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a b s t r a c t

In this paper,we consider a finite buffer size discrete-timemultipleworking vacationqueue
with changeover time. Employing the supplementary variable and embedded Markov
chain techniques, we derive the steady state system length distributions at different
time epochs. Based on the various system length distributions, the blocking probability,
probability mass function of sojourn time and other performance measures along with
some numerical examples have been discussed. Then, we use the parabolic method to
search the optimum value of the service rate in working vacation period under a given
cost structure.
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1. Introduction

In recent years, great attention has been paid to discrete-time queueing systems because of their abundant application in
communications. Classical examples are synchronous communication systems (slotted ALOHA) or packet switching systems
with time slotting. Currently, ATM multiplexers in the broadband integrated services digital network (B-ISDN), circuit-
switched time-division multiple access (TDMA) systems and slotted carrier-sense multiple access (CSMA) protocols have
become a powerful incentive to the study of discrete-time queueing systems. For an extensive analysis of a wide variety of
discrete-time queueing models, see the books in [1–3].

During the past decade, discrete-time queues with vacations have been widely used in the performance analysis of
communication systems. In the classical queueing systems with vacations the authors often assume that the server stops
the service completely during the vacation period. Recently, motivated by the analysis of a reconfigurable wavelength-
division multiplexing optical access network, Servi and Finn [4] introduced a kind of semi-vacation policy: the server will
not completely remain inactive during the vacation period rather it will render service to the queue with a low service
rate, when a vacation ends and if there are customers in the queue, a normal busy period begins and the server serves the
queue with its original service rate, otherwise on return from a vacation if there is no customer in the queue, the server
gives for another vacation and continues to do so till on return from a vacation it finds at least one customer. Such a type
of vacation is called a multiple working vacation. To better understand the notion of a working vacation, we may suppose
that the queueing system can be staffed with a substitute server during the period that the main server is taking vacations,
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and the service rate of the substitute server is different from (usually lower than) that of the main server. Servi and Finn
studied the M/M/1/MWV queue (MWV stands for multiple working vacation), and obtained the transform formulae for
the distributions of the number of customers in the system and the average sojourn time in the steady state. Subsequently,
this research was extended to the GI/M/1/MWV queue in [5] and to the M/G/1/MWV queue in [6]. Further, not long
ago, Chae et al. [7] studied another important working vacation policy, namely, single working vacation policy, using a
novel method, they derived various system performance measures in the steady state. Parallel to the continuous-time
working vacation queue, the discrete-time working vacation queue has also been analyzed by many authors. Tian et al. [8]
studied the Geom/Geom/1/MWV queue, Li et al. [9] considered the GI/Geom/1/MWV queue and Yi et al. [10] investigated
the Geom/GI/1/MWV queue with disasters. More recently, Goswami and Selvaraju [11] studied a discrete-time working
vacation queue with a discrete Markovian arrival process.

Although, a lot of working vacation queueing models with infinite buffer size have been studied extensively in the past
years, their finite buffer size counterparts received very little attention in the literature. To the best of our knowledge,
the only work about a general input working vacation queueing model with finite buffer size can be found in [12,13]. But
Refs. [12,13] have been limited to the analysis of a continuous-time queue, very few papers are known about the discrete-
time working vacation queue with general input and finite buffer size. Also, in references about a GI/Geom/1 working
vacation queue (see [9,14]), the system length distributions at arbitrary and an outside observer’s observation epoch are
not considered. While, as a very important operating characteristic, system length distribution at an outside observer’s
observation epoch plays a key role in evaluating performance measures. For example, we can employ it to calculate the
average sojourn time through Little’s rule. Moreover, in literature presented before, authors explore the working vacation
queue under the assumption that the times to change the service rate are negligible. But in real life situations, when
the system becomes empty, the main server has to remain in the system for a period of time because the substitute
server usually does some preparatory work before starting its service to get accustomed to the working circumstances.
Based on the problems mentioned above, in this paper, we will consider a GI/Geom/1/N multiple working vacation queue
with changeover time. Using both the supplementary variable and embedded Markov Chain techniques [2,15], the system
length distributions at arbitrary, pre-arrival and an outside observer’s observation epochwith some important performance
measures are obtained. Furthermore, it is worth noting that the probability mass function (p.m.f.) and the histogram of an
accepted customer’s sojourn time are also reported in our paper.With this quantity, we can know the performancemeasures
of the queueing system and improve the quality of service by changing the system parameters.

In order to economize the operating cost, this paper also discusses the optimum value of service rate in the working
vacation period. In Ref. [16], under a given cost structure, the authors pointed out that there is an optimum vacation service
rate η tominimize the cost, but the value of the optimum η is not given. According to the thought of Refs. [17,18], we develop
the steady state expected operating cost function per unit time and employ the parabolic method to find the optimum value
of service rate in the working vacation period.

The remainder of this paper is organized as follows. Section 2 presents a description of the model and some notations
used in this paper. In Section 3, the supplementary variable and embedded Markov chain techniques are employed to
analyze three kinds of system distributions at different time epochs. In Section 4, various performance measures such as
the probability of blocking, p.m.f. and the Z transform of the sojourn time etc. are obtained. Further, we also give some
numerical results in the form of tables and graphs. Then, in Section 5, we establish a cost structure and consider a cost
minimization problem through parabolic method. Finally, in Section 6, we present our conclusions and two topics for future
research.

2. Model description and some notations

We consider a finite buffer GI/Geom/1 a queue of size N (including the one in service) where the time axis is divided
into equal intervals called slots and all queueing activities occur at the slot boundaries. Let the time axis be marked by
0, 1, . . . , t, . . . . Here, we discuss the early arrival system (EAS) so that a potential customer arrival occurs in (t, t+) and
a potential departure takes place in (t−, t). The inter-arrival times {Tr , r ≥ 1} of customers are independently identically
distributed (i.i.d.) random variables with a general p.m.f. am = P{Tr = m},m ≥ 1, the corresponding probability generating
function (p.g.f.) a(z) =

∑
∞

i=1 aiz
i andmean inter-arrival time1/λ. The service times {Sl, l ≥ 1} in a normal busyperiod follow

geometric distribution with parameterµ (0 < µ < 1), namely, P{Sl = k} = µµ̄k−1, k ≥ 1, where we use symbol x̄ = 1−x,
for any real number x (0 < x < 1). After serving all the customers, the server will remain in the system for a period of
time, referred as the changeover time. The changeover time D also follows a geometric distribution with parameter ξ , that
is, P{D = k} = ξ ξ̄ k−1, k ≥ 1. If a customer arrives during the changeover time, the server starts to serve the customer
immediately with normal service rate µ. Otherwise, after the changeover time, the server will take a working vacation
immediately. The working vacation time V is geometrically distributed with p.m.f. P{V = k} = θ θ̄ k−1, k ≥ 1. During any
working vacation the server will serve customers at a rate which is different from the rate of service in normal busy period.
The service times {S̃l, l ≥ 1} in working vacation period follow a geometric distribution with parameter η (0 < η < µ < 1),
namely, P{S̃l = k} = ηη̄k−1, k ≥ 1. Furthermore, on return from aworking vacation if the server finds the system nonempty
it will change to another service rate, say the normal service rate, and the service interrupted at the end of vacation restarts
from the beginning; otherwise, another working vacation is taken. Tomake it clear, the various time epochs at which events
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Fig. 1. Various time epochs in an early arrival system.

occur are shown in a self-explanatory figure (see Fig. 1). Finally, we assume that various stochastic processes involved in the
system are assumed to be independent of each other.

The state of the system at time t is described by the following random variables:

Nt : the number of customers in the system (including the one in service) at time t;
Ut : remaining inter-arrival time for the next arrival at time t;

Yt =


0, if the server is in a working vacation period at time t,
1, if the server is in a normal busy period or changeover time at time t.

It is then clear that the joint probabilities of the system length, the remaining inter-arrival time and the state of the server
{Nt ,Ut , Yt} is a Markov process. Let us define joint probabilities by

Pi,0(t, u) = P{Nt = i,Ut = u, Yt = 0}, u ≥ 0, 0 ≤ i ≤ N;

Pi,1(t, u) = P{Nt = i,Ut = u, Yt = 1}, u ≥ 0, 0 ≤ i ≤ N.

In the steady state, i.e., when t → ∞, the above probabilities will be denoted by Pi,j(u), i = 0, 1, . . . ,N, j = 0, 1.

3. Analysis of the model

One of the important operating characteristics in a queueing system is the system length distribution. In the following
subsections, using different analysis methods, we will consider three kinds of system length at different time epochs, that
is, the steady state system length distribution at arbitrary, pre-arrival and an outside observer’s observation epoch.

3.1. Steady state system length distribution at an arbitrary epoch

To obtain system length distribution at an arbitrary epoch, we develop the usual Kolmogorov-type difference equations
by employing the remaining inter-arrival times as the supplementary variable. Relating the state of the system at time t and
t + 1, and using probabilistic arguments, we get a set of difference equations:

P0,0(t + 1, u − 1) = P0,0(t, u) + ξP0,1(t, u) + ηP1,0(t, u) + ηauP0,0(t, 0), (1)

Pi,0(t + 1, u − 1) = η̄θ̄Pi,0(t, u) + ηθ̄Pi+1,0(t, u) + η̄θ̄auPi−1,0(t, 0) + ηθ̄auPi,0(t, 0), i = 1, 2, . . . ,N − 2, (2)

PN−1,0(t + 1, u − 1) = η̄θ̄PN−1,0(t, u) + ηθ̄PN,0(t, u) + η̄θ̄auPN−2,0(t, 0)
+ ηθ̄auPN−1,0(t, 0) + ηθ̄auPN,0(t, 0), (3)

PN,0(t + 1, u − 1) = η̄θ̄PN,0(t, u) + η̄θ̄auPN−1,0(t, 0) + η̄θ̄auPN,0(t, 0), (4)

P0,1(t + 1, u − 1) = ξ̄P0,1(t, u) + µP1,1(t, u) + µauP0,1(t, 0), (5)

Pi,1(t + 1, u − 1) = µ̄Pi,1(t, u) + µPi+1,1(t, u) + η̄θPi,0(t, u) + ηθPi+1,0(t, u) + µauPi,1(t, 0)
+ µ̄auPi−1,1(t, 0) + ηθauPi,0(t, 0) + η̄θauPi−1,0(t, 0), i = 1, . . . ,N − 2, (6)

PN−1,1(t + 1, u − 1) = µ̄PN−1,1(t, u) + µPN,1(t, u) + η̄θPN−1,0(t, u) + ηθPN,0(t, u)
+ µ̄auPN−2,1(t, 0) + µauPN−1,1(t, 0) + µauPN,1(t, 0)
+ η̄θauPN−2,0(t, 0) + ηθauPN−1,0(t, 0) + ηθauPN,0(t, 0), (7)

PN,1(t + 1, u − 1) = µ̄PN,1(t, u) + η̄θPN,0(t, u) + µ̄auPN−1,1(t, 0) + µ̄auPN,1(t, 0)
+ η̄θauPN−1,0(t, 0) + η̄θauPN,0(t, 0). (8)
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Since we shall discuss our model in steady state, we let t → ∞ in (1)–(8) and those equations can be written as

P0,0(u − 1) = P0,0(u) + ξP0,1(u) + ηP1,0(u) + ηauP0,0(0), (9)

Pi,0(u − 1) = η̄θ̄Pi,0(u) + ηθ̄Pi+1,0(u) + η̄θ̄auPi−1,0(0) + ηθ̄auPi,0(0), i = 1, . . . ,N − 2, (10)

PN−1,0(u − 1) = η̄θ̄PN−1,0(u) + ηθ̄PN,0(u) + η̄θ̄auPN−2,0(0) + ηθ̄auPN−1,0(0) + ηθ̄auPN,0(0), (11)

PN,0(u − 1) = η̄θ̄PN,0(u) + η̄θ̄auPN−1,0(0) + η̄θ̄auPN,0(0), (12)

P0,1(u − 1) = ξ̄P0,1(u) + µP1,1(u) + µauP0,1(0), (13)

Pi,1(u − 1) = µ̄Pi,1(u) + µPi+1,1(u) + η̄θPi,0(u) + ηθPi+1,0(u) + µauPi,1(0)
+ µ̄auPi−1,1(0) + ηθauPi,0(0) + η̄θauPi−1,0(0), i = 1, . . . ,N − 2, (14)

PN−1,1(u − 1) = µ̄PN−1,1(u) + µPN,1(u) + η̄θPN−1,0(u) + ηθPN,0(u) + µ̄auPN−2,1(0)
+ µauPN−1,1(0) + µauPN,1(0) + η̄θauPN−2,0(0) + ηθauPN−1,0(0) + ηθauPN,0(0), (15)

PN,1(u − 1) = µ̄PN,1(u) + η̄θPN,0(u) + µ̄auPN−1,1(0) + µ̄auPN,1(0) + η̄θauPN−1,0(0) + η̄θauPN,0(0). (16)

Let us define the p.g.f. of Pi,j(u) and au as follows:

P∗

i,j(z) =

∞−
u=0

Pi,j(u)zu, i = 0, 1, . . . ,N, j = 0, 1, (17)

a(z) =

∞−
u=1

auzu. (18)

As our objective is to obtain Pi,j (i = 0, 1, . . . ,N, j = 0, 1), we have from (17)

Pi,j ≡ P∗

i,j(1) =

∞−
u=0

Pi,j(u).

Nowmultiplying (9)–(16) by zu and summing over u from 1 to ∞, we obtain after using (17) and (18)

(z − 1)P∗

0,0(z) = ξP∗

0,1(z) + ηP∗

1,0(z) + ηa(z)P0,0(0) − P0,0(0) − ξP0,1(0) − ηP1,0(0), (19)

(z − η̄θ̄ )P∗

i,0(z) = ηθ̄P∗

i+1,0(z) + η̄θ̄a(z)Pi−1,0(0) + ηθ̄a(z)Pi,0(0) − η̄θ̄Pi,0(0) − ηθ̄Pi+1,0(0),
i = 1, . . . ,N − 2, (20)

(z − η̄θ̄ )P∗

N−1,0(z) = ηθ̄P∗

N,0(z) + η̄θ̄a(z)PN−2,0(0) + ηθ̄a(z)PN−1,0(0)
+ ηθ̄a(z)PN,0(0) − η̄θ̄PN−1,0(0) − ηθ̄PN,0(0), (21)

(z − η̄θ̄ )P∗

N,0(z) = η̄θ̄a(z)PN−1,0(0) + η̄θ̄a(z)PN,0(0) − η̄θ̄PN,0(0), (22)

(z − ξ̄ )P∗

0,1(z) = µP∗

1,1(z) + µa(z)P0,1(0) − ξ̄P0,1(0) − µP1,1(0), (23)

(z − µ̄)P∗

i,1(z) = µP∗

i+1,1(z) + η̄θP∗

i,0(z) + ηθP∗

i+1,0(z) + µa(z)Pi,1(0) + µ̄a(z)Pi−1,1(0)
+ ηθa(z)Pi,0(0) + η̄θa(z)Pi−1,0(0) − µ̄Pi,1(0) − µPi+1,1(0) − η̄θPi,0(0) − ηθPi+1,0(0),
i = 1, . . . ,N − 2, (24)

(z − µ̄)P∗

N−1,1(z) = µP∗

N,1(z) + η̄θP∗

N−1,0(z) + ηθP∗

N,0(z) + µ̄a(z)PN−2,1(0)
+ µa(z)PN−1,1(0) + µa(z)PN,1(0) + η̄θa(z)PN−2,0(0) + ηθa(z)PN−1,0(0)
+ ηθa(z)PN,0(0) − µ̄PN−1,1(0) − µPN,1(0) − η̄θPN−1,0(0) − ηθPN,0(0), (25)

(z − µ̄)P∗

N,1(z) = η̄θP∗

N,0(z) + µ̄a(z)PN−1,1(0) + µ̄a(z)PN,1(0) + η̄θa(z)PN−1,0(0)
+ η̄θa(z)PN,0(0) − µ̄PN,1(0) − η̄θPN,0(0). (26)

Adding (19)–(26) over all possible values of i and j, we obtain after some simplification

N−
i=0

P∗

i,0(z) +

N−
i=0

P∗

i,1(z) =
a(z) − 1
z − 1


N−
i=0

Pi,0(0) +

N−
i=0

Pi,1(0)


.

Taking limit as z → 1 in the above term, we have

N−
i=0

P∗

i,0(1) +

N−
i=0

P∗

i,1(1) =
1
λ


N−
i=0

Pi,0(0) +

N−
i=0

Pi,1(0)


.
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Then, using the normalization condition
∑N

i=0 P
∗

i,0(1) +
∑N

i=0 P
∗

i,1(1) =
∑N

i=0 Pi,0 +
∑N

i=0 Pi,1 = 1, we can get

N−
i=0

Pi,0(0) +

N−
i=0

Pi,1(0) = λ. (27)

Let P−

i,1 (0 ≤ i ≤ N) and P−

i,0 (0 ≤ i ≤ N) denote the pre-arrival epoch probabilities, namely, an arrival sees i customers in
the system at an arrival epoch when the server is in normal busy period or changeover time and in working vacation period,
respectively. Applying Bayes’ theorem, we obtain

P−

i,0 = lim
t→∞

P {Nt = i, Yt = 0|Ut = 0} = lim
t→∞

P {Nt = i,Ut = 0, Yt = 0}
P {Ut = 0}

=
Pi,0(0)

N∑
i=0

Pi,1(0) +

N∑
i=0

Pi,0(0)
, 0 ≤ i ≤ N,

P−

i,1 = lim
t→∞

P {Nt = i, Yt = 1|Ut = 0} = lim
t→∞

P {Nt = i,Ut = 1, Yt = 0}
P {Ut = 0}

=
Pi,1(0)

N∑
i=0

Pi,1(0) +

N∑
i=0

Pi,0(0)
, 0 ≤ i ≤ N.

Further, using (27), we have

P−

i,0 =
1
λ
Pi,0(0), 0 ≤ i ≤ N, (28)

P−

i,1 =
1
λ
Pi,1(0), 0 ≤ i ≤ N. (29)

Setting z = 1 in Eqs. (20)–(26) and using (28) and (29), after simplification, we can get relations between pre-arrival and
arbitrary epoch probabilities

PN,0 =
η̄θ̄λ

1 − η̄θ̄
P−

N−1,0, (30)

PN−1,0 =
1

1 − η̄θ̄


ηθ̄PN,0 + η̄θ̄λP−

N−2,0 + ηθ̄λP−

N−1,0 − η̄θ̄λP−

N−1,0


, (31)

Pi,0 =
1

1 − η̄θ̄


ηθ̄Pi+1,0 + η̄θ̄λP−

i−1,0 + ηθ̄λP−

i,0 − η̄θ̄λP−

i,0 − ηθ̄λP−

i+1,0


, 1 ≤ i ≤ N − 2, (32)

PN,1 =
1

1 − µ̄


η̄θPN,0 + µ̄λP−

N−1,1 + η̄θλP−

N−1,0


, (33)

PN−1,1 =
1

1 − µ̄


µPN,1 + η̄θPN−1,0 + ηθPN,0 + µ̄λP−

N−2,1 + µλP−

N−1,1 + η̄θλP−

N−2,0 + ηθλP−

N−1,0

− µ̄λP−

N−1,1 − η̄θλP−

N−1,0


, (34)

Pi,1 =
1

1 − µ̄


µPi+1,1 + η̄θPi,0 + ηθPi+1,0 + µλP−

i,1 + µ̄λP−

i−1,1 + ηθλP−

i,0 + η̄θλP−

i−1,0 − µ̄λP−

i,1

− µλP−

i+1,1 − η̄θλP−

i,0 − ηθλP−

i+1,0


, 1 ≤ i ≤ N − 2, (35)

P0,1 =
1

1 − ξ̄


µP1,1 + µλP−

0,1 − ξ̄λP−

0,1 − µλP−

1,1


. (36)

One may note that P0,0 can be obtained using the normalizing condition
∑N

i=0 Pi,1 +
∑N

i=0 Pi,0 = 1. Meanwhile, we see
that through computing the pre-arrival epoch probabilities, the arbitrary time epoch probabilities can be obtained from
Eqs. (30)–(36). So, in the next subsection, using the embedded Markov chain technique, we will investigate the system
length distribution at a pre-arrival epoch.

3.2. Steady state system length distribution at a pre-arrival epoch

Let Lr be the number of customers in the system just before the rth arrival instant τr , and let
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Jr = J(τr) =


0, τr occurs during the working vacation period,
1, τr occurs during the normal busy period or changeover time.

Thus {(Lr , Jr), r ≥ 1} is a two-dimensional Markov chain with state space Ω = {(i, j), i = 0, 1, . . . ,N, j = 0, 1}.
Now we develop the transition probabilities of the two-dimensional Markov chain. Let

P(i,j),(m,n) = P{Lr+1 = m, Jr+1 = n|Lr = i, Jr = j}.

To obtain the one step transition probability matrix (T.P.M.) P, first, we introduce some notations:

δ(k) =


1, k = 0,
0, k = 1, 2, . . . ,

αh =

h−
k=0

∞−
m=h+1+δ(k)

am
m−(h+1)+k−
n=max(1,k)

θ θ̄n−1

n
k


ηkη̄n−k

m−n−
g=h+1−k


g − 1
h − k


µh+1−kµ̄g−(h+1−k)ξ̄m−n−g ,

h = 0, 1, . . . ,N − 1,

βh =

∞−
m=h+1

am
m−

g=h+1


g − 1

h


µh+1µ̄g−(h+1)ξ̄m−g , h = 0, 1, . . . ,N − 1,

Γh =

∞−
m=max(1,h)

am


m
h


ηhη̄m−hθ̄m, h = 0, 1, . . . ,N − 1,

∆h =

h−
k=0

∞−
m=h+δ(k)

am
m−h+k−

n=max(1,k)

θ θ̄n−1

n
k


ηkη̄n−k


m − n
h − k


µh−kµ̄m−n−(h−k), h = 0, 1, . . . ,N − 1,

σh =

∞−
m=max(1,h)

am


m
h


µhµ̄m−h, h = 0, 1, . . . ,N − 1.

Remark 1. If j > i then
∑i

k=j = 0.

Through probabilistic arguments, some entries P(i,j),(m,n) of the T.P.M. P are given as follows:
(1) First, the transition from (i, 0) to (0, 1) (i = 0, 1, . . . ,N − 1) occurs if the residual working vacation ends sometime

during an inter-arrival time and there are i + 1 service completions—k (k = 0, 1, . . . , i) completions before the working
vacation ends and i + 1 − k after the working vacation ends. Furthermore, the (r + 1)th customer arrives at the system
during the changeover time. Thus, we have

P(i,0),(0,1) =

i−
k=0

P


k−

l=1

S̃l ≤ V <

k+1−
l=1

S̃l, V +

i+1−
l=k+1

Sl ≤ Tr < V +

i+1−
l=k+1

Sl + D



=

i−
k=0

∞−
m=i+1+δ(k)

amP


k−

l=1

S̃l ≤ V <

k+1−
l=1

S̃l, V +

i+1−
l=k+1

Sl ≤ m < V +

i+1−
l=k+1

Sl + D



=

i−
k=0

∞−
m=i+1+δ(k)

am
m−(i+1)+k−
n=max(1,k)

θ θ̄n−1

n
k


ηkη̄n−kP


i+1−

l=k+1

Sl ≤ m − n <

i+1−
l=k+1

Sl + D



=

i−
k=0

∞−
m=i+1+δ(k)

am
m−(i+1)+k−
n=max(1,k)

θ θ̄n−1

n
k


ηkη̄n−k

m−n−
g=i+1−k


g − 1
i − k


µi+1−kµ̄g−(i+1−k)P {D > m − n − g}

=

i−
k=0

∞−
m=i+1+δ(k)

am
m−(i+1)+k−
n=max(1,k)

θ θ̄n−1

n
k


ηkη̄n−k

m−n−
g=i+1−k


g − 1
i − k


µi+1−kµ̄g−(i+1−k)ξ̄m−n−g

= αi.

(2) Second, considering a normal busy period, the transition from (i, 1) to (0, 1) (i = 0, 1, . . . ,N − 1) occurs if there are
i+1 service completions during an inter-arrival time and the (r+1)th customer arrives at the systemduring the changeover
time. Therefore, we have

P(i,1),(0,1) = P


i+1−
l=1

Sl ≤ Tr <

i+1−
l=1

Sl + D



=

∞−
m=i+1

amP


i+1−
l=1

Sl ≤ m <

i+1−
l=1

Sl + D
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=

∞−
m=i+1

am
m−

g=i+1


g − 1

i


µi+1µ̄g−(i+1)P {D > m − g}

=

∞−
m=i+1

am
m−

g=i+1


g − 1

i


µi+1µ̄g−(i+1)ξ̄m−g

= βi.

(3) Third, the transition from (i, 0) to (j, 0) (i = 0, 1, . . . ,N − 1; j = 1, 2, . . . , i+ 1) occurs if the working vacation time
is greater than an inter-arrival time and there are i + 1 − j service completions during an inter-arrival time. So, we have

P(i,0),(j,0) = P


i+1−j−
l=1

S̃l ≤ Tr <

i+2−j−
l=1

S̃l, Tr < V



=

∞−
m=max(1,i+1−j)

amP


i+1−j−
l=1

S̃l ≤ m <

i+2−j−
l=1

S̃l,m < V



=

∞−
m=max(1,i+1−j)

am


m

i + 1 − j


ηi+1−jη̄m−(i+1−j)θ̄m

= Γi+1−j.

(4) Fourth, the transition from (i, 0) to (j, 1) (i = 0, 1, . . . ,N − 1; j = 1, 2, . . . , i+ 1) occurs if there are i+ 1− j service
completions during a working vacation time and a customer arrives. Assuming that there are k service completions during
a working vacation time and i + 1 − j − k service completions during a normal busy period. Then, we have

P(i,0),(j,1) =

i+1−j−
k=0

P


k−

l=1

S̃l ≤ V <

k+1−
l=1

S̃l, V +

i+1−j−
l=k+1

Sl ≤ Tr < V +

i+2−j−
l=k+1

Sl



=

i+1−j−
k=0

∞−
m=i+1−j+δ(k)

amP


k−

l=1

S̃l ≤ V <

k+1−
l=1

S̃l, V +

i+1−j−
l=k+1

Sl ≤ m < V +

i+2−j−
l=k+1

Sl



=

i+1−j−
k=0

∞−
m=i+1−j+δ(k)

am
m−(i+1−j)+k−
n=max(1,k)

θ θ̄n−1

n
k


ηkη̄n−kP


i+1−j−
l=k+1

Sl ≤ m − n <

i+2−j−
l=k+1

Sl



=

i+1−j−
k=0

∞−
m=i+1−j+δ(k)

am
m−(i+1−j)+k−
n=max(1,k)

θ θ̄n−1

n
k


ηkη̄n−k


m − n

i + 1 − j − k


µi+1−j−kµ̄m−n−(i+1−j−k)

= ∆i+1−j.

(5) At last, considering the normal busy period, transition from (i, 1) to (j, 1) (i = 0, 1, . . . ,N − 1; j = 1, 2, . . . , i + 1)
means that i + 1 − j customers are served during an inter-arrival time. We have

P(i,1),(j,1) = P


i+1−j−
l=1

Sl ≤ Tr <

i+2−j−
l=1

Sl


=

∞−
m=max(1,i+1−j)

am


m

i + 1 − j


µi+1−jµ̄m−(i+1−j)

= σi+1−j.

Using the lexicographical sequence for the states, the structure of the T.P.M. P is given by

P =



A0 B0 0 0 · · · 0 0
A1 B1 B0 0 · · · 0 0
A2 B2 B1 B0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
AN−1 BN−1 BN−2 BN−3 · · · B1 B0
AN−1 BN−1 BN−2 BN−3 · · · B1 B0


,

where

Ai =


1 − αi −

i−
k=0

(Γk + ∆k) αi

1 − βi −

i−
k=0

σk βi

 , i = 0, 1, . . . ,N − 1,
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Bi =


Γi ∆i
0 σi


, i = 0, 1, . . . ,N − 1.

Let P−
= {P−

0,0, P
−

0,1, P
−

1,0, P
−

1,1, . . . , P
−

N−1,0, P
−

N−1,1, P
−

N,0, P
−

N,1} be the row vector of the pre-arrival epoch probabilities.
Using one of the available software packages such as MAPLE or Matlab, the stationary probability vector P− can be obtained
by solving the system equations P−P = P− with P−e = 1, where e is a column vector of dimension 2N + 2 with all entries
equal to one.

Remark 2. The system of linear equations
P−P = P−

P−e = 1

can be directly converted into the following equations
(P − I2N+2)

T

eT

 
P−

T
=


02N+2

1


,

where AT represents the transpose of a matrix or vector A, I2N+2 denotes the identity matrix of dimension (2N + 2)-by-
(2N +2) and 02N+2 is a column vector of dimension 2N +2with all entries equal to zero. Employing a very useful command
‘‘linsolve’’ in Matlab, we can get P− immediately.

3.3. Steady state system length distribution at an outside observer’s observation epoch

Steady state system length distribution at an outside observer’s observation epoch plays an important role in evaluating
performancemeasures, for example, in order to use Little’s rule to obtain the average sojourn time in the system, the average
number of customers in the queue at an outside observer’s observation epoch is needed.

In EAS, an outside observer’s observation epoch falls in a time interval after a potential customer arrival and before
a potential customer departure, the probability Po

i,1(P
o
i,0) that an outside observer sees i customers in the system and the

server is in a normal busy period or changeover time (in a working vacation period) can be obtained by using the relations

PN,0 = η̄θ̄Po
N,0, (37)

Pi,0 = η̄θ̄Po
i,0 + ηθ̄Po

i+1,0, i = N − 1, . . . , 1, (38)

PN,1 = µ̄Po
N,1 + η̄θPo

N,0, (39)

Pi,1 = µ̄Po
i,1 + µPo

i+1,1 + η̄θPo
i,0 + ηθPo

i+1,0, i = N − 1, . . . , 1, (40)

P0,1 = ξ̄Po
0,1 + µPo

1,1, (41)

P0,0 = Po
0,0 + ηPo

1,0 + ξPo
0,1. (42)

The above relations can be obtained by considering arbitrary and an outside observer’s observation epochs in Fig. 1. Solving
Po
i,1(P

o
i,0) from Eqs. (37)–(42), we have

Po
N,0 =

1
η̄θ̄

PN,0, (43)

Po
i,0 =

1
η̄θ̄


Pi,0 − ηθ̄Po

i+1,0


, i = N − 1, . . . , 1, (44)

Po
N,1 =

1
µ̄


PN,1 − η̄θPo

N,0


, (45)

Po
i,1 =

1
µ̄


Pi,1 − µPo

i+1,1 − η̄θPo
i,0 − ηθPo

i+1,0


, i = N − 1, . . . , 1, (46)

Po
0,1 =

1
ξ̄


P0,1 − µPo

1,1


, (47)

Po
0,0 = P0,0 − ηPo

1,0 − ξPo
0,1. (48)

4. Performance evaluation

As steady state probabilities at various epochs are known, performance measures of the queueing system can easily be
obtained.
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4.1. Blocking probability

A particular importantmeasure of the system performance for a finite buffer queueing system is the blocking probability.
Let Ploss represent the blocking probability of the customer, we have

Ploss = P−

N,0 + P−

N,1. (49)

4.2. Sojourn time

In this subsection, we consider sojourn time distribution of an accepted customer in the system under the FCFS queuing
discipline. Let us define the random variable W as the sojourn time of an accepted customer in the system and the
corresponding p.m.f. wm = P{W = m},m ≥ 1. Considering various possible cases, the expression of wm is given below

wm =
1

1 − Ploss


N−1−
i=0

P−

i,1P


i+1−
j=1

Xj = m


+ P−

0,0


P


S̃1 = m|V ≥ S̃1


P


V ≥ S̃1


+ P


V + S1 = m|V < S̃1


P


V < S̃1


+

N−1−
i=1

P−

i,0P


i+1−
j=1

S̃j = m

 V ≥

i+1−
j=1

S̃j


P


V ≥

i+1−
j=1

S̃j



+

N−1−
i=1

P−

i,0

i−
k=0

P


V +

i+1−
j=k+1

Sj = m

 k−
j=1

S̃j ≤ V <

k+1−
j=1

S̃j


P


k−

j=1

S̃j ≤ V <

k+1−
j=1

S̃j



=
1

1 − Ploss


N−1−
i=0

P−

i,1


m − 1

i


µi+1µ̄m−i−1

+ P−

0,0


ηη̄m−1θ̄m−1

+

m−1−
r=1

θ θ̄ r−1η̄rµµ̄m−r−1



+

N−1−
i=1

P−

i,0


m − 1

i


ηi+1η̄m−i−1θ̄m−1

+

N−1−
i=1

P−

i,0

i−
k=0

m−(i−k+1)−
r=max(1,k)

θ θ̄ r−1

r
k


ηkη̄r−k


m − r − 1

i − k


µi−k+1µ̄m−r−1−(i−k)


. (50)

Thus the p.g.f. of the sojourn time is given by

W (z) =

∞−
m=1

wmzm

=
1

1 − Ploss


N−1−
i=0

P−

i,1


µz

1 − µ̄z

i+1

+ P−

0,0


ηz

1 − η̄θ̄z
+

θη̄µz2

(1 − µ̄z)(1 − η̄θ̄z)


+

N−1−
i=1

P−

i,0
1
θ̄


ηθ̄z

1 − η̄θ̄z

i+1

+

N−1−
i=1

P−

i,0


θη̄µi+1z i+2

(1 − µ̄z)i+1(1 − θ̄ η̄z)
+

i−
k=1

θ θ̄ k−1ηkz i+1

(1 − θ̄ η̄z)k+1


µ

1 − µ̄z

i+1−k


. (51)

With the p.g.f. of the sojourn time,we can easily get another performancemeasure: the expected sojourn time of an accepted
customer.

E[W ] =
1

1 − Ploss


N−1−
i=0

P−

i,1
(i + 1)

µ
+ P−

0,0

[
η

(1 − η̄θ̄ )2
+

θη̄(1 − θ̄ η̄ + µ)

µ(1 − η̄θ̄ )2

]

+

N−1−
i=1

P−

i,0
(i + 1)
ηθ̄2


ηθ̄

1 − η̄θ̄

i+2

+

N−1−
i=1

P−

i,0


θη̄[(i + 1)(1 − θ̄ η̄) + µ]

µ(1 − θ̄ η̄)2

+

i−
k=1


θ θ̄ k−1ηk

[(i + 1)(1 − θ̄ η̄) + (k + 1)θ̄ η̄]

(1 − θ̄ η̄)k+2
+

(i + 1 − k)θ θ̄ k−1ηkµ̄

µ(1 − θ̄ η̄)k+1


. (52)

4.3. Mean system length at an outside observer’s observation epoch

Three kinds of mean system length at an outside observer’s observation epoch are given respectively as follows:
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Table 1
System length distribution at various epochs when inter-arrival time is arbitrary with a1 = 0.35, a3 = 0.2, a5 = 0.25, a11 = 0.15, a15 = 0.05 and
µ = 0.24, θ = 0.018, η = 0.18, ξ = 0.15,N = 15.

i P−

i,1 P−

i,0 Pi,1 Pi,0 Po
i,1 Po

i,0

0 0.0301 0.0535 0.0308 0.0525 0.0242 0.0409
1 0.0450 0.0422 0.0456 0.0419 0.0424 0.0444
2 0.0543 0.0333 0.0548 0.0331 0.0527 0.0350
3 0.0594 0.0262 0.0597 0.0261 0.0586 0.0276
4 0.0615 0.0207 0.0617 0.0206 0.0613 0.0218
5 0.0614 0.0163 0.0615 0.0162 0.0615 0.0172
6 0.0598 0.0129 0.0599 0.0128 0.0602 0.0136
7 0.0571 0.0102 0.0572 0.0102 0.0578 0.0107
8 0.0539 0.0081 0.0539 0.0081 0.0546 0.0085
9 0.0503 0.0065 0.0503 0.0064 0.0511 0.0068

10 0.0465 0.0052 0.0465 0.0052 0.0473 0.0055
11 0.0425 0.0043 0.0426 0.0043 0.0435 0.0045
12 0.0382 0.0037 0.0386 0.0037 0.0395 0.0039
13 0.0339 0.0034 0.0344 0.0034 0.0354 0.0035
14 0.0304 0.0034 0.0304 0.0034 0.0312 0.0034
15 0.0227 0.0032 0.0211 0.0030 0.0277 0.0038
Sum 0.7468 0.2532 0.7491 0.2509 0.7491 0.2509

Ploss = 0.0259, E[W ] = 29.4315, E[W ]little = 29.4315, Lo = 6.2325, Lo1 = 5.2764, Lo0 = 0.9561.

Table 2
System length distribution at various epochswhen inter-arrival time is geometricwithλ = 0.2174 andµ = 0.24, θ = 0.018, η = 0.18, ξ = 0.15,N = 18.

i P−

i,1 P−

i,0 Pi,1 Pi,0 Po
i,1 Po

i,0

0 0.0283 0.0493 0.0283 0.0493 0.0222 0.0385
1 0.0426 0.0387 0.0426 0.0387 0.0395 0.0410
2 0.0514 0.0305 0.0514 0.0305 0.0495 0.0323
3 0.0562 0.0240 0.0562 0.0240 0.0551 0.0254
4 0.0580 0.0188 0.0580 0.0188 0.0576 0.0200
5 0.0578 0.0148 0.0578 0.0148 0.0578 0.0157
6 0.0562 0.0117 0.0562 0.0117 0.0565 0.0123
7 0.0536 0.0092 0.0536 0.0092 0.0541 0.0097
8 0.0504 0.0072 0.0504 0.0072 0.0511 0.0076
9 0.0469 0.0057 0.0469 0.0057 0.0477 0.0060

10 0.0433 0.0045 0.0433 0.0045 0.0441 0.0047
11 0.0397 0.0035 0.0397 0.0035 0.0405 0.0037
12 0.0362 0.0028 0.0362 0.0028 0.0369 0.0030
13 0.0328 0.0023 0.0328 0.0023 0.0335 0.0024
14 0.0296 0.0019 0.0296 0.0019 0.0303 0.0019
15 0.0266 0.0016 0.0266 0.0016 0.0273 0.0017
16 0.0238 0.0015 0.0238 0.0015 0.0244 0.0015
17 0.0212 0.0015 0.0212 0.0015 0.0218 0.0015
18 0.0147 0.0013 0.0147 0.0013 0.0193 0.0017
Sum 0.7694 0.2306 0.7694 0.2306 0.7694 0.2306

Ploss = 0.0161, E[W ] = 32.5924, E[W ]little = 32.5924, Lo = 6.9718, Lo1 = 6.0887, Lo0 = 0.8831.

(1) The average system length:

Lo =

N−
i=1

iPo
i,1 +

N−
i=1

iPo
i,0. (53)

(2) The average system length when the server is in normal busy period:

Lo1 =

N−
i=1

iPo
i,1. (54)

(3) The average system length when the server is on a working vacation:

Lo0 =

N−
i=1

iPo
i,0. (55)

4.4. Numerical examples of operating characteristics

To demonstrate the applicability of the formulae obtained in the previous section, in this subsection, we present some
numerical examples in the form of tables and graphs. Under some different cases, distribution of the number of customers
in the system at pre-arrival, arbitrary and outside observer’s observation epochs are given in Tables 1 and 2. Also, various
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(a) Geometric. (b) Deterministic.

(c) Arbitrary. (d) Phase type.

Fig. 2. Histogram of sojourn time for various inter-arrival time distributions.

performance measures such as probability of blocking, three kinds of average system length and average sojourn time in
the system are given at the bottom of the tables. All the calculations have been done on the Matlab software package and
all the dates are reported here in four decimal places.

Remark 3. Thenotations used in the tables are the same as those defined earlier in this paper except E[W ]little which denotes
the sojourn time in the system of an accepted customer evaluated through Little’s rule.

Remark 4. It can be seen from Table 2 that pre-arrival and arbitrary epoch probabilities are the same (i.e. P−

i,j = Pi,j) due
to Bernoulli arrivals. It is obvious that the numerical experiment result coincides with the BASTA (i.e. Bernoulli arrivals see
time averages) property and indicates the correctness of the theoretical analysis in the previous section and the reliability
of the computation program. Furthermore, it is to be noted here that we can also obtain the average sojourn time in the
system (E[W ]) from Little’s rule, E[W ]little = Lo/λ′, where λ′

= λ(1 − Ploss) is the effective arrival rate. By our numerical
computation (see the bottom of Tables 1 and 2), we find that the average sojourn time in the system evaluated through
Eq. (52) exactly matches with the one obtained from Little’s rule. It also shows that the theoretical analysis and numerical
experiment in this paper is correct.

Further, using Eq. (50), we have also got the sojourn time distribution of an accepted customer in the system. In Table 3,
the computation results of the sojourn time distribution are given for various inter-arrival time distributions with the
same system parameters N = 17, µ = 0.24, η = 0.18, ξ = 0.15, θ = 0.018. The inter-arrival time distributions
are taken as geometric (λ = 0.25), deterministic (a5 = 1), arbitrary (a2 = 0.6, a6 = 0.3, a20 = 0.1) and phase type

α = (0.3, 0.1, 0.6), T =

[
0.2 0.3 0.2
0.5 0.3 0
0.3 0 0.4

]
, respectively. Also, for the above four cases, the probability mass functions of

the sojourn time are illustrated in Fig. 2(a)–(d). Moreover, we note that an interesting fact, that is, the probability mass
function of the sojourn time becomes very ‘‘normal’’ when the inter-arrival time distribution is taken as a phase type (see
Fig. 2(d)).

Fig. 3a compares the buffer size versus blocking probability for various inter-arrival time distributions with the same
parameters µ = 0.24, η = 0.18, θ = 0.018, ξ = 0.15. The three curves exhibit a decreasing shape. It can be seen that
deterministic distribution yields the lowest blocking probability. Then, under three different inter-arrival time distributions
and the same parameters mentioned above, Fig. 3b shows the effect of buffer size on the average sojourn time E[W ]. We
observe that, for each case, the average sojourn time reaches its asymptotic value after certain buffer size N .

In Fig. 4, assume that the inter-arrival time distribution is arbitrary (a1 = 0.35, a3 = 0.2, a5 = 0.25, a11 = 0.15, a15 =

0.05), we display the blocking probability and the expected value of sojourn time as a function of buffer size N . As is to be
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Fig. 3a. Effect of N on blocking probability under different inter-arrival time distributions.

Fig. 3b. Effect of N on average sojourn time under different inter-arrival time distributions.

Fig. 4a. Effect of N on blocking probability under different vacation policies.

Fig. 4b. Effect of N on average sojourn time under different vacation policies.

expected, here the blocking probability and the average sojourn time are less for a working vacation model in comparison
to a non-working vacation.
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Table 3
Partial summation of the sojourn time distribution for various inter-arrival time distributions.∑j

m=i wm Geometric Deterministic Arbitrary Phase type∑10
m=1 wm 0.0637 0.3941 0.2316 0.0178∑20
m=11 wm 0.0934 0.2728 0.2157 0.0359∑30
m=21 wm 0.1193 0.1603 0.1759 0.0642∑40
m=31 wm 0.1437 0.0870 0.1338 0.1092∑50
m=41 wm 0.1622 0.0450 0.0970 0.1680∑60
m=51 wm 0.1587 0.0224 0.0663 0.2041∑70
m=61 wm 0.1241 0.0106 0.0409 0.1821∑80
m=71 wm 0.0760 0.0047 0.0220 0.1203∑90
m=81 wm 0.0370 0.0019 0.0102 0.0613∑100
m=91 wm 0.0148 7.3405 × 10−4 0.0041 0.0251∑110
m=101 wm 0.0051 2.6136 × 10−4 0.0015 0.0086∑120
m=111 wm 0.0015 8.8319 × 10−5 5.0576 × 10−4 0.0025∑130
m=121 wm 4.0576 × 10−4 2.8636 × 10−5 1.6016 × 10−4 6.6641 × 10−4∑140
m=131 wm 1.0119 × 10−4 8.9636 × 10−6 4.8785 × 10−5 1.5772 × 10−4

Sum 1.0000 1.0000 1.0000 1.0000

5. The optimum service rate in a working vacation period

In practice, queueing managers are always interested in minimizing operating cost of unit time. In this section, we first
develop a steady state expected operating cost function per unit time for the GI/Geom/1/N working vacation queue with
changeover time, in which η is a decision variable. Our main objective in this section is to determine the optimum value of
service rate in working vacation period, so as to minimize the expected operating cost function per unit time.

5.1. Operating cost function per unit time

Let us define the following cost elements:

CWV ≡ unit time cost of every customer in the system when the server is on a working vacation;
CNB ≡ unit time cost of every customer in the system when the server is in a normal busy period;
Cµ ≡ fixed service cost per unit time during the normal busy period;
Cη ≡ fixed service cost per unit time during a working vacation period;
Cξ ≡ fixed cost per unit time during the changeover time.

Based on the definitions of each cost element listed above and its corresponding system performance measures, the cost
minimization problem can be illustrated mathematically as:

min
η

: TC(η) = CWV Lo0 + CNBLo1 + Cµµ + Cηη + Cξ ξ . (56)

It would have been a difficult task to develop analytic results for the optimum value of η because the expected operating
cost function is highly non-linear and complex. In addition, we note that the derivatives of operating cost function per unit
time are not easily available, because TC(η) is provided only in the form of computer program code, that is, the analytic form
of TC(η) unknown. To solve the optimization problem (56), in the next subsection, we will utilize a kind of direct method
to find the optimum value of η, say η∗.

5.2. The parabolic method and some numerical examples

Direct methods are employed when the objective function f is not differentiable or if the computation of its derivatives
is a nontrivial task. For the reasons mentioned above, we employ the parabolic method to solve the optimization problem
(56).

The essence of the parabolic method is to generate a quadratic function through the evaluated points in each iteration,
and then the objective function f (x) is approximated by the quadratic function in generating an estimate of the optimum
value. According to the polynomial approximation theory, the unique optimum of the quadratic function agreeing with f (x)
at 3-point pattern {x(lo), x(mid), x(hi)

} occurs at

x(qu) ,
1
2

f (lo)
[s(mid)

− s(hi)] + f (mid)
[s(hi) − s(lo)] + f (hi)

[s(lo) − s(mid)
]

f (lo)[x(mid) − x(hi)] + f (mid)[x(hi) − x(lo)] + f (hi)[x(lo) − x(mid)]
[16], (57)
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Fig. 5. Effect of η on expected operating cost per unit time.

where f (lo) , f (x(lo)), f (mid) , f (x(mid)), f (hi) , f (x(hi)), s(lo) , (x(lo))2, s(mid) , (x(mid))2 and s(hi) , (x(hi))2. The parabolic
method uses this approximation to improve the current 3-point pattern by replacing one of its points with an approximate
optimum x(qu). Then, repeating in this way isolates an optimum for f (x) in an ever-narrowing range.

The steps of the parabolic method can be described as follows (see Ref. [19]):
Step 1: (Initialization). Choose a starting 3-point pattern {x(lo), x(mid), x(hi)

} along with a stopping tolerance ε = 10−5, and
initialize the iteration counter i = 0;

Step 2: (Stopping). If |x(qu)
− x(mid)

| ≤ ε, stop and report approximate optimum solution x(mid);
Step 3: (Quadratic Fit). Compute a quadratic fit optimum x(qu) according to the formula (57). Then if x(qu)

≤ x(mid), go to
Step 4; and if x(qu) > x(mid) go to Step 5.

Step 4: (Left). If f (x(mid)) is superior to f (x(qu)) (less for a minimize, greater for a maximize), then update

x(qu)
→ x(lo).

Otherwise, replace

x(mid)
→ x(hi),

x(qu)
→ x(mid).

Either way, advance i = i + 1, and return to Step 2.
Step 5: (Right). If f (x(mid)) is superior to f (x(qu)) (less for a minimize, greater for a maximize), then update

x(qu)
→ x(hi).

Otherwise, replace

x(mid)
→ x(lo)

x(qu)
→ x(mid).

Either way, advance i = i + 1, and return to Step 2.
Next, to demonstrate the applicability of the parabolic method in our optimization problem, two numerical examples

under different cases are provided.

Example 1 (Geom/Geom/1/N). Assume that the inter-arrival time of a customer is geometric with λ = 0.25. Other
parameters of the system are given as follows: N = 17, µ = 0.67, θ = 0.018, ξ = 0.15, CWV = 5, CNB = 3, Cµ =

18, Cη = 10, Cξ = 8 and the stopping tolerance ε = 10−5.

With the information of Fig. 5(a), we select the initial 3-point pattern η(lo)
= 0.4, η(mid)

= 0.5, η(hi)
= 0.6, and then

we apply the parabolic method as mentioned above, after four iterations. Table 4 clearly shows that the minimum expected
operating cost per unit time converges to the solution η∗

= 0.520160 with value 21.674583.

Example 2 (D/Geom/1/N). Assume that the inter-arrival time of a customer is deterministic with a4 = 1. Other parameters
of the system are given as follows: N = 19, µ = 0.5, θ = 0.02, ξ = 0.05, CWV = 5, CNB = 3, Cµ = 18, Cη = 10, Cξ = 8
and the stopping tolerance ε = 10−5.

Similarly, with the information of Fig. 5(b), we select the initial 3-point pattern η(lo)
= 0.35, η(mid)

= 0.4, η(hi)
= 0.45,

and also use the parabolic method, after five iterations, Table 5 clearly shows that the minimum expected operating cost
per unit time converges to the solution η∗

= 0.409928 with a value 16.673579.
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Table 4
The parabolic method in searching the optimum solution of Geom/Geom/1/N queue.

No. of iterations η(lo) η(mid) η(hi) TC(η(lo)) TC(η(mid)) TC(η(hi)) η(qu) TC(η(qu)) Tolerance

0 0.400000 0.500000 0.600000 22.334827 21.687497 21.829058 0.532056 21.678685 0.032056
1 0.500000 0.532056 0.600000 21.687497 21.678685 21.829058 0.521552 21.674641 0.010503
2 0.500000 0.521552 0.532056 21.687497 21.674641 21.678685 0.520517 21.674587 0.001035
3 0.500000 0.520517 0.521552 21.687497 21.674587 21.674641 0.520199 21.674583 3.185107 × 10−4

4 0.500000 0.520199 0.520517 21.687497 21.674583 21.674587 0.520160 21.674583 3.924987 × 10−5

Table 5
The parabolic method in searching the optimum solution of D/Geom/1/N queue.

No. of iterations η(lo) η(mid) η(hi) TC(η(lo)) TC(η(mid)) TC(η(hi)) η(qu) TC(η(qu)) Tolerance

0 0.350000 0.400000 0.450000 16.876396 16.677864 16.730082 0.414588 16.674463 0.014588
1 0.400000 0.414588 0.450000 16.677864 16.674463 16.730082 0.410525 16.673594 0.004063
2 0.400000 0.410525 0.414588 16.677864 16.673594 16.674463 0.410038 16.673580 4.866487 × 10−4

3 0.400000 0.410038 0.410525 16.677864 16.673580 16.673594 0.409943 16.673579 9.540400 × 10−5

4 0.400000 0.409943 0.410038 16.677864 16.673579 16.673580 0.409930 16.673579 1.280382 × 10−5

5 0.400000 0.409930 0.409943 16.677864 16.673579 16.673579 0.409928 16.673579 2.401686 × 10−6

6. Conclusions

In this paper, we have carried out an analysis of a finite buffer discrete-time queue that has potential applications
in communication networks. Through two kinds of classical analysis techniques, we have obtained the system length
distributions at different time epochs. Utilizing these distributions, we have derived some important performance
characteristics and also have considered the cost optimization problemby a numericalmethod. In the future, research topics
such as GI/D − MSP/1/N/MWV and GIx/Geom/1/N/MWV discrete-time queues can be studied with the same analysis
techniques.
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