
Journal of Biomedical Informatics 43 (2010) 273–286

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier .com/locate /y jb in
Using hierarchical dynamic Bayesian networks to investigate dynamics
of organ failure in patients in the Intensive Care Unit

Linda Peelen a,d,*, Nicolette F. de Keizer a, Evert de Jonge b, Robert-Jan Bosman c, Ameen Abu-Hanna a,
Niels Peek a

a Department of Medical Informatics, Academic Medical Center, Amsterdam, The Netherlands
b Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands
c Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
d Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands

a r t i c l e i n f o
Article history:
Received 15 June 2009
Available online 27 October 2009

Keywords:
Temporal patterns
Dynamic Bayesian network
Clinical data
Prognosis
Intensive care
Organ failure
1532-0464/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.jbi.2009.10.002

* Corresponding author. Address: Julius Center for
Care, University Medical Center Utrecht, Mailbox Str.
GA Utrecht, The Netherlands. Fax: +31 88 7555480.

E-mail address: l.m.peelen@umcutrecht.nl (L. Peel
a b s t r a c t

In intensive care medicine close monitoring of organ failure status is important for the prognosis of
patients and for choices regarding ICU management. Major challenges in analyzing the multitude of data
pertaining to the functioning of the organ systems over time are to extract meaningful clinical patterns
and to provide predictions for the future course of diseases. With their explicit states and probabilistic
state transitions, Markov models seem to fit this purpose well. In complex domains such as intensive care
a choice is often made between a simple model that is estimated from the data, or a more complex model
in which the parameters are provided by domain experts.

Our primary aim is to combine these approaches and develop a set of complex Markov models based on
clinical data. In this paper we describe the design choices underlying the models, which enable them to
identify temporal patterns, predict outcomes, and test clinical hypotheses. Our models are characterized
by the choice of the dynamic hierarchical Bayesian network structure and the use of logistic regression
equations in estimating the transition probabilities. We demonstrate the induction, inference, evaluation,
and use of these models in practice in a case-study of patients with severe sepsis admitted to four Dutch
ICUs.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction tients with a given profile, they can serve as a basis for evaluation
Time is an important concept in medical care [1]. The evolution
of disease is often closely related to treatment policy, and influ-
ences the chances of recovery. Physicians therefore closely monitor
changes that occur over time. Intensive care medicine aims to care
for patients with severe organ dysfunction or failure and to take
over the role of the organ systems by means of machinery and
medication if necessary. In this domain, insight into changes in or-
gan failure over time is important for several reasons. First, it sup-
ports monitoring of the effect of current treatment and
considerations concerning adaptations of the treatment regimen
for individual patients. Second, it is useful for planning purposes,
e.g., to schedule the availability of machinery such as mechanical
ventilation in case of respiratory failure. Finally, as these insights
describe scenarios of organ failure that are to be expected for pa-
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of care, where the expected scenario is compared with the course
of disease as it occurred in practice.

In the Intensive Care Unit (ICU) organ failure is measured on a
regular basis and generally expressed using organ failure scoring
systems such as the Logistic Organ Dysfunction System (LODS)
[2] and the Sequential Organ Failure Assessment (SOFA) score
[3]. These systems typically express the degree of dysfunction/fail-
ure of individual organ systems on a particular day by means of a
score (based on physiological values) and combine these individual
scores into a total measure of organ failure. This results in daily
scores of organ failure throughout the ICU stay until the patient
has died or has been discharged from the ICU. One of the major
challenges for data analysts is to extract meaningful patterns from
these data, which provide insight into factors that influence devel-
opment and persistence of different types of organ failure.

Most of the research on organ failure focuses on the relation
between organ failure and eventual outcome of the ICU stay, often
ICU mortality or hospital mortality. Within these studies the temporal
aspect of the data is handled in various ways: it is not included in the
models [3,4], sequential measurements of organ failure are summa-
rized over time (i.e., horizontal temporal abstraction [5]), resulting
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1 In the models, we will ignore the fact that patients are sometimes readmitted to
the ICU after being discharged, basically extending the first ICU stay. Instead, we treat
such readmissions as independent ICU admissions.
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in summary measures describing changes in organ failure [6–10], or
patterns of organ failure are constructed and subsequently related to
outcome [11,12]. However, much less is known on the dynamics of or-
gan failure in successive days of ICU stay. As indicated before, insight
into factors that influence the short-term risk of ICU death or develop-
ment and persistence of organ failure can be helpful in daily clinical
practice and planning and for evaluation of care. Therefore the current
study focuses on day-to-day changes in organ failure in ICU patients.

One convenient type of model to investigate those day-to-day
changes in organ failure over time is the so-called (discrete-time)
probabilistic state-transition model, or Markov model. A Markov
model identifies a set of possible clinical patient states, and de-
scribes the probabilities that states are followed by other states
or persist through time [13,14]. In the ICU context, patient states
are typically defined by number and type of failing organ systems.

Markov models have been used in various medical applications.
In the medical statistical literature Markov models have been used,
among others, to analyze patterns of changes in oncology [15] and
allergic disease [16]. These applications generally have a univariate
state representation with a small number of states (e.g., two to
three disease states) and are often built based on clinical data.

In medical artificial intelligence (AI), Markov models often have
a complex, multivariate state representation, and the model is ex-
pressed as a dynamic Bayesian network [17]. Applications are
found in the field of, e.g., bacteraemia [18] and other infectious dis-
eases [19–21]. These networks are often hand-crafted with the
help of domain experts, and contain large numbers of subjectively
estimated parameters. Several attempts have been made to build
this type of model from data [22,23].

In this paper we combine these existing approaches to induce
Markov models with complex, multivariate state descriptions from
clinical data. We aim to derive models that can identify temporal
patterns, predict future course of disease, and test clinical hypoth-
eses. Furthermore, the models should be able to capture the
dynamics of organ failure at the ICU on two levels: the processes
regarding the eventual outcome of ICU stay (i.e., the short-term
risk of dying at the ICU or being discharged from the ICU) and
the processes related to development or persistence of organ fail-
ure in successive days when the patient stays at the ICU. To fulfill
these requirements we have chosen to use a dynamic hierarchical
Bayesian network structure in which the transition probabilities
are estimated using logistic regression equations.

In this paper we describe these design choices and demonstrate
the induction, inference, evaluation, and use of these models in
practice by means of a case-study in patients admitted to the ICU
with severe sepsis. These patients form an important part of the
ICU population, with incidences ranging from 10% to 64% [24]. It
is the leading cause of death in adult general ICUs with a mortality
of 30–45% [24–26]. Given the large amount of organ failure that is
seen in these patients [24,25] and the lack of knowledge regarding
the mechanisms underlying organ failure in these patients [27],
this is a typical disease area in which more insight into the dynam-
ics of the disease is desired.

In the medical literature much debate has been going on
whether it is the severity of organ failure that is related to the out-
come, or failure in specific organ systems [3,28,29]. Therefore three
Markov models are developed related to these clinical hypotheses.
The first model describes how the severity of organ failure (i.e., the
number of failing organ systems) changes over time, whereas the
second model focuses on failure in specific organ systems. The
third model is an extension of the second one and makes a distinc-
tion between persistence of existing organ failure and develop-
ment of new organ failure on the next day.

The paper is constructed as follows. In Section 2 we introduce
the data that are used in this study, describe the design, structure,
induction, and inference of the models, and we indicate how the
models were evaluated. Section 3 provides the clinical results from
the models and the results from the evaluation. In Section 4 we
briefly illustrate two possible applications of the models. In Section
5 we discuss our work and further relate it to other literature.

2. Methods

2.1. Data

2.1.1. Patient population
The analysis is based on prospectively collected data of all con-

secutive patients admitted with severe sepsis to four Dutch ICUs
between January 1st, 2002 and December 31st, 2006. The four ICUs
were all mixed-type ICUs, one in an academic hospital and three in
teaching hospitals. The data has been collected as part of the Dutch
National Intensive Care Evaluation (NICE) registry (www.stichting-
nice.nl) and has been anonymized in a way that all patient identi-
fying information, such as name and patient identification number,
has been removed.

Patients were identified as being admitted with severe sepsis if
they fulfilled the following criteria within the first 24 h of ICU
admission: confirmed infection with at least two modified Sys-
temic Inflammatory Response Syndrome (SIRS) criteria [30,31]
and at least one dysfunctioning organ system. Patients for whom
information on the first day of ICU admission was missing were ex-
cluded from the analyses as their compliance with the severe sep-
sis definition could not be verified.

2.1.2. Organ failure
Organ failure was measured on a daily basis using the SOFA

scoring system [3]. For each patient, data were collected on the
first 24 h of admission, and thereafter on sequential 24-h-periods
synchronized with the starting time of the ICU day as used in each
of the hospitals. In accordance with the original SOFA scoring sys-
tem [3] the worst values of each 24 h period were used. Further-
more, data regarding patient characteristics, severity-of-illness in
the first 24 h of admission (based on the Simplified Acute Physiol-
ogy (SAPS) II score [32]), and ICU- and hospital outcome were reg-
istered. All data were collected as raw data according to stringent
data definitions used within the NICE registry [33]. Based on these
raw data the SAPS II score, the SOFA scores per organ system, and
the total SOFA score were calculated in the coordinating centre of
the NICE registry (Department of Medical Informatics, Academic
Medical Center, Amsterdam). Originally, the SOFA scores for the
individual organ systems range from 0 (indicating no organ dys-
function) to 4 (indicating most severe organ failure). For the
case-study these scores were dichotomized into the categories
‘non-failure’ (organ system values 0–2) and ‘failure’ (organ system
values 3 or 4) [3].

2.2. Model types

A discrete-time Markov model identifies a set of possible states,
a set of time points, and has a function for describing the probabil-
ities of transitions between states at subsequent time points. In
medical applications, the set of possible states is the set of possible
clinical conditions deemed relevant for the application at hand. A
most basic Markov model for ICU patients, depicted in Fig. 1, has
only three states (1) the patient is at the ICU; (2) the patient has
died; (3) the patient has been discharged from the ICU. Here, the
latter two states are final states from which no further transitions
are possible.1 We will use this basic model as a conceptual basis to

http://www.stichting-nice.nl
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Fig. 1. Basic state-transition model for the ICU with three possible states: ‘ICU discharge’, ‘ICU death’ and ‘ICU stay’. Arrows indicate possible transitions. ICU death and ICU
discharge are depicted by a double box as these are so-called final states, i.e., states from which no transitions to other states are possible. (a) Static representation; (b)
dynamic representation.
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explore more elaborate models. In Fig. 1 the model is depicted using
two representations: part (a) shows the ‘static’ representation in
which time is modelled implicitly, and part (b) provides a ‘dynamic’
view on the process where two subsequent ‘‘time slices” are de-
picted (t and t + 1) and the arcs explicitly indicate transitions over
time. Below, we discuss three extensions to the basic model, each
of which is more complex than the previous one and is therefore
equipped to address more refined clinical scenarios. In each of the
models, the set of time points is the number of whole days since
admission to the ICU, starting with the day of admission itself.

2.2.1. Model I amount of organ failure
Several studies have shown that a higher number of failing or-

gans at ICU admission increases the probability of a prolonged ICU
stay and death; the same holds for organ failure experienced at
subsequent days during the ICU stay [3,6,7]. These findings were
obtained with conventional statistical analysis techniques, such
as logistic regression analysis. In Model I we describe day-to-day
changes in the amount of organ failure and verify to which extent
these relate to the outcome of ICU stay. To this end, the state ‘ICU
stay’ in the basic model is replaced by five states describing the
amount of organ failure, namely having zero, one, two, three, or
more than three failing organ systems (Fig. 2), resulting in seven
possible states in total.

2.2.2. Model II type of organ failure
It is known that problems with different organ systems, espe-

cially early in ICU stay, have a different influence on the outcome
of the patient [9,10]. In Model II we investigate how failure in spe-
cific organ systems relates to organ failure on subsequent days and
to the final outcome. In order to do so the state ‘ICU stay’ in the ba-
sic model is replaced by a combination of six binary variables indi-
cating the presence of failure in each of the six organ systems in
the body (coag, hepa, circ, neuro, renal, and resp, denoting failure
in the coagulatory, hepatic, circulatory, neurological, renal, and
respiratory system, respectively). This yields 64 states describing
‘ICU stay’, resulting in a total of 66 states in the model.

Fig. 3 gives a representation of Model II, using the dynamic rep-
resentation of the basic model depicted in Fig. 1b. The six ellipses
represent the binary variables expressing the presence or absence
of failure in each of the individual organ systems if the patient is in
the ICU. Fig. 3a highlights the transitions between the three states
ICU death, ICU discharge, and ICU stay, similar to Fig. 1b. Fig. 3b de-
scribes the situation where the patient remains at the ICU, and
then focuses on the relations between organ failures at 2 subse-
quent days.

2.2.3. Model III differences between development and persistence of
organ failure

The mechanisms involved in the interaction between different
organ systems over time are complex as changes in organ failure
are a result of the interplay between hemodynamics, oxygen trans-
portation, and metabolic disturbances [27] and different factors are
involved in the development and the persistence of specific organ
failure [29]. Model II assumes that the same function can be used
to model development and persistence of organ failure, i.e., it is as-
sumed that the role of other organ systems remains similar inde-
pendent from the presence of failure in the organ systems of
interest. In Model III this assumption is relaxed, as separate func-
tions are used to describe the mechanisms of development and
persistence of organ failure, in which the role of other organ sys-
tems is modeled conditional on whether the organ failure of inter-
est was already present at day t. For instance, where Model II
assumes that the influence of the cardiovascular system on respi-
ratory functioning is the same in all situations, Model III makes a
distinction between normally breathing patients, at risk of increas-
ing respiratory problems, and patients already having these prob-
lems, at risk of not recovering from it. The influence of the
cardiovascular and other organ systems is known to be different
for these two types of patients, and this is accounted for in Model
III. We note that the representation of Models II and III is similar,
i.e., Fig. 3 also represents Model III; the difference between the
models is captured in the transition probabilities.

2.2.4. Additional state information
After establishing the sets of possible states and time points, the

final ingredient of a Markov model is the transition probability
function (tpf) which defines, for each pair of states st and st+1 iden-
tified by the model, the probability P(st+1|st) of moving from state st

at time t to state st+1 at time t + 1. In this relationship it is assumed
that the state information at a given time point t suffices to de-
scribe the probability distribution over states at the subsequent
time point t + 1 (the first-order Markov assumption). In the ICU do-
main it is, however, known that a patient’s status at the time of ICU
admission continues to influence the development of organ failure
throughout the entire ICU stay [3,29] and may also influence the
eventual outcome (i.e., death or survival) [32]. For this reason we
also determine the transition probabilities conditional on the pa-
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Fig. 2. Representation of Model I. State-transition model with seven possible states (Model I): ICU discharge, ICU death, and five states describing the number of failing organ
systems when the patient is still at the ICU. Arrows indicate possible transitions. The final states ICU death and ICU discharge are indicated by a double box. In total 37
transitions are possible.

(a) (b)
Fig. 3. Representation of Models II and III. Models II and III are represented using two levels. In (a) the upper level of the model is highlighted, focusing on ICU death, ICU stay
and ICU discharge on day t + 1. In (b) the lower level of the model is highlighted, focusing on the relations between organ systems. Note that arcs run from each organ system
on day t to each organ system on day t + 1.
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tient’s severity-of-illness at admission, expressed by means of the
SAPS II score [32]. Furthermore, it was recently shown that the
probabilities of death and discharge vary during ICU stay, even if
we take the patient’s current clinical state into account [34].
Kayaalp et al. also found that non-stationary models performed
better than stationary models in the ICU domain [35]. Therefore
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time is included as a parameter in the transition probabilities. This
means that the transition probabilities are written P(st+1|st, SAPS, t),
where SAPS denotes the severity-of-illness at admission.

2.3. Model structure

The patient state as described in the above models comprises
information at two levels (i) where is the patient (at the ICU, died
at the ICU, or discharged from the ICU) and (ii) if the patient is at
the ICU, how is his or her condition, expressed in terms of organ
failure. In the representation of the state of the patient and in
the structure of the models we take this hierarchical nature of
the patient state into account, as follows. We express the state of
the patient at time point t, st, by a pair st = (lt, OFt), where lt de-
scribes the state of the patient at day t at the upper level, lt 2 (‘ICU
death’, ‘ICU discharge’, ‘ICU stay’), and OFt describes the organ fail-
ure at day t (lower level). Note that OFt is only relevant if lt equals
‘ICU stay’. When lt equals ’ICU death’ or ‘ICU discharge’, the transi-
tion probabilities default to 1 for lt+1 = lt and zero otherwise. The
transition probabilities that are to be estimated from the data
therefore can be written as Pðstþ1jOFt ; SAPS; tÞ.

Theoretically, it is possible to estimate all transition probabili-
ties of a Markov model directly from the data, in which case the
tpf is a matrix of transition probabilities. In the current study, how-
ever, the large number of possible states (especially in Models II
and III) hinders direct estimation of the transition probabilities be-
cause many cells in the tpf matrix will be empty or represented by
very few data instances. A reduction in the number of probability
estimates can be achieved by assuming a structured or parametric
form for the tpf. Here we choose a combination of the two, using
sets of additive logistic regression models (Models I, II, and III) as
parametric form and hierarchical dynamic Bayesian networks
(Models II and III) to model structure.

Additive logistic regression models have the advantage that
they quantify the strengths of the relations between variables,
and therefore enhance clinical interpretability of the Markov
model. Furthermore, they allow for relatively straightforward
inclusion of the additional state information, in our case the values
of t and SAPS. The general form of the additive logistic regression
models used in this study is

log
Pðstþ1jOFt ; SAPS; tÞ

1� Pðstþ1jOFt ; SAPS; tÞ ¼ b0 þ b1g1ðOFtÞ þ b2g2ðtÞ

þ b3½g2ðtÞ � SAPS� ð1Þ

where g1 is a parametric function specific for each of the three Markov
models (see below), and g2 is a discretization function that transforms
the time parameter t into four categories (based on [34]), relating to
1–3, 4–7, 8–14, and more than 14 days of ICU stay, respectively. The
SAPS II score is included as a continuous parameter, interacting with
the discretized time parameter to allow for a varying influence of
severity-of-illness at admission throughout the ICU stay. For each
model the regression parameters b0, . . . , b3 are estimated from the
data using regression analysis (see also Section 2.4).

An important difference exists between Model I on the one
hand and Models II and III on the other in the elaboration of the
left-hand side of Eq. (1). While Models II and III employ a struc-
tured, multi-dimensional state description, in Model I the state
description is ‘flattened’ to a single categorical variable with seven
possible values.

When focusing on the right-hand side of Eq. (1), in Model I OFt is
a numerical variable that counts the amount of organ failure, i.e.,
the number of failing organ systems. Because we cannot assume
a linear relationship between this number and log odds of the tran-
sition probabilities, OFt is represented by an categorical variable.
Furthermore, as relatively few patients experience organ failure
in four, five, or six organ systems, these patients are grouped into
one category. So OFt 2 (‘0’, ‘1’, ‘2’, ‘3’, ‘>3’). Within the regression
equations this is implemented by means of four binary dummy
variables denoting failure in one, two, three or more than three or-
gan systems, with absence of organ failure serving as the reference
category and represented by each of the four dummy variables
being set to zero. This results in the following equation for g1(OFt):

g1ðOFtÞ ¼ b10IðOFt ¼ 1Þ þ b11IðOFt ¼ 2Þ þ b12IðOFt ¼ 3Þ
þ b13IðOFt ¼ ‘ > 3’Þ ð2Þ

where again parameters b10, . . . , b13 are estimated from the data
when the model of Eq. (1) is fitted.

As indicated above, in Model I the future state of the patient, st+1,
is represented by one categorical variable with seven possible val-
ues, one for each state represented in Fig. 2. In estimating the transi-
tion probabilities in Model I we thus estimate P(st+1|OFt, SAPS, t) using
six regression equations (see Section 2.4 for more details on the sta-
tistical analysis). As in each regression equation eleven parameters
are being estimated (four in g1(OFt), three for the categorical variable
describing t, and four for the interaction between t and SAPS), in total
Model I contains 6�11 = 66 estimated parameters.

In Models II and III organ failure is described by six dimensions
representing failure in each of the six organ systems. So OFt itself is
a tuple: OFt = (coagt, hepat, circt, neurot, renalt, respt), where coagt,
hepat, circt, neurot, renalt, respt are binary variables denoting fail-
ure in the coagulatory, hepatic, circulatory, neurological, renal
and respiratory system at day t, respectively. In these models the
large number of possible states prevents combining the two levels
as was done in Model I. Therefore, P(lt+1|OFt, SAPS, t) and P(OFt+1|OFt,
SAPS, t) are estimated separately. However, these probabilities do
have a hierarchical relation, as P(OFt+1|OFt, SAPS, t) becomes irrele-
vant if P(lt+1 = ‘ICU stay’|OFt, SAPS, t) = 0.

To represent this hierarchical relation we use hierarchical dy-
namic Bayesian networks. Hierarchical Bayesian networks [36]
are a generalization of standard Bayesian Networks which allow
their variables to represent structured types. This means that each
variable V in the network may be composed of multiple variables
that are subsumed by V, and between which independency rela-
tions can be expressed. As a result, we can consider the Bayesian
network at multiple levels of aggregation – hence the name hierar-
chical Bayesian network. For Models II and III, we used the hierar-
chical variant of dynamic Bayesian networks (DBNs) [37–39],
which allow for modelling multivariate stochastic processes.

To restrict the complexity of the DBNs we assume that all state
variables are mutually conditionally independent given their val-
ues at the preceding time point. This implies that only diachronic
dependencies (i.e., relations between variables from different time
slices) exist in the networks, and that synchronic dependencies
(i.e., relations between variables within one time slice) are absent.

At both levels of the network, the conditional probability func-
tions associated with variables at time t + 1 are all described by
additive logistic regression models of the form of Eq. (1), now using
the state transformation

g01ðOFtÞ ¼ b11coagt þ b12hepat þ b13circt þ b14neurot

þ b15renalt þ b16respt ð3Þ

In each of these regression equations thirteen parameters are
estimated, namely six for the organ systems, three for the categor-
ical value representing t, and four for the interaction between t and
SAPS. Model II consists of two regression equations on the upper le-
vel and six regression equations on the lower level, which implies
that in total 8�13 = 104 parameters are to be estimated.

Model III makes a distinction between the development and
persistence of organ failure. This occurs at the lower level depicted
in Fig. 3. The distinction is implemented by estimating separate
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sets of parameters b11, . . . , b16 for the situations in which failure in
the specific organ system is already present (e.g., coagt = 1) or not
(e.g., coagt = 0). Note that the parameter related to the organ sys-
tem of interest, in the example of coagulatory failure b11, is obso-
lete in these models and is therefore removed. Model III thus
requires 2�13 parameter estimates on the higher level (similar to
Model II) and 6�(5 + 5 + 3 + 4) = 102 parameters on the lower level,
making 128 estimated parameters in total.

2.4. Model induction

In order to estimate the parameters for the tpf from the data,
the original data were restructured such that each row in the data-
set contained information on two subsequent time slices for the
same patient. So for a patient who had been at the ICU for n days,
the restructured dataset contained n records, of which the last re-
cord contained information on ICU day n (first time slice of that re-
cord) and on the destination of the patient after he has left the ICU
(second time slice of that record). Following the Markov assump-
tion all records of individual patients were considered independent
from each other. For the regression equations in the models, the
information in the records regarding the first time slice were used
as predictor variables, whereas the information on the second time
slice were considered the response (outcome) variables.

In Model I the outcome variable has seven possible values (re-
lated to the seven possible states in this model), and therefore mul-
tinomial logistic regression analysis [40,41], a generalization of
binary logistic regression [42], was used. In this approach the six
regression equations are jointly estimated, making sure that the
resulting probabilities add up to one.

In Models II and III the higher level in the hierarchy has three
states and was also modelled using multinomial logistic regression
analysis. The lower levels of Models II and III both consist of six
binary logistic regression models. In the lower level of Model III
different sets of parameters were used to make the distinction be-
tween development and persistence of organ failure, as described
in Section 2.3. This was obtained by stratifying the analysis on fail-
ure of the organ system of interest at day t, by including interaction
terms in the regression equations.

For Models II and III, the tpf’s on the lower level of the hierarchy
(i.e., the function describing P(OFt+1|OFt , SAPS, t, lt+1 = ‘ICU stay’))
were learned based on the records for which the response category
was ‘ICU stay’ only (i.e., the nth record for each patient was not in-
cluded in this estimation procedure).

2.5. Inference

Following [43,44], we computed predictive inferences on the
Markov models using stochastic simulation. Let s0 and SAPS be a
patient’s state and severity-of-illness score at the time of ICU
admission, respectively. The conditional probability P(st|s0, SAPS)
that this patient reaches state st at day t was derived as follows.
First, we computed the joint posterior distribution on possible
states at day 1 using the Eqs. (1)–(3), and randomly drew one state
according to this distribution. The hierarchical relation between
the levels was reflected by first drawing lt+1 based on the distribu-
tion for P(lt+1|OFt, SAPS, t), and subsequently drawing OFt+1 based on
the distribution for P(OFt+1|OFt, SAPS, t, lt+1 = ‘ICU stay’) if lt+1 equal-
led ‘ICU stay’. This procedure was repeated for days 2, 3, . . . , until
one of the final states (death or discharge from ICU) was reached.
The series of simulated states was then stored in memory for later
computations. The entire simulation process was repeated for N
times, after which P(st|s0, SAPS) was estimated as the proportion
of simulations where state st occurred at day t. To compute the
marginal probability P(st), we randomly drew s0 and SAPS from
the dataset (with replacement) at the start of each simulation.
2.6. Evaluation

The models in this study describe day-to-day changes in organ
failure, which yields insight into factors that influence the dynam-
ics of disease on the short term. For use in clinical practice it is,
however, important that the models do not only fit the data on
day-to-day transitions, but also properly describe changes in organ
failure throughout the entire ICU stay, and the outcome. Therefore
we have chosen to focus on this aspect in the evaluation, which has
the advantage that it also allows for a comparison with other ap-
proaches in this clinical domain. We aim to answer the following
two questions (1) Does the long-term predicted distribution of out-
comes (ICU death or discharge) match its empirical distribution in
the data (calibration)? and (2) Can the models distinguish survi-
vors from non-survivors (discrimination)?

To answer the first question, simulations were conducted as de-
scribed, where starting values were taken to be the actual values of
the 2271 patients in the dataset. For each patient 500 simulations
were conducted, resulting in 500 ‘cohorts’ of ICU patients. The
average ICU mortality and length of stay of these cohorts were cal-
culated and compared with these outcomes in the original dataset.
To obtain more insight whether changes over time were correctly
modeled, for each of the cohorts the distribution of the patients
over the three states ‘ICU death’, ‘ICU stay’ and ‘discharged from
the ICU’ was calculated for the first 30 days after ICU admission.
For six time points (days 2, 5, 10, 15, 20, and 30) the distribution
over these three states in the simulated cohorts was compared
with the distribution in the original dataset. The difference be-
tween observed and expected numbers was calculated as
R((Oij � Eij)2/Eij), where Oij and Eij are the observed and expected
number of patients in state i at day j, respectively, where i 2 (‘ICU
death’, ‘ICU discharge’, ‘ICU stay’) and j 2 (2, 5, 10, 15, 20, 30). This
statistic was tested against a v2 distribution with two degrees of
freedom [45], using a level of significance of 0.05. This part of the
evaluation was performed for the basic model (serving as a refer-
ence model) and Models I, II, and III.

To evaluate to which extent the models discriminate between
patients who die at the ICU and patients who survive ICU stay
the dataset was randomly split into training and test sets of,
respectively, 1541 and 757 patients. For each of the three models
the following procedure was applied. First, the model was refitted
on the training dataset, and subsequently the discriminatory per-
formance of the models was estimated on the test set. To this ex-
tent we conducted simulation studies in a similar fashion as
described above, again using 500 simulations per patient in the test
set. Subsequently, for each patient the probability of ICU death was
calculated as the percentage of those 500 simulated courses of dis-
ease in which the final state was ‘ICU death’. This probability was
subsequently compared to the actual outcome by means of the er-
ror rate and the area under the ROC curve (AUC).

Model development, simulations and analyses were performed
using SPLUS version 6.2 (Insightful Corp., Seattle, WA, USA) ex-
tended with the nnet library for multinomial logistic regression
analysis (multinom function) and the hmisc library to calculate
the AUC (rcorr.cens function).
3. Results

In the period January 1st, 2002–December 31st, 2006 22,423
patients were admitted to the four ICUs. Of these patients 2271
(10.1%) patients fulfilled the criteria for severe sepsis within the
first 24 h of admission. In total 512 patients (22.5%) died at the
ICU and 752 patients (34.6%) died during hospitalization. Table 1
provides information on disease characteristics and outcomes of
these patients. From the number and types of organ failure we
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learn that most of the patients are admitted with failure in one or
two organ systems. Almost 90% of the patients have respiratory
failure at admission (for which they are being mechanically venti-
lated), and one-third of the patients have circulatory failure at
admission. Hepatic failure is rarely seen, both at admission and
during ICU stay. The mean length of ICU stay of these patients
was 8.6 days (median value 4.8 days, inter quartile range (IQR)
1.9–9.9). For these 2271 patients in total 18,814 days with SOFA
scores were available.
3.1. Results from the models

We will now briefly discuss and compare the three Markov
models from a clinical perspective. The models are presented in
terms of odds ratios (calculated from the coefficients in the regres-
sion equations) and transition probabilities (obtained by applying
the tpf).
3.1.1. Model I changes in the amount of failure
Table 2 shows the transition probabilities of Model I for a pa-

tient with a SAPS II score equal to the median of these scores in
the data (value 46) early during ICU stay (upper panel, current
length of ICU stay 1–3 days) and in the second week of ICU stay
(lower panel). The first column denotes the state of the patient
on the current day; columns two through eight denote the state
of the patient on the next day. A larger amount of failing organ
systems at day t increases the short-term risk of ICU death and de-
creases the probability of ICU discharge (except for patients with
Table 1
Baseline characteristics of the study population.

Severe sepsis patients (no) 2271
Male (no, %) 1337, 58.9
Type of admission (no, %)

Medical 1363, 60.0
Urgent surgery 528, 23.2
Elective surgery 380, 16.8

SAPS II score (mean ± SD, median) 48.1 ± 17.2, 46

SOFA score (mean ± SD, median)
Initial 8.6 ± 3.1, 8
Mean 7.7 ± 2.9, 7.1
Max 9.6 ± 3.5, 9

Failing organ systems at admission (no, %)
0 160, 7.0
1 956, 42.1
2 804, 35.4
3 282, 12.4
4 59, 2.6
5 10, 0.4
6 0, 0.0

Organ failure at admission and during ICU stay (no, %; no, %)
Coagulatory 207, 9.1; 405, 17.8
Hepatic 27, 1.2; 71, 3.1
Circulatory 796, 35.0; 1054, 46.4
Neurological 338, 14.9; 552, 24.3
Renal 312, 13.7; 568, 25.0
Respiratory 2016, 88.8; 2062, 90.8

Duration of ICU stay (days, median, IQR) 4.8, 1.9–9.9
Duration of hospitalization (days, median, IQR) 16.9, 7.0–35.6
ICU mortality (no, %) 512, 22.5
Hospital mortality (no, %a) 752, 34.6

SAPS, simplified acute physiology score [32]; SIRS, Systemic Inflammatory Response
Syndrome [30]; ICU, Intensive Care Unit; SD, standard deviation; IQR, inter quartile
range.

a Percentage based on the number of patients, which is 2171 (as 100 of the 2271
admissions were readmissions to the ICU with severe sepsis).
more than three failing organ systems, see fifth row, third column,
p = 0.028). Furthermore, changes in the amount of organ failure oc-
cur gradually: in columns four through eight the highest transition
probabilities are found around the diagonal, indicating it is most
likely to remain in the same state or be at the ICU with one less fail-
ing organ system on the next day. When comparing the upper and
the lower panel we observe that the time the patient has already
spent at the ICU does not influence the probability of imminent
death; however, the probability of ICU discharge is lower for pa-
tients with a longer ICU stay (second and third columns).

In the first 3 days of ICU stay a higher SAPS II score increases the
probability of ICU death (odds ratio (OR) 1.05 with 95% confidence
interval 1.05–1.06) and decreases the probability of ICU discharge
(OR 0.97 (0.96–0.97)). After the patient has spent more than a
week at the ICU, the ORs for ICU death and ICU discharge are
1.00 (0.99–1.02) and 1.00 (0.99–1.01), respectively, indicating that
the severity-of-illness at admission is no longer significant for the
state of the patient at the next day.

3.1.2. Model II changes in the type of organ failure
Table 3 depicts the results of Model II. Columns two and three

relate to the transitions to the states ICU death and ICU discharge
on the next day (upper level of the model), whereas columns four
through nine focus on the prediction of failure in specific organ
systems on the next day (lower level of the model). As indicated
by the odds ratios the individual organ systems do play different
roles with respect to short-term probabilities of ICU death. For
example, neurological failure results in a fourfold risk of death
on the next day (second column, OR = 3.9), while coagulatory, cir-
culatory, and renal failure increases the risk of ICU death with a
factor 1.6–2. Patients with respiratory failure are most likely to
be at the ICU on the next day, as the risk of ICU death and ICU
discharge both decrease when respiratory failure is present (low-
est row).

The right-hand side of the table shows that respiratory and neu-
rological failure are more likely to occur later during ICU stay,
which is reflected by an increasing odds ratio with increasing time
(upper block of odds ratios). Patients with a long ICU stay also have
a relatively high risk of hepatic failure. Again, the influence of the
SAPS II score decreases with time (see middle block of odds ratios),
a pattern that is seen in all organ systems. When focusing on the
lower right part of the table, which denotes the relations between
organ systems, high odds ratios are seen on the diagonal, indicating
that once organ failure is present, it is likely to persist. Several
combinations of organ systems influencing each other can be dis-
tinguished, for example, hepatic failure is associated with coagula-
tory failure on the next day and vice versa (odds ratios of 2.8 and
3.1, respectively). Similarly, patients with circulatory failure have
a 1.3 times higher risk of renal failure on the next day as compared
to patients without circulatory failure.

Altogether, information on the type of organ failure on the cur-
rent day provides an indication of the state of the patient and the
type of organ failure that is to be expected on the next day. In com-
parison with Model I more distinction can be made between the
patients. For example, according to Model I a patient who has just
arrived at the ICU with a SAPS II score of 46 and one failing organ
system has a probability of short-term ICU death of 0.010 (Table 2,
second row, second column). From Model II we learn that in fact
this probability ranges from 0.010 if the respiratory system shows
failure to 0.054 when the neurological system fails. Similarly, Mod-
el I assigns patients with two failing organ systems a probability of
ICU death of 0.025 (third row, second column), whereas Model II
shows a more than 10-fold increase in risk of ICU death when com-
paring patients with hepatic and respiratory failure with patients
who have circulatory and neurological problems (probabilities of
0.011 and 0.125, respectively).



Table 2
Daily transition probabilities based on the number of failing organ systems at day t (Model I).

Number of failing organ systems at day t State at day t + 1

ICU death ICU discharge ICU stay with number of failing organ systems

0 OF 1 OF 2 OF 3 OF >3 OF

ICU LOS 1–3 days
0 0.007 0.483 0.406 0.080 0.022 0.002 0.000
1 0.010 0.100 0.098 0.670 0.116 0.006 0.000
2 0.025 0.031 0.024 0.213 0.638 0.066 0.003
3 0.047 0.020 0.004 0.060 0.386 0.452 0.032
>3 0.101 0.028 0.004 0.026 0.166 0.338 0.338

ICU LOS 7–14 days
0 0.007 0.330 0.543 0.098 0.020 0.002 0.000
1 0.009 0.060 0.115 0.718 0.093 0.005 0.000
2 0.025 0.021 0.032 0.265 0.594 0.059 0.004
3 0.050 0.015 0.006 0.079 0.382 0.431 0.039
>3 0.101 0.019 0.006 0.033 0.154 0.302 0.385

Transition probabilities between states at day t and t + 1 for a patient with median SAPS II score at admission (SAPS II score of 46) with a current length of ICU stay of 1–3 days
(upper panel) and 7–14 days (lower panel). Results are based on Model I. ICU, Intensive Care Unit; OF, organ failure.

Table 3
Predictive value of length of ICU stay, severity-of-illness at admission and the type of organ failure on the current day for the state of the patient on the next day.

State of the patient at day t State of the patient at day t + 1

ICU death ICU discharge ICU stay with type of organ failure

Coagulatory Hepatic Circulatory Neurological Renal Respiratory

ICU LOS (days)
1–3 (reference) 1 1 1 1 1 1 1 1
4–7 2.8 (1.1–6.9) 0.5 (0.3–0.7) 1.4 (0.6–3.2) 1.8 (0.2–13.3) 0.9 (0.5–1.5) 0.6 (0.3–1.2) 1.3 (0.7–2.5) 1.9 (1.1–3.2)
8–14 5.6 (2.0–15.9) 0.1 (0.1–0.2) 1.2 (0.4–3.1) 0.4 (0.0–4.1) 1.8 (1.0–3.1) 0.9 (0.5–1.8) 1.0 (.5–1.9) 4.6 (2.6–8.1)
>14 6.2 (2.4–16.0) 0.1 (0.0–0.1) 1.8 (0.8–4.5) 16.9 (2.5–112) 0.6 (0.4–1.2) 3.0 (1.6–5.8) 1.8 (1.0–3.3) 5.1 (3.0–8.7)

SAPS (per 10 points) per LOS category*

1–3 1.6 (1.4–1.7) 0.7 (0.7–0.8) 1.3 (1.2–1.4) 1.4 (1.1–1.7) 1.1 (1.0–1.2) 1.3 (1.2–1.4) 1.3 (1.2–1.4) 1.4 (1.3–1.5)
4–7 1.2 (1.0–1.4) 0.9 (0.8–1.0) 1.2 (1.0–1.4) 1.4 (0.9–2.1) 1.0 (0.9–1.2) 1.3 (1.1–1.5) 1.2 (1.1–1.4) 1.1 (1.0–1.3)
8–14 1.0 (0.9–1.3) 1.0 (0.9–1.2) 1.1 (0.9–1.3) 1.7 (1.1–2.6) 1.0 (0.8–1.1) 1.2 (1.1–1.4) 1.3 (1.1–1.5) 1.0 (0.8–1.1)
>14 1.1 (0.9–1.3) 0.9 (0.8–1.1) 1.1 (0.9–1.3) 0.9 (0.6–1.4) 1.1 (1.0–1.2) 1.0 (0.8–1.1) 1.2 (1.1–1.4 1.0 (0.9–1.1)

Type of organ failure at day t
Coagulatory 2.0 (1.5–2.5) 0.9 (0.7–1.2) 123 (103–146) 3.1 (1.9–5.0) 1.1 (0.9–1.4) 1.0 (0.8–1.3) 1.3 (1.1–1.6) 1.7 (1.3–2.3)
Hepatic 1.0 (0.6–1.7) 0.5 (0.2–0.9) 2.8 (1.9–4.3) 841 (564–1254) 1.5 (1.0–2.1) 1.5 (1.0–2.3) 1.2 (0.9–1.7) 1.3 (0.8–2.0)
Circulatory 1.9 (1.5–2.3) 0.3 (0.2–0.3) 1.3 (1.1–1.6) 1.4 (0.9–2.2) 59 (53–66) 0.9 (0.8–1.1) 1.3 (1.2–1.5) 2.7 (2.3–3.2)
Neurological 3.9 (3.2–4.9) 0.6 (0.5–0.8) 1.1 (0.8–1.4) 1.1 (0.6–2.0) 0.8 (0.6–0.9) 92 (80–105) 0.8 (0.6–1.0) 1.7 (1.4–2.2)
Renal 1.6 (1.2–2.0) 0.7 (0.6–0.8) 1.4 (1.1–1.7) 0.9 (0.5–1.4) 1.6 (1.3–1.8) 0.8 (0.6–1.0) 34 (30–39) 1.1 (0.9–1.3)
Respiratory 0.5 (0.4–0.7) 0.1 (0.1–0.1) 0.7 (0.6–1.0) 1.8 (0.9–3.5) 1.6 (1.3–2.0) 1.6 (1.3–2.0) 0.9 (0.7–1.0) 68 (59–79)

Values denote odds ratios (OR) with 95% confidence interval (CI) and are based on Model II. For the states ‘ICU death’ and ‘ICU discharge’ odds ratios are based on the upper
level of the model using the state ‘ICU stay’ as the reference category. The columns related to the state ‘ICU stay’ describe the odds ratios of having failure in the particular
organ system on day t + 1 (based on the binary logistic regression equations in the lower level of the model).
ICU, Intensive Care Unit; LOS, length of stay (i.e., the days the patient has already spent at the ICU); SAPS, simplified acute physiology score [32].
*Standard errors for the interaction between SAPS II score and ICU LOS are calculated based on [42].
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3.1.3. Model III differences in the development and persistence of organ
failure

Table 4 resembles the lower right part of Table 3 and denotes
the influence of the organ systems on development of new organ
failure on the next day (upper part of the table) and on persistence
of existing organ failure (lower part). We now see that the associ-
ation between hepatic and coagulatory failure found in Model II is
restricted to the development of organ failure (odds ratios 3.1 and
6.9, respectively); when focusing on persistence, no significant
associations between these organ systems are found (odds ratios
2.5 and 0.8). Likewise, patients with circulatory failure have a 1.6
times higher risk on development of renal failure, whereas there
is no association between these two organ systems once renal fail-
ure is present. Interestingly, the other way around results point in
the opposite direction: renal failure is not associated with the
development of circulatory failure, but is involved in the persis-
tence of failure in this body system.
3.2. Evaluation of the models

The first evaluation focused on the calibration of the models
with respect to length of ICU stay and eventual outcome. Table 5
presents the results of this evaluation and compares expected
ICU mortality and mean length of ICU stay for each of the three
models and the basic model with the original data. All models cor-
rectly estimate mortality and mean length of ICU stay, as for each
of the models the observed mortality and length of stay are con-
tained within the 95% confidence intervals of the estimates. The
lower part of the table depicts the v2 values for the difference in
observed and predicted distribution of the patients over the states
‘ICU death’, ‘ICU discharge’ and ‘ICU stay’ for six time points during
the first 30 days of ICU stay, where higher values denote worse fit.
Except the first days Models I, II, and III fit the observed data rea-
sonably well. This is also reflected by Fig. 4, which depicts the dis-
tribution of the population over the three states ICU stay, ICU



Table 4
Predictive value of organ failure at the current day with respect to the development and persistence of organ failure at the next day (Model III).

Presence of organ failure on day t Development of new organ failure on day t + 1

Coagulatory Hepatic Circulatory Neurological Renal Respiratory

Development of organ failure
Coagulatory – 6.9 (4.0–12.0) 0.9 (0.6–1.3) 1.4 (1.0–1.9) 1.7 (1.3–2.2) 0.6 (0.3–1.2)
Hepatic 3.1 (1.7–5.6) – 0.9 (0.5–1.7) 2.0 (1.2–3.4) 1.3 (0.8–2.1) 0.6 (0.2–2.0)
Circulatory 1.6 (1.2–2.0) 1.7 (1.0–2.9) – 0.9 (0.7–1.2) 1.6 (1.3–1.9) 3.7 (2.5–5.7)
Neurological 1.1 (0.7–1.6) 1.2 (0.6–2.5) 0.7 (0.5–0.9) – 0.7 (0.5–1.0) 1.5 (0.8–2.6)
Renal 1.5 (1.1–2.0) 1.8 (1.0–3.1) 1.2 (0.9–1.5) 1.1 (0.8–1.5) – 0.8 (0.5–1.1)
Respiratory 0.6 (0.4–0.8) 1.4 (0.6–3.7) 1.7 (1.3–2.2) 2.6 (1.7–4.2) 0.9 (0.7–1.1) –

Persistence of organ failure
Coagulatory – 0.8 (0.4–1.6) 1.4 (1.0–1.9) 0.7 (0.5–1.1) 1.0 (0.7–1.4) 2.4 (1.1–5.2)
Hepatic 2.5 (1.3–4.9) – 2.5 (1.2–5.2) 0.8 (0.5–1.3) 1.2 (0.7–2.1) 1.5 (0.4–5.9)
Circulatory 1.1 (0.8–1.6) 0.8 (0.4–1.7) – 0.9 (0.6–1.4) 1.0 (0.9–1.2) 2.6 (1.6–4.3)
Neurological 1.1 (0.7–1.8) 0.8 (0.2–2.4) 0.8 (0.5–1.2) – 0.9 (0.6–1.3) 1.8 (1.0–3.2)
Renal 1.2 (0.9–1.7) 0.4 (0.2–0.7) 2.0 (1.5–2.5) 0.6 (0.4–0.8) – 1.2 (0.8–1.8)
Respiratory 1.2 (0.8–1.6) 2.2 (1.4–3.6) 1.5 (1.3–1.7) 0.8 (0.7–1.0) 0.9 (0.8–1.1) –

Values denote odds ratios (OR) with 95% confidence interval (CI) adjusted for current length of stay (i.e., value of t) and severity-of-illness at admission. Values are based on
the lower level of Model III.
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death, and ICU discharge in the first 30 days of ICU stay (depicted
in blue, green, and red, respectively). The solid lines denote the ob-
served distribution (similar for all three graphs) and the dotted
lines indicate the expected distribution with a 95% confidence
interval.

The underlying question to be addressed when assessing the
calibration of the model is whether the chaining of day-to-day
probabilities leads to appropriate predictions for the entire ICU
stay. As we learn from Table 5 this is not the case for the basic
model, hence one should at least include information on the pres-
ence of organ failure to arrive at correct longer-term predictions.
Models I, II, and III have well-calibrated predictions over longer
time spans, except on day 2 where all models deviate from the ob-
served outcome. Therefore we believe this is not to be attributed to
the models, but rather to other reasons, probably related to the
nature of the data collection or the SOFA score.

In the second evaluation we focused on discrimination of the
models when they are used to predict the outcome of the patient
on a separate test set. In prediction of eventual ICU death the error
rates were 17.7%, 18.1% and 17.8% for Models I, II, and III, respec-
tively. The AUCs (95% confidence interval) were 0.79 (0.71–0.87),
0.79 (0.71–0.87), and 0.80 (0.72–0.88), respectively. Also in predic-
tion of death over shorter time periods the discriminatory perfor-
mance of the three models was similar (AUCs of 0.84 (0.74–
0.93); 0.83 (0.74–0.92); 0.83 (0.74–0.93) and 0.82 (0.74–0.90);
Table 5
Evaluation results: comparison of observed and expected characteristics of the cohort.

Original data Model

Basic

ICU mortality (%) 22.6 22.5 (20.8–24.2)
LOS ICU (mean, d) 8.3a 8.3 (8.0–8.6)

Observed versus expected distribution (v2-value)b

Day 2 28.19c

Day 5 24.25c

Day 10 23.98c

Day 15 2.82
Day 20 3.23
Day 30 21.94c

For each of the models numbers are based on 500 simulations for all 2271 patients. For
interval.

a To allow for a fair comparison with the models we report the mean of the truncate
b The v2-value was calculated as R((Oij � Eij)2/Eij), where Oij and Eij are the observed an

ICU discharge, ICU stay) and j 2 (2, 5, 10, 15, 20, 30).
c p < 0.05, indicating that predicted distribution of patients over the states ‘ICU death’,

ICU, Intensive Care Unit; LOS, length of stay.
0.82 (0.73–0.90); 0.82 (0.74–0.90) for death within 3 days and
death within a week, respectively).

4. Application

In clinical practice the models can be used for various purposes,
two of which we will now briefly illustrate. The first application
lies at the patient level and analyzes the various prognostic scenar-
ios for a given patient. These scenarios can be used to inform the
patient and his relatives, to see which protocols and guidelines ap-
ply to the patient, and to make treatment decisions. The second
application lies at the level of the ICU and predicts logistic require-
ments for a given unit during the forthcoming days. We will briefly
describe these applications and provide examples using Model III
and real patient data.

4.1. Scenario analysis

Applying simulations on Model III provides us with probabili-
ties of the amount and type of organ failure for all future time
points and on survival. Based on this information, probabilities
for various prognostic scenarios can be calculated. Table 6 shows
a number of (hierarchical) scenarios and provides the related prob-
abilities for two patients. Patient 1 is a 79-year-old man, admitted
with severe sepsis from the ward today, with considerable sever-
I II III

22.5 (21.0–24.0) 22.4 (20.9–24.0) 22.5 (21.0–24.0)
8.3 (7.8–8.6) 8.4 (8.0–8.8) 8.4 (8.0–8.8)

10.39c 9.91c 9.78c

0.09 0.55 0.66
1.89 1.75 2.18
0.28 0.17 0.05
0.08 0.13 0.25
0.17 0.02 0.02

ICU mortality and mean LOS ICU numbers represent the mean and 95% confidence

d lengths of ICU stay.
d expected number of patients in state i at day j, respectively, where i 2 (ICU death,

‘ICU stay’ and ‘ICU discharge is significantly different from the observed distribution.
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Fig. 4. Distribution of patients over the states ‘ICU death’, ‘ICU discharge’ and ‘ICU stay’: observed versus expected. Results from the 500 simulated cohorts of 2271 patients
based on the starting values from the original cohort. Figures display the observed and predicted distribution of the cohort over the states ‘ICU stay’, ‘ICU death’ and ‘ICU
discharge’ (in blue, green and red lines, respectively) for the first 30 days after ICU admission. The black lines depict the values for the original cohort; the colored lines
indicate predicted probabilities over the 500 simulations with the 95% confidence interval. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this paper.)

Table 6
Scenarios for future course of disease for two patients based on Model III.

Scenario Patient 1 Patient 2

1. Worsening in the next 3 days 0.23 0.37
1.1 Death within 3 days 0.10 0.31
1.2 Increase of organ failure in the next 3 days 0.13 0.06

1.2.1 Eventual death 0.03 0.03
1.2.2 Eventual recovery 0.10 0.03

2. Improvement in the next 3 days 0.47 0.54
2.1 Discharge within 3 days 0.06 0.05
2.2 Decrease of organ failure within 3 days 0.41 0.49

2.2.1 Eventual discharge 0.35 0.35
2.2.2 Eventual death 0.06 0.14

3. Stable situation 0.30 0.09

Patient 1 is a 79-year-old man, admitted with severe sepsis from the ward today,
with considerable severity-of-illness (SAPS II score of 55). At admission he has
respiratory and circulatory failure.
Patient 2 is a 21-year-old woman who has been admitted from the ward 7 days ago
with severe sepsis and metabolic problems, and a SAPS score of 33. Currently she
has failure in the circulatory, respiratory, and neurological system.
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ity-of-illness (SAPS II score of 55). At admission he has respiratory
and circulatory failure. Patient 2 is a 21-year-old woman who has
been admitted from the ward 7 days ago with severe sepsis and
metabolic problems, and a SAPS score of 33. Currently she has fail-
ure in the circulatory, respiratory, and neurological system. The
probability of change in the condition of the second patient is
much higher when compared to the first patient; this is mainly
due to a much higher probability of imminent ICU death.
Table 7
Predictions at the ICU unit level based on Model III.

March 17
(tomorrow)

March
18

March
19

March 24 (next week)

Died at ICU 0.3 0.5 0.7 1.2
Discharged from ICU 1.2 2.1 2.7 5.0
Multiple organ

failure
5.0 4.2 3.6 3.2

Respiratory failure 8.0 7.2 6.4 5.7
Renal failure 1.0 0.9 0.7 0.7

Numbers in the table denote the expected number of patients. Predictions are based
on Model III, using the information of 10 patients who were present at the ICU on
March 16, 2005.
4.2. Prediction of logistic requirements

For the prediction of logistic requirements for a given Intensive
Care Unit, simulations are conducted for all patients at the unit,
using their current situation as starting values. Given these values,
the model can provide information on which patients are likely to
be discharged or to die, and on the amount and type of organ fail-
ure that is to be expected. This information can subsequently be
used for the planning of personnel and machinery, for example
to determine how many patients require mechanical ventilation
(in case of respiratory failure) or hemodialysis (in case of renal fail-
ure). For this application the predicted probabilities summed over
patients: from a logistic perspective it is not important to know ex-
actly which patients will be discharged, as long as the number of
discharges is known. And in contrast to the scenario analysis appli-
cation, it is important to obtain information on the exact timing of
events to be able to plan the utilization of ICU beds, ICU machinery,
and operation theatres.

As an example we have applied Model III to data from the hos-
pitals in our dataset. On March 16, 2005, in two ICUs (which will be
considered one unit in this example) 10 patients were present who
had been admitted with severe sepsis. Table 7 shows the predicted
number of deaths, ICU discharge, and the occurrence of the types of
organ failure for the next 3 days and after 1 week. These predicted
numbers were obtained by adding the probabilities for each of the
patients. Note that these numbers are based on the patients that
are currently present at the ICU, the model does not take into ac-
count patients that are admitted in between (e.g., in the predic-
tions for March 19 newly admitted patients on March 17 and 18
are not taken into account).

Other directions for the application of this type of models can be
found in automatically identifying the sickest patient at the unit
(to direct the nurses attention), in the field of health outcomes re-
search, where the observed course of disease is compared to the
predicted course of disease (as given by the model), and in the field
of logistics and waiting-time analysis (e.g., as in [46]).
5. Discussion

In this paper we have demonstrated how complex hierarchical
dynamic Bayesian networks can be derived from temporal clinical
data to verify clinical hypotheses and to predict future course of
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disease. In the application to ICU patients with severe sepsis we
have seen that both the number and type of organ failure can be
used to describe day-to-day changes in organ failure. The models
describing failure in specific organ systems (Models II and III) pro-
vide additional insight into the interplay between the organ sys-
tems. From our evaluation studies we learned that increasing the
complexity of the models did not reduce their performance, as all
models showed more or less similar performance. Therefore, Mod-
el III is to be preferred as it provides more information without
diminishing the accuracy of predictions.

5.1. Clinical findings

In the models we have developed changes in the amount of or-
gan failure developed gradually. Furthermore, patients who are
more severely ill at admission are more likely to develop organ fail-
ure during their ICU stay, although the influence of illness severity
at admission diminishes over time. When we focus on failure of
specific organ systems, Model III shows that organ systems play
different roles in the development and persistence of organ failure
on the next day. Furthermore, Models II and III show that organ
failure does not easily resolve once it exists, a finding which holds
especially for neurological and hepatic failure.

Our findings relate to discussions in the clinical scientific liter-
ature about the role of organ failure in the future course of disease
and outcome of the patient. A higher number of organ failure, both
at admission and during ICU stay, has been found to be related to a
poor outcome [3,29], and this is reflected in our models by the high
short-term risk of ICU death for patients with multiple organ fail-
ure and by the influence of the SAPS II score. We have found in
Models II and III that information on failure of specific organ sys-
tems is also predictive for the outcome of intensive medical care,
which was also concluded by Vincent et al. [47], but is in contrast
with the findings of Pittet and colleagues [28]. This contrast can be
explained by various factors, among which location (US vs. The
Netherlands), study period (second half of 1980s vs. 2002–2006),
and type of patients (patients who develop sepsis at the ICU vs. pa-
tients admitted with sepsis). Another important difference is that
the aim of the Pittet study was to arrive at the best prediction mod-
el, whereas our focus was to model the role of each organ system
more explicitly. In their models the variables related to individual
organ failure were all removed in the stepwise statistical analysis,
except respiratory failure.

When focusing on particular scenarios using the method de-
scribed in Section 4, Models II and III confirm previous findings
that early failure in the renal or coagulatory system relates to a
poor outcome [9,48,49], whereas early improvement of circulatory
failure is associated with a better prognosis [10].

5.2. Markov models in critical care medicine

Markov models have been applied in health care for various
purposes since the 1970s [13], most prominently in cost-effective-
ness analyses [50] and clinical decision analyses [51]. In critical
care medicine, Markov models have for example been used to pre-
dict length of ICU stay [52] and hospital stay [53]. In both of these
approaches a small number of states was used (four and eight,
respectively) and clinical data were used to directly estimate the
transition probabilities in the probability matrix. Bäuerle and col-
leagues developed a Markov model to analyze the course of disease
of critically ill patients using the three states ‘well’, ‘septic’ and
‘dead’ [54].

A related approach recently used in the domain of critical care is
dynamic microsimulation. In this approach the underlying process is
modeled using a Markov model. However, one is not interested in
the value of the parameters of the model, in the transition proba-
bilities, or in accurate predictions for individual patients. Instead,
the focus is on simulations on the model, which are used to inves-
tigate the influence of particular parameters (e.g., the time already
spent at the ICU, severity-of-illness, introduction of new medica-
tion) on the cohort level [55,56]. This is in contrast to our approach
where we derive clinical knowledge from the parameters of the
models (such as described in Section 3) and use the models for
individual patient predictions (as described in Section 4). In fact,
the approach we took in our strategy to evaluate the models, in
particular the first part of the evaluation, closely resembles dy-
namic microsimulation.

Clermont and colleagues [57] used dynamic microsimulation to
describe changes in severity-of-illness in the general ICU popula-
tion. As part of their results they do provide information on rela-
tions between organ systems over time, which show the
importance of persistence of organ failure over time and the rela-
tion between hepatic and coagulatory failure, which is in accor-
dance with our findings. More recently, Saka et al. used dynamic
microsimulation to describe disease progression in patients with
pneumonia-related sepsis [34]. Although they focused on a slightly
different patient population, we confirmed their findings regarding
the importance of length of stay (or duration of the process) in the
transition probabilities. Their models are based on an empirical ap-
proach (related to k-nearest neighbour prediction) which does not
provide direct insight into the strengths of the associations. This
impedes a further comparison with our clinical findings.
5.3. Markov models extracted from temporal clinical data

In medical artificial intelligence dynamic Bayesian networks are
a common implementation of Markov models. Probabilistic fore-
casting with dynamic Bayesian networks was first described by Da-
gum et al. in the early 1990s [38]. They manually assessed the
structure of their dynamic Bayesian network on the problem of
forecasting sleep apnea episodes; the network parameters were
estimated from monitoring data [39]. A related approach was de-
scribed by Riva and Bellazzi where the network structure was
learned from data, using a model-selection approach based on pre-
dictive performance [22]. They applied their method to time series
of blood glucose measurements from patients with diabetes
mellitus.

Kayaalp and colleagues developed various DBNs to describe
changes in organ failure in ICU patients, also based on the SOFA
score [11,23,35]. In [35] they learned both stationary and non-sta-
tionary networks from data using a heuristic search strategy. The
optimal model was selected using a scoring metric and turned
out to contain only two nodes: the total SOFA score prior to dis-
charge and the outcome (mortality). In [11] Bayesian networks
were developed for six outcomes. First patterns of organ failure
were identified and their predictive performance was determined
in bivariate Bayesian networks. Subsequently the patterns with
highest predictive performance (AUC) were included into the final
Bayesian network.

A recent application of dynamic Bayesian networks was pre-
sented by Charitos and colleagues [20]. Their network is used to
predict the development of ventilator-associated pneumonia
(VAP) in ICU patients. In this application the structure and the
probabilities of the network were determined using physician ex-
perts. Recently, this work was extended by Visscher et al. [21]
who developed temporal Bayesian Networks for patients who did
and those who did not develop VAP, using context-specific inde-
pendences. In this application the network variables were pre-
specified and data was used both to assess the network structure
and to estimate the parameters. The network structure was as-
sessed by constraint-based structure learning.
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Given the complex processes underlying the dynamics of organ
failure in ICU patients we have used a complex hierarchical state
representation, implemented by dynamic hierarchical Bayesian
networks. This combination of dynamic Bayesian networks and
hierarchical Bayesian networks distinguishes our work from the
aforementioned approaches. Other important differences are found
in the assessment of the structure of the network and the represen-
tation of the tpf.

As indicated before Riva et al. and Kayaalp learned the optimal
network structure from clinical data by developing multiple net-
works and subsequently selecting the structure with the best perfor-
mance [22,23]. Visscher et al. determined the nodes of the network
in advance and chose the arcs in the network based on clinical data
using statistical significance and physician expert opinion [21]. In
contrast, in our study we used a fixed model structure and did not
use the data to learn the structure of the models. This could have
been implemented by applying stepwise-backward variable selec-
tion in the logistic regression procedure (which would amount to
removing the arcs in the Bayesian network one-by-one) based on
the statistical significance of the parameters. We have, however,
explicitly chosen not to use this procedure because in medical statis-
tics variable selection based on significance testing is considered
arbitrary, as it is heavily influenced by the size of the data set and
the level of significance [58,59]. This choice explicitly distinguishes
our work from approaches in Bayesian networks in which the struc-
ture is learned from data based on statistical significance.

In most of the related approaches the transition probabilities
were expressed using (conditional) transition probability matrices
[21–23]. Dagum and Galper used additive models in which the
relation between predictors and outcome was modeled for each
predictor separately and subsequently combined [39]. In contrast
to these approaches we parametrized the tpf by means of multivar-
iate additive logistic regression models, including multiple predic-
tors into one regression equation. This has several advantages in
comparison with the aforementioned approaches. First, the num-
ber of parameters is rapidly reduced; second, inclusion of ‘history
information’ to relieve the first-order Markov assumption is rather
straightforward as it is simply represented by an additional param-
eter in the model; third, the parameters in the model are easily ex-
pressed in terms of odds ratios, which enhances the clinical
interpretability of the models; and finally, logistic regression mod-
els are extensively studied and applied in medicine [45] and are
therefore easily implemented in existing software packages.

5.4. Limitations

Throughout the study we have taken various steps to reduce the
complexity of the parameter space. First, we have dichotomized
the SOFA score for individual organ systems into ‘failure’ and
‘non-failure’ categories. Although this dichotomization is often ap-
plied, compared to the original scale this results in a loss of preci-
sion when describing clinical states. For example, patients with
severe dysfunction (comparable to a SOFA organ score of 2) in sev-
eral organ systems were categorized together with patients com-
pletely free from that organ failure. This is probably the
explanation for our finding that changes in organ failure occur only
gradually: the patient’s condition has to change drastically before
it is recognized as such. This might also explain the fact that our
models predict that patients without organ failure may still remain
at the ICU or even die. A second explanation for the latter observa-
tion might be the sampling frequency, as the SOFA score is mea-
sured only once a day. The fact that the SOFA score is based on
the worst values for a 24 h period might have increased the pres-
ence of persistence in our models. These problems could be solved
by measuring organ failure using a finer grid, both with respect to
time and organ failure measurement. Including the original SOFA
scores into the models is possible within the approach we pre-
sented by using multinomial proportional odds logistic regression
models [40], however, this comes at the cost of a reduction of clin-
ical interpretability.

Second, in the models presented in this paper we included
either the number of failing organ systems (Model I) or failure in
specific organ systems (Models II and III) as covariates, but not
both. In an attempt to develop a model containing both (results
not shown), extreme values for the odds ratios were found, indicat-
ing a severe multicollinearity problem. However, when informally
comparing the probabilities obtained by the models, Model II
showed considerable refinement of the probabilities as compared
to Model I, suggesting that using information on the type of organ
failure is to be preferred over using the amount of organ failure
only. A more extensive evaluation is, however, required to confirm
this hypothesis.

Third, in Models II and III we considered failure in each of the
organ systems separately and did not take into account that it
may be particular combinations of organ failure that are of predic-
tive value for disease progression. A solution to these problems
could be to create ‘meta-variables’ that describe combinations of
organ failure (e.g., ‘circulatory and respiratory failure’) or combine
the number and type of organ failure (e.g., ‘the patient has respira-
tory failure only’, or ‘the patient has at least two failing organ sys-
tems, one of which is renal failure’). These combinations could be
derived from the data or could be provided as background knowl-
edge by the physician.

Finally, to reduce the number of estimates we have chosen to
use additive logistic regression equations in the model, which as-
sumes linear relationships between the predictor variables and
the state of the patient on the next day. Using other methods to de-
scribe the tpf, e.g., trees, could alleviate the assumptions of the lin-
ear model [60], and could at the same time provide a solution to
incorporate the aforementioned influence of combinations of organ
systems.

In our case-study we performed a general evaluation of the
models, focusing on calibration with respect to length of ICU stay
and eventual outcome, and on discrimination with respect to the
patients who did survive the ICU admission with severe sepsis,
and those who did not. The results of these evaluations were prom-
ising as all three models performed well both on discrimination
and calibration. Developing more complex models generally in-
creases the risk of overfitting the model to the data, and thereby
decreasing performance of the model. The results of our evaluation
show that the increasing complexity of the three models did not
lead to a reduction in performance. During the evaluation we con-
ducted multiple comparisons, for which a level of significance of
0.05 might have been too optimistic. However, using a value 0.01
would not alter the conclusions. Further evaluation of the models
should be guided by the purpose for which the model will be used.
For example, when the model is used for scenario analysis, evalu-
ation should focus on this aspect. Given the vast number of possi-
ble scenarios, the scenarios can be aggregated by temporal
abstraction [5] similar to the example presented in Section 4, pos-
sibly guided by clinical background knowledge to identify the sce-
narios of interest to (local) clinical practice. In the evaluation the
presence of the scenario then becomes the outcome of interest,
and discrimination and calibration with regard to this outcome
measure can be assessed.

From a clinical point of view the models have some limitations.
First, no information was included into the models regarding treat-
ment of the patient. In fact, currently treatment strategy is mod-
elled implicitly, as changes in organ failure are partly determined
by treatment. For example, the observation that patients with
more than three failing organ systems are likely to be discharged
probably reflects a do-not-resuscitate policy in which patients
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are discharged to the ward to die. We cannot exclude the possibil-
ity that the included hospitals used different treatment strategies
or that treatment strategy has changed over time [61]. This might
have diminished the size of the effects (odds ratios) that were
found and the extremity of predicted probabilities in the models
(due to regression to the mean). When the models are used for
planning purposes we therefore suggest adding information
regarding the hospital and treatment strategies that are employed
in these patients.

Second, we have considered readmissions as separate admis-
sions (which is represented by considering ICU discharge a final
state). However, organ damage and treatment effects from the pre-
vious admission might influence the transition probabilities in a
subsequent ICU stay. In our dataset the patients who were read-
mitted to the ICU stayed longer at the ICU during the readmission
(mean 8.4 vs. 7.1 days) and had a lower ICU mortality (19.4% vs.
23.0%). For these patients the models probably overestimate the
probabilities of ICU discharge and ICU death, and underestimate
the transition probabilities related to ICU stay and organ failure.

Third, in severe sepsis ICU patients various factors are known to
be associated with a poor prognosis. We have included severity-of-
illness at admission into the models; in a similar fashion other
known predictive factors (e.g., pre-existing comorbidities, type
and location of the infection [48,49]) could be included as covari-
ables in the regression equations. However, this comes at the cost
of expansion of the parameter space. Finally, our analysis was re-
stricted to patients that were admitted to the ICU with severe sep-
sis. It is unclear to which extent our clinical findings generalize to
patients who develop severe sepsis during ICU stay (as these pa-
tients are less severely ill [62]) or to the general ICU population.
We do, however, have no reason to assume that the methodologi-
cal approach cannot be generalized to other populations.
6. Conclusion

In this paper we have presented how complex multivariate
Markov models can be induced from clinical data using hierarchi-
cal dynamic Bayesian networks and logistic regression modelling.
In the application to data from the Intensive Care Unit we have
shown that the models provide clinical insight into the dynamics
of organ failure and how they can be used in daily clinical practice.
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