The crossing number of $K_{1,m,n}$

Pak Tung Ho

Department of Mathematics, Purdue University, West Lafayette 47907, USA

Received 29 June 2007; received in revised form 10 November 2007; accepted 13 November 2007

Available online 21 February 2008

Abstract

A longstanding problem of crossing number, Zarankiewicz’s conjecture, asserts that the crossing number of the complete bipartite graph $K_{m,n}$ is $\left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor$, which is known only for $m \leq 6$. It is natural to generalize Zarankiewicz conjecture and ask: What is the crossing number for the complete multipartite graph? In this paper, we prove the following lower bounds for the crossing number of $K_{1,m,n}$ in terms of the crossing number of the complete bipartite graph:

$$cr(K_{1,m,n}) \geq cr(K_{m+1,n+1}) - \left\lfloor \frac{n}{m+2} \right\rfloor \left\lfloor \frac{m+1}{2} \right\rfloor;$$

$$cr(K_{1,2M,n}) \geq \frac{1}{2}(cr(K_{2M+1,n+2}) + cr(K_{2M+1,n}) - M(M+n-1)).$$

As a corollary, we show that:

1. $cr(K_{1,m,n}) \geq 0.8594Z(m+1,n+1) - \left\lfloor \frac{n}{m} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor$;
2. If Zarankiewicz’s conjecture is true for $m = 2M + 1$, then $cr(K_{1,2M,n}) = M^2 \left\lfloor \frac{n+1}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor - M \left\lfloor \frac{n}{2} \right\rfloor$;
3. $cr(K_{1,4,n}) = 4 \left\lfloor \frac{n+1}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor - 2 \left\lfloor \frac{n}{2} \right\rfloor$.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Crossing number; Multipartite graphs; Zarankiewicz’s conjecture

1. Introduction

Determining the crossing numbers of graphs is a notorious problem in Graph Theory, as in general it is quite easy to find a drawing of a sufficiently “nice” graph in which the number of crossings can hardly be decreased, but it is very difficult to prove that such a drawing indeed has the smallest possible number of crossings. In fact, computing the crossing number of a graph is NP-complete [4,7], and exact values are known only for very restricted classes of graphs. Bhatt and Leighton [2] showed that the crossing number of a network (graph) is closely related to the minimum layout area required for the implementation of a VLSI circuit for that network. For more about crossing number, see [15] and the references therein.
One of the conjecture in crossing number states that the crossing number for a complete graph of order \(n \) is

\[
\text{cr}(K_n) = \frac{1}{4} n \left[\left\lfloor \frac{n-1}{2} \right\rfloor \right] \left[\left\lfloor \frac{n-2}{2} \right\rfloor \right] \left[\left\lfloor \frac{n-3}{2} \right\rfloor \right],
\]

which is known only for \(n \leq 10 \) [5]. Recently, Pan and Richter [14] proved that it is true for \(n = 11 \) and 12. Another problem in crossing number is Zarankiewicz’s conjecture, which asserts that the crossing number of the complete bipartite graph \(K_{m,n} \) is

\[
\text{cr}(K_{m,n}) = \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor, \tag{1}
\]

(we assume \(m \leq n \) throughout this paper) which is known only for \(m \leq 6 \) [13]; and for \(7 \leq m \leq 8 \) and \(n \leq 10 \) [16].

In the following, \(Z(m, n) \) will denote the right member of (1). Recently, in [3], deKlerk et al. gave a new lower bound for the crossing number of \(K_{m,n} \).

It is natural to generalize Zarankiewicz conjecture and ask: What is the crossing number for the complete multipartite graph? In [6], Harboth gave an upper bound for the crossing number of \(K_{n_1,n_2,...,n_k} \) for any positive \(n_i \) and \(k \). In particular, he proved that

\[
\text{cr}(K_{1,m,n}) \leq Z(m+1, n+1) - \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor. \tag{2}
\]

He also conjectured that equality holds in (2). In [1], Asano showed that the crossing numbers of \(K_{1,3,n} \) and \(K_{2,3,n} \) are \(Z(4, n) + \left\lfloor \frac{n}{2} \right\rfloor \) and \(Z(5, n) + n \) respectively. Recently, Huang and Zhao have computed the crossing of \(K_{1,4,n} \) in [12]. See also [9–11]. In [8], the author computed the crossing numbers of \(K_{1,1,1,n} \), \(K_{1,2,2,n} \), \(K_{1,1,1,2,n} \) and \(K_{1,4,n} \). The technique the author used in [8] is similar to Asano in [1], that is: If the crossing number of \(K_{t_1,...,t_k,n} \) is less than the expected value, then the \(K_{t_1,...,t_k} \) in the optimal drawing of \(K_{t_1,...,t_k,n} \) must be drawn in some special forms. Then by analyzing each of these drawings of \(K_{t_1,...,t_k} \) carefully, one can show that it is impossible to extend these drawings to the optimal drawing of \(K_{t_1,...,t_k,n} \).

In this paper, we study the crossing number of the complete tripartite graph \(K_{1,m,n} \). We obtain the lower bounds of \(\text{cr}(K_{1,m,n}) \) in terms of the crossing number of the complete bipartite graphs by showing that:

\[
\text{cr}(K_{1,m,n}) \geq \text{cr}(K_{m+1,n+1}) - \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m+1}{2} \right\rfloor;
\]

\[
\text{cr}(K_{1,2M,n}) \geq \frac{1}{2}(\text{cr}(K_{2M+1,n+2}) + \text{cr}(K_{2M+1,n}) - M(M + n - 1)).
\]

We prove these inequalities by constructing drawings of the complete bipartite graphs from the drawing of \(K_{1,m,n} \). As a corollary, we show that:

1. \(\text{cr}(K_{1,m,n}) \geq 0.8594Z(m+1, n+1) - \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{m+1}{2} \right\rfloor; \)
2. If Zarankiewicz’s conjecture is true for \(m = 2M+1 \), then the equality holds in (2) for \(m = 2M \), i.e. \(\text{cr}(K_{1,2M,n}) = M^2 \left\lfloor \frac{n+1}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor - M \left\lfloor \frac{n}{2} \right\rfloor; \)
3. \(\text{cr}(K_{1,4,n}) = 4 \left\lfloor \frac{n+1}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor - 2 \left\lfloor \frac{n}{2} \right\rfloor. \)

Here are some definitions. Let \(G \) be a graph with edge set \(E \). A drawing of a graph \(G \) is a mapping from \(G \) into the plane. A drawing is good if no edge crosses itself; adjacent edges do not cross; two crossing edges cross only once; edges do not cross vertices; and no more than two edges cross at a point. Let \(A \) and \(B \) be subsets of \(E \). In a drawing \(\phi \), the number of crossings of edges in \(A \) with edges in \(B \) is denoted by \(\text{cr}_\phi(A, B) \). Especially, \(\text{cr}_\phi(A, A) \) will be denoted by \(\text{cr}_\phi(A) \). Then the total number of crossings of \(\phi \) is \(\text{cr}_\phi(E) \). The crossing number of a graph \(G, \text{cr}(G) \), is the minimum of \(\text{cr}_\phi(E) \) among all good drawings \(\phi \) of \(G \). We note the following formulas, which can be shown easily.

\[
\text{cr}_\phi(A \cup B) = \text{cr}_\phi(A) + \text{cr}_\phi(B) + \text{cr}_\phi(A, B) \tag{3}
\]

\[
\text{cr}_\phi(A, B \cup C) = \text{cr}_\phi(A, B) + \text{cr}_\phi(A, C). \tag{4}
\]
where A, B and C are mutually disjoint subsets of E. For the complete tripartite graph $K_{1,m,n}$ with the partition (X, Y, Z), where $X = \{x_1\}$, $Y = \{y_1, \ldots, y_m\}$ and $Z = \{z_1, \ldots, z_n\}$ we write E_{XY} for the set of all edges incident to X and Y; and $E(z_i)$ for the set of all edges incident to z_i.

2. Lower bounds for $cr(K_{1,m,n})$

Firstly, we give the following lower bound of the crossing number of $K_{m+1,n+1}$:

Theorem 2.1. $cr(K_{1,m,n}) \geq cr(K_{m+1,n+1}) - \lfloor \frac{n}{m} \rfloor \lfloor \frac{m+1}{2} \rfloor$.

Proof. Let ϕ be a good drawing of $K_{1,m,n}$ with crossing number $cr(K_{1,m,n})$. Since ϕ is good, $cr_\phi(E_{XY}) = 0$. By (3) and (4),

$$cr(K_{1,m,n}) = cr_\phi(E) = cr_\phi\left(\bigcup_{i=1}^{n} E(z_i)\right) + \sum_{i=1}^{n} cr_\phi(E_{XY}, E(z_i)).$$

(5)

By renaming the vertices of y_j if necessary, we may assume that the subgraph induced by $X \cup Y$ is drawn such that x_1y_j lies between x_1y_{j-1} and x_1y_{j+1} (mod m for $j + 1$), as in Fig. 1(a). For $1 \leq j \leq m$, let A_j be the set of z_i where $1 \leq i \leq n$, such that x_1z_i lies between the edges x_1y_j and x_1y_{j+1}. See Fig. 1(b) for $z_i \in A_1$.

We are going to obtain a drawing of $K_{m+1,n+1}$ from ϕ. To do this, we draw a new vertex, z_{n+1}, near the vertex x_1 and lying in the region between the edges x_1y_m and x_1y_1 such that z_{n+1} lies between x_1y_m and x_1z_i for all $z_i \in A_m$, as shown in Fig. 1(c). Let $m' = \lfloor m/2 \rfloor$. For $1 \leq j \leq m'$, draw the edge $z_{n+1}y_j$ next to the edge x_1y_j such that $z_{n+1}y_j$ only crosses x_1y_i where $1 \leq i \leq j - 1$ and does not cross other edges in E_{XY}. For $m' + 1 \leq j \leq m$, draw the edge $z_{n+1}y_j$ next to the edge x_1y_j such that $z_{n+1}y_j$ only crosses x_1y_j where $j + 1 \leq i \leq m$ and does not cross other edges in E_{XY}. Draw the edge $z_{n+1}x_1$ without crossing any edges. Then remove the edges x_1y_j for $1 \leq j \leq m$. See Fig. 1(d).

Now we have a drawing ϕ' of $K_{m+1,n+1}$ with $\{x_1, y_1, \ldots, y_m\}$ as the partition with $m + 1$ vertices and $\{z_1, \ldots, z_{n+1}\}$ as the partition with $n + 1$ vertices. Note that if $z_i \in A_j$ where $1 \leq j \leq m'$ (see Fig. 2(a) for...
Fig. 1(d). Remove the edges x_1y_j.

Fig. 2(a). $z_i \in A_2$ for $m = 5$.

Fig. 2(b). $z_i \in A_3$ for $m = 5$.

Fig. 2(c). $z_i \in A_5$ for $m = 5$.

$m = 5$ and $j = 2$, then

$$cr_{\phi'}(E(z_i), E(z_{n+1})) = cr_\phi(E(z_i), E_{XY}) + m' - j.$$ \hspace{1cm} (6)

If $z_i \in A_j$ where $m' + 1 \leq j \leq m - 1$ (see Fig. 2(b) for $m = 5$ and $j = 3$), then

$$cr_{\phi'}(E(z_i), E(z_{n+1})) = cr_\phi(E(z_i), E_{XY}) + j - m'.$$ \hspace{1cm} (7)

If $z_i \in A_m$, then by our construction that z_{n+1} lies between x_1y_m and x_1z_i for all $z_i \in A_m$ (see Fig. 2(c) for $m = 5$), we have

$$cr_{\phi'}(E(z_i), E(z_{n+1})) = cr_\phi(E(z_i), E_{XY}) + m'.$$ \hspace{1cm} (8)

Note also that

$$cr_{\phi'} \left(\bigcup_{i=1}^{n} E(z_i) \right) = cr_{\phi} \left(\bigcup_{i=1}^{n} E(z_i) \right).$$ \hspace{1cm} (9)

By (3) and (4), the crossing number of ϕ' is

$$cr_{\phi'} \left(\bigcup_{i=1}^{n} E(z_i) \right) + \sum_{i=1}^{n} cr_{\phi'}(E(z_i), E(z_{n+1})).$$ \hspace{1cm} (10)

Putting (6)–(9) into (10), we obtain that the crossing number of ϕ' is

$$cr_{\phi} \left(\bigcup_{i=1}^{n} E(z_i) \right) + \sum_{i=1}^{n} cr_{\phi}(E_{XY}, E(z_i)) + \sum_{j=1}^{m'} (m' - j) |A_j| + \sum_{j=m'+1}^{m-1} (j - m') |A_j| + m'|A_m|,$$
which is at least \(cr(K_{m+1,n+1}) \). Combining this with (5), we have
\[
\sum_{j=1}^{m} (m' - j)|A_j| + \sum_{j=m+1}^{m} (j - m')|A_j| + m'|A_m| \geq cr(K_{m+1,n+1}) - cr(K_{1,m,n}).
\]

(11)

If we put \(z_{n+1} \) between the edges \(x_1y_i \) and \(x_1y_{i+1} \) where \(1 \leq i \leq m \) in the above construction of \(K_{m+1,n+1} \), then by the same arguments, we can show that for \(1 \leq i \leq m, \)
\[
\sum_{j=1}^{m'} (m' - j)|A_{j+i}| + \sum_{j=m'+1}^{m} (j - m')|A_{j+i}| + m'|A_{m+i}| \geq cr(K_{m+1,n+1}) - cr(K_{1,m,n}).
\]

(12)

where the indices of \(A_{j+i} \) read modulo \(m \). Summing up (12) for \(1 \leq i \leq m \), we get
\[
\sum_{i=1}^{m} \left(\sum_{j=1}^{m'} (m' - j)|A_{j+i}| + \sum_{j=m'+1}^{m} (j - m')|A_{j+i}| + m'|A_{m+i}| \right) \geq m(\text{cr}(K_{m+1,n+1}) - \text{cr}(K_{1,m,n}))
\]

(13)

where the indices of \(A_{j+i} \) read modulo \(m \). One can show that the left-hand side of (13) is equal to \(\left\lfloor \frac{n}{2} \right\rfloor \frac{m+1}{2} \sum_{j=1}^{m} |A_j| \). Note also that \(\sum_{j=1}^{m} |A_j| = n \). Combining all these, (13) becomes \(n\left\lfloor \frac{n}{2} \right\rfloor \frac{m+1}{2} \geq m(\text{cr}(K_{m+1,n+1}) - \text{cr}(K_{1,m,n})) \), as required. \(\square \)

In [3], deKlerk et al. give the lower bound of the crossing number of \(K_{m,n} \) by showing that \(cr(K_{m,n}) \geq 0.8594Z(m,n) \). Combining this with Theorem 2.1, we can obtain a numerical lower bound for the crossing number of \(K_{1,m,n} \):

Corollary 2.1. \(cr(K_{1,m,n}) \geq 0.8594Z(m+1,n+1) - \left\lfloor \frac{n}{m} \right\rfloor \left\lfloor \frac{m+1}{2} \right\rfloor \).}

Using similar arguments in the proof of Theorem 2.1, we can also prove the following:

Theorem 2.2. \(cr(K_{1,2M,n}) \geq \frac{1}{2} (cr(K_{2M+1,n+2}) + cr(K_{2M+1,n}) - M(M + n - 1)) \).

Proof. Let \(\phi \) be a drawing of \(K_{1,2M,n} \) with \(cr_\phi(E) = cr(K_{1,2M,n}) \). Then (5) still holds for \(\phi \) with \(m = 2M \). We are going to obtain a drawing of \(K_{2M+1,n+2} \) from \(\phi \). Following the same arguments in the proof of Theorem 2.1, we draw a new vertex \(z_{n+1} \) between \(x_1z_{2M} \) and \(x_1z_1 \), as in Fig. 1(c). On the other hand, we draw a vertex \(z_{n+2} \) between \(x_1z_{M} \) and \(x_1z_{M+1} \). See Fig. 3(a) for \(M = 3 \).

Then draw the edges \(z_{n+1}x_1 \) and \(z_{n+1}y_j \) where \(1 \leq j \leq 2M \) as in the proof of Theorem 2.1. Moreover, for \(1 \leq j \leq M \), draw the edge \(z_{n+2}y_j \) next to the edge \(x_1y_j \) such that \(z_{n+2}y_j \) only crosses \(x_1y_i \) where \(j+1 \leq i \leq M \) and does not cross other edges in \(E_{XY} \). For \(M+1 \leq j \leq 2M \), draw the edge \(z_{n+2}y_j \) next to the edge \(x_1y_j \) such that \(z_{n+2}y_j \) only crosses \(x_1y_i \) where \(M+1 \leq i \leq j-1 \) and does not cross other edges in \(E_{XY} \). Draw the edge \(z_{n+2}x_1 \) without crossing any edges. Finally remove the edges \(x_1y_j \) for \(1 \leq j \leq 2M \). See Fig. 3(b) for \(M = 3 \).

Therefore we obtain a drawing \(\phi'' \) of \(K_{2M+1,n+2} \) with \(\{x_1,y_1,\ldots,y_{2M}\} \) as the partition with \(2M+1 \) vertices and \(\{z_1,\ldots,z_n,z_{n+1},z_{n+2}\} \) as the partition with \(n+2 \) vertices. Using the notion of \(A_j \) defined in the proof of Theorem 2.1, one can show that if \(z_i \in A_j \)
\[
\begin{align*}
\cr_{\phi''}(E(z_i), E(z_{n+1})) &= \cr_{\phi}(E(z_i), E_{XY}) + M - j \quad &\text{if } 1 \leq j \leq M; \\
\cr_{\phi''}(E(z_i), E(z_{n+1})) &= \cr_{\phi}(E(z_i), E_{XY}) + j - M \quad &\text{if } M + 1 \leq j \leq 2M.
\end{align*}
\]

(14)

(15)
Also, one can show that if $z_i \in A_j$

\[
\begin{align*}
 cr_{\phi''}(E(z_i), E(z_{n+2})) &= cr_{\phi}(E(z_i), E_{XY}) + j & \text{if } 1 \leq j \leq M; \\
 cr_{\phi''}(E(z_i), E(z_{n+2})) &= cr_{\phi}(E(z_i), E_{XY}) + 2M - j & \text{if } M + 1 \leq j \leq 2M.
\end{align*}
\]

(16) and (17)

On the other hand, we have

\[
 cr_{\phi''}(E(z_{n+1}), E(z_{n+2})) = M(M - 1).
\]

(18)

Note also that

\[
 cr_{\phi''} \left(\bigcup_{i=1}^{n} E(z_i) \right) = cr_{\phi} \left(\bigcup_{i=1}^{n} E(z_i) \right).
\]

(19)

By (3) and (4), the crossing number of ϕ'' is

\[
 cr_{\phi''} \left(\bigcup_{i=1}^{n} E(z_i) \right) + cr_{\phi''}(E(z_{n+1}), E(z_{n+2})) + \sum_{i=1}^{n} (cr_{\phi''}(E(z_i), E(z_{n+1})) + cr_{\phi''}(E(z_i), E(z_{n+2}))).
\]

(20)

Hence, by putting (14)–(19) into (20), and by the fact that $\sum_{i=1}^{2M} |A_i| = n$, we obtain that the crossing number of ϕ'' is

\[
 cr_{\phi} \left(\bigcup_{i=1}^{n} E(z_i) \right) + M(M - 1) + 2 \sum_{i=1}^{n} cr_{\phi}(E_{XY}, E(z_i)) + Mn
\]

\[
 = 2cr(K_{1,2M,n}) - cr_{\phi} \left(\bigcup_{i=1}^{n} E(z_i) \right) + M(M - 1) + Mn
\]

\[
 \leq 2cr(K_{1,2M,n}) - cr(K_{2M+1,n}) + M(M + n - 1),
\]

where the first equality follows from (5) with $m = 2M$; and the second inequality follows from the fact that the graph induced by $\bigcup_{i=1}^{n} E(z_i)$ is $K_{2M+1,n}$. Note also that the crossing number of ϕ'' is at least $cr(K_{2M+1,n+2})$. Combining all these, we obtain $2cr(K_{1,2M,n}) - cr(K_{2M+1,n}) + M(M + n - 1) \geq cr(K_{2M+1,n+2})$ as required. □

From Theorems 2.1 and 2.2, we can derive the following:

Theorem 2.3. If Zarankiewicz’s conjecture is true for $m = 2M + 1$, then

\[
 cr(K_{1,2M,n}) = Z(2M + 1, n + 1) - M \left\lfloor \frac{n}{2} \right\rfloor.
\]

Proof. From (2), it suffices to prove

\[
 cr(K_{1,2M,n}) \geq Z(2M + 1, n + 1) - M \left\lfloor \frac{n}{2} \right\rfloor.
\]

(21)

If Zarankiewicz’s conjecture is true for $m = 2M + 1$, then $cr(K_{2M+1,n}) = Z(2M + 1, n)$. Then (21) follows from Theorem 2.1 for n is even, and from Theorem 2.2 for n is odd. □

Therefore if Zarankiewicz’s conjecture is true for $m = 2M + 1$, then equality holds in (2) for $m = 2M$. Since Zarankiewicz’s conjecture is true for $m = 5$ [13], by putting $M = 2$ in Theorem 2.3, we have the following result appeared in [8,12]:

![Fig. 3(b). The result drawing.](image-url)
Corollary 2.2. \(cr(K_{1,4,n}) = Z(5, n) + 2\left\lfloor \frac{n}{4} \right\rfloor \).

By putting \(M = 3, 4 \) in Theorem 2.3, we have the following results appeared in [10,11]:

Corollary 2.3. The crossing number of \(K_{1,6,n} \) (and \(K_{1,8,n} \) respectively) is \(Z(7, n) + 6\left\lfloor \frac{n}{6} \right\rfloor \) (and \(Z(9, n) + 12\left\lfloor \frac{n}{9} \right\rfloor \) respectively) provided that Zarankiewicz’s conjecture holds for \(m = 7 \) (and \(m = 9 \) respectively).

To conclude, we state the following:

Conjecture 2.1.

\[

\begin{align*}
cr(K_{1,m,n}) &= cr(K_{m+1,n+1}) - \left\lfloor \frac{n}{m} \right\rfloor \left\lfloor \frac{m+1}{2} \right\rfloor; \\
2cr(K_{1,2M,n}) &= 1/2 (cr(K_{2M+1,n+2}) + cr(K_{2M+1,n}) - M(M + n - 1)).
\end{align*}

\]

Theorems 2.1 and 2.2 provide some evidences supporting Conjecture 2.1.

References

[1] K. Asano, The crossing number of \(K_{1,3,n} \) and \(K_{2,3,n} \), J. Graph Theory 10 (1986) 1–8.

[12] Y. Huang, T. Zhao, The crossing number of \(K_{1,4,n} \), Discrete Math. (in press).

