309155) method and

an Eppendorf Realplex Mastercycler. Primer sequences are listed in Table

S1. Primers were purchased from SABiosciences. Relative quantification of

gene expression was calculated according the Pfaffl method. Target gene

expression in each cell subpopulation was normalized to HPRT and GAPDH

reference gene expression. The data reported are one representative ex-

periment of three independent sorting and quantitative reverse-transcription

PCR experiments.

DTx-Mediated Cell Depletion

Mammary fat pads from 3-week-old female nude mice (Simenson) were

cleared to remove all endogenous epithelium, and the recipient mice were

allowed to grow bigger before transplantation and therefore become more

resilient to DTx toxicity. Four to 5 weeks later, 104 MECs from Lgr5-DTR:GFP

or WT littermates were contralaterally transplanted into precleared fat pads in

Matrigel/minimal medium plus 2.5 nM FGF2, 1:1 (Ewald et al., 2008) containing

1 mg/ml DTx (Sigma-Aldrich), or no DTx in external controls, to achieve imme-

diate but local Lgr5+ cell depletion. After 6 days,micewere injected intraperito-

neally (i.p.) with 50 ng/g body weight (BW) DTx, three times/week for 1.5 weeks

to maintain Lgr5+ cell depletion throughout the experiment. Mammary tissue

was collected 3 weeks posttransplantation, which is sufficient time to yield

mammary outgrowths. Due to possible DTx toxicity at the concentration of

50 ng/g BW, which allows full Lgr5+ depletion in the mammary, the treatment

regimen above could not beprolonged further to allowoutgrowths to fully prog-

ress, so the internal controls of outgrowths from WT cells, which are also sub-

jected to DTx, serve as a reference to the Lgr5-DTR:GFP outgrowths. The

external control group was i.p. injected with PBS under a similar regimen.

In a separate set of experiments, 4.5-week-old Lgr5-DTR or WT littermates

were injected i.p. with 50 ng/g BW DTx, three times per week for 1.5 weeks.

Inguinal MGs were retrieved, carmine stained, and the ductal-invaded area

was calculated. Calculation was done using ImageJ software—the ductal

area calculated is demarcated (the lymph node is the point of reference for

ductal invasion). Additionally, TEBs were manually counted directly from MG

wholemounts. Due to the possible effect of DTx depletion on additional organs

in Lgr5-DTR:GFP mice and DTx toxicity, these experiments could not be

prolonged beyond the current endpoint.



In Vivo Tamoxifen Induction

Four-week-old Lgr5-EGFP-IRES-creERT2/Rosa-Tomato female mice were

i.p. injected with 5 mg of Tamoxifen (Sigma-Aldrich) diluted in sunflower oil

(Sigma-Aldrich) every other day for a total of 3 days (15 mg total), as indicated

in Van Keymeulen et al. (2011). MGswere collected at 5, 6, and 7weeks of age,

and Cre induction was assessed by whole-mount fluorescence while epithelial

outgrowths were visualized by carmine staining.

For further details, see the Extended Experimental Procedures.
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Massberg, S., Aszodi, A., Sixt, M., and Wedlich-Söldner, R. (2010). Lifeact
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