DISCRETE

MATHEMATICS

The crossing number of $K_{1, m, n}$

Pak Tung Ho
Department of Mathematics, Purdue University, West Lafayette 47907, USA

Received 29 June 2007; received in revised form 10 November 2007; accepted 13 November 2007
Available online 21 February 2008

Abstract

and ask: What is the crossing number for the complete multipartite graph? In this paper, we prove the following lower bounds for the crossing number of $K_{1, m, n}$ in terms of the crossing number of the complete bipartite graph: $$
\begin{aligned} & \operatorname{cr}\left(K_{1, m, n}\right) \geq \operatorname{cr}\left(K_{m+1, n+1}\right)-\left\lfloor\frac{n}{m}\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor\right\rfloor \\ & \operatorname{cr}\left(K_{1,2 M, n}\right) \geq \frac{1}{2}\left(\operatorname{cr}\left(K_{2 M+1, n+2}\right)+\operatorname{cr}\left(K_{2 M+1, n}\right)-M(M+n-1)\right) . \end{aligned}
$$

A longstanding problem of crossing number, Zarankiewicz's conjecture, asserts that the crossing number of the complete bipartite graph $K_{m, n}$ is $\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$, which is known only for $m \leq 6$. It is natural to generalize Zarankiewicz conjecture

As a corollary, we show that:

1. $\operatorname{cr}\left(K_{1, m, n}\right) \geq 0.8594 Z(m+1, n+1)-\left\lfloor\frac{n}{m}\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor\right\rfloor$;
2. If Zarankiewicz's conjecture is true for $m=2 M+1$, then $\operatorname{cr}\left(K_{1,2 M, n}\right)=M^{2}\left\lfloor\frac{n+1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor-M\left\lfloor\frac{n}{2}\right\rfloor$;
3. $\operatorname{cr}\left(K_{1,4, n}\right)=4\left\lfloor\frac{n+1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor-2\left\lfloor\frac{n}{2}\right\rfloor$.
(c) 2007 Elsevier B.V. All rights reserved.

Keywords: Crossing number; Multipartite graphs; Zarankiewicz's conjecture

1. Introduction

Determining the crossing numbers of graphs is a notorious problem in Graph Theory, as in general it is quite easy to find a drawing of a sufficiently "nice" graph in which the number of crossings can hardly be decreased, but it is very difficult to prove that such a drawing indeed has the smallest possible number of crossings. In fact, computing the crossing number of a graph is NP-complete [4,7], and exact values are known only for very restricted classes of graphs. Bhatt and Leighton [2] showed that the crossing number of a network (graph) is closely related to the minimum layout area required for the implementation of a VLSI circuit for that network. For more about crossing number, see [15] and the references therein.

[^0]One of the conjecture in crossing number states that the crossing number for a complete graph of order n is

$$
\operatorname{cr}\left(K_{n}\right)=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor,
$$

which is known only for $n \leq 10$ [5]. Recently, Pan and Richter [14] proved that it is true for $n=11$ and 12 . Another problem in crossing number is Zarankiewicz's conjecture, which asserts that the crossing number of the complete bipartite graph $K_{m, n}$ is

$$
\begin{equation*}
\operatorname{cr}\left(K_{m, n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor, \tag{1}
\end{equation*}
$$

(we assume $m \leq n$ throughout this paper) which is known only for $m \leq 6$ [13]; and for $7 \leq m \leq 8$ and $n \leq 10$ [16]. In the following, $Z(m, n)$ will denote the right member of (1). Recently, in [3], deKlerk et al. gave a new lower bound for the crossing number of $K_{m, n}$.

It is natural to generalize Zarankiewicz conjecture and ask: What is the crossing number for the complete multipartite graph? In [6], Harboth gave an upper bound for the crossing number of $K_{n_{1}, n_{2}, \ldots, n_{k}}$ for any positive n_{i} and k. In particular, he proved that

$$
\begin{equation*}
\operatorname{cr}\left(K_{1, m, n}\right) \leq Z(m+1, n+1)-\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor . \tag{2}
\end{equation*}
$$

He also conjectured that equality holds in (2). In [1], Asano showed that the crossing numbers of $K_{1,3, n}$ and $K_{2,3, n}$ are $Z(4, n)+\left\lfloor\frac{n}{2}\right\rfloor$ and $Z(5, n)+n$ respectively. Recently, Huang and Zhao have computed the crossing of $K_{1,4, n}$ in [12]. See also [9-11]. In [8], the author computed the crossing numbers of $K_{1,1,1,1, n}, K_{1,2,2, n}, K_{1,1,1,2, n}$ and $K_{1,4, n}$. The technique the author used in [8] is similar to Asano in [1], that is: If the crossing number of $K_{t_{1}, \ldots, t_{k}, n}$ is less than the expected value, then the $K_{t_{1}, \ldots, t_{k}}$ in the optimal drawing of $K_{t_{1}, \ldots, t_{k}, n}$ must be drawn in some special forms. Then by analyzing each of these drawings of $K_{t_{1}, \ldots, t_{k}}$ carefully, one can show that it is impossible to extend these drawings to the optimal drawing of $K_{t_{1}, \ldots, t_{k}, n}$.

In this paper, we study the crossing number of the complete tripartite graph $K_{1, m, n}$. We obtain the lower bounds of $\operatorname{cr}\left(K_{1, m, n}\right)$ in terms of the crossing number of the complete bipartite graphs by showing that:

$$
\begin{aligned}
& \operatorname{cr}\left(K_{1, m, n}\right) \geq \operatorname{cr}\left(K_{m+1, n+1}\right)-\left\lfloor\frac{n}{m}\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor\right\rfloor \\
& \operatorname{cr}\left(K_{1,2 M, n}\right) \geq \frac{1}{2}\left(\operatorname{cr}\left(K_{2 M+1, n+2}\right)+\operatorname{cr}\left(K_{2 M+1, n}\right)-M(M+n-1)\right) .
\end{aligned}
$$

We prove these inequalities by constructing drawings of the complete bipartite graphs from the drawing of $K_{1, m, n}$. As a corollary, we show that:

1. $\operatorname{cr}\left(K_{1, m, n}\right) \geq 0.8594 Z(m+1, n+1)-\left\lfloor\frac{n}{m}\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor\right\rfloor$;
2. If Zarankiewicz's conjecture is true for $m=2 M+1$, then the equality holds in (2) for $m=2 M$, i.e. $c r\left(K_{1,2 M, n}\right)=$ $M^{2}\left\lfloor\frac{n+1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor-M\left\lfloor\frac{n}{2}\right\rfloor$;
3. $\operatorname{cr}\left(K_{1,4, n}\right)=4\left\lfloor\frac{n+1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor-2\left\lfloor\frac{n}{2}\right\rfloor$.

Here are some definitions. Let G be a graph with edge set E. A drawing of a graph G is a mapping from G into the plane. A drawing is good if no edge crosses itself; adjacent edges do not cross; two crossing edges cross only once; edges do not cross vertices; and no more than two edges cross at a point. Let A and B be subsets of E. In a drawing ϕ, the number of crossings of edges in A with edges in B is denoted by $c r_{\phi}(A, B)$. Especially, $c r_{\phi}(A, A)$ will be denoted by $c r_{\phi}(A)$. Then the total number of crossings of ϕ is $c r_{\phi}(E)$. The crossing number of a graph $G, c r(G)$, is the minimum of $c r_{\phi}(E)$ among all good drawings ϕ of G. We note the following formulas, which can be shown easily.

$$
\begin{align*}
& c r_{\phi}(A \cup B)=c r_{\phi}(A)+c r_{\phi}(B)+c r_{\phi}(A, B) \tag{3}\\
& c r_{\phi}(A, B \cup C)=c r_{\phi}(A, B)+c r_{\phi}(A, C), \tag{4}
\end{align*}
$$

Fig. 1(a). Subgraph induced by $X \cup Y$.

Fig. 1(b). $z_{i} \in A_{1}$.

Fig. 1(c). z_{n+1} is drawn.
where A, B and C are mutually disjoint subsets of E. For the complete tripartite graph $K_{1, m, n}$ with the partition (X, Y, Z), where $X=\left\{x_{1}\right\}, Y=\left\{y_{1}, \ldots, y_{m}\right\}$ and $Z=\left\{z_{1}, \ldots, z_{n}\right\}$ we write $E_{X Y}$ for the set of all edges incident to X and Y; and $E\left(z_{i}\right)$ for the set of all edges incident to z_{i}.

2. Lower bounds for $\boldsymbol{c r}\left(K_{1, m, n}\right)$

Firstly, we give the following lower bound of the crossing number of $K_{1, m, n}$ in terms of the crossing number of $K_{m+1, n+1}$:

Theorem 2.1. $\operatorname{cr}\left(K_{1, m, n}\right) \geq \operatorname{cr}\left(K_{m+1, n+1}\right)-\left\lfloor\frac{n}{m}\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor\right\rfloor$.
Proof. Let ϕ be a good drawing of $K_{1, m, n}$ with crossing number $\operatorname{cr}\left(K_{1, m, n}\right)$. Since ϕ is good, $c r_{\phi}\left(E_{X Y}\right)=0$. By (3) and (4),

$$
\begin{equation*}
\operatorname{cr}\left(K_{1, m, n}\right)=c r_{\phi}(E)=c r_{\phi}\left(\bigcup_{i=1}^{n} E\left(z_{i}\right)\right)+\sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E\left(z_{i}\right)\right) . \tag{5}
\end{equation*}
$$

By renaming the vertices of y_{j} if necessary, we may assume that the subgraph induced by $X \cup Y$ is drawn such that $x_{1} y_{j}$ lies between $x_{1} y_{j-1}$ and $x_{1} y_{j+1}(\bmod m$ for $j+1)$, as in Fig. 1(a). For $1 \leq j \leq m$, let A_{j} be the set of z_{i} where $1 \leq i \leq n$, such that $x_{1} z_{i}$ lies between the edges $x_{1} y_{j}$ and $x_{1} y_{j+1}$. See Fig. 1(b) for $z_{i} \in A_{1}$.

We are going to obtain a drawing of $K_{m+1, n+1}$ from ϕ. To do this, we draw a new vertex, z_{n+1}, near the vertex x_{1} and lying in the region between the edges $x_{1} y_{m}$ and $x_{1} y_{1}$ such that z_{n+1} lies between $x_{1} y_{m}$ and $x_{1} z_{i}$ for all $z_{i} \in A_{m}$, as shown in Fig. 1(c). Let $m^{\prime}=\lfloor m / 2\rfloor$. For $1 \leq j \leq m^{\prime}$, draw the edge $z_{n+1} y_{j}$ next to the edge $x_{1} y_{j}$ such that $z_{n+1} y_{j}$ only crosses $x_{1} y_{i}$ where $1 \leq i \leq j-1$ and does not cross other edges in $E_{X Y}$. For $m^{\prime}+1 \leq j \leq m$, draw the edge $z_{n+1} y_{j}$ next to the edge $x_{1} y_{j}$ such that $z_{n+1} y_{j}$ only crosses $x_{1} y_{i}$ where $j+1 \leq i \leq m$ and does not cross other edges in $E_{X Y}$. Draw the edge $z_{n+1} x_{1}$ without crossing any edges. Then remove the edges $x_{1} y_{j}$ for $1 \leq j \leq m$. See Fig. 1(d).

Now we have a drawing ϕ^{\prime} of $K_{m+1, n+1}$ with $\left\{x_{1}, y_{1}, \ldots, y_{m}\right\}$ as the partition with $m+1$ vertices and $\left\{z_{1}, \ldots, z_{n+1}\right\}$ as the partition with $n+1$ vertices. Note that if $z_{i} \in A_{j}$ where $1 \leq j \leq m^{\prime}$ (see Fig. 2(a) for

Fig. 1(d). Remove the edges $x_{1} y_{j}$.

Fig. 2(a). $z_{i} \in A_{2}$ for $m=5$.

Fig. 2(b). $z_{i} \in A_{3}$ for $m=5$.

Fig. 2(c). $z_{i} \in A_{5}$ for $m=5$.
$m=5$ and $j=2$), then

$$
\begin{equation*}
c r_{\phi^{\prime}}\left(E\left(z_{i}\right), E\left(z_{n+1}\right)\right)=c r_{\phi}\left(E\left(z_{i}\right), E_{X Y}\right)+m^{\prime}-j . \tag{6}
\end{equation*}
$$

If $z_{i} \in A_{j}$ where $m^{\prime}+1 \leq j \leq m-1$ (see Fig. 2(b) for $m=5$ and $j=3$), then

$$
\begin{equation*}
c r_{\phi^{\prime}}\left(E\left(z_{i}\right), E\left(z_{n+1}\right)\right)=c r_{\phi}\left(E\left(z_{i}\right), E_{X Y}\right)+j-m^{\prime} . \tag{7}
\end{equation*}
$$

If $z_{i} \in A_{m}$, then by our construction that z_{n+1} lies between $x_{1} y_{m}$ and $x_{1} z_{i}$ for all $z_{i} \in A_{m}$ (see Fig. 2(c) for $m=5$), we have

$$
\begin{equation*}
c r_{\phi^{\prime}}\left(E\left(z_{i}\right), E\left(z_{n+1}\right)\right)=c r_{\phi}\left(E\left(z_{i}\right), E_{X Y}\right)+m^{\prime} \tag{8}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
c r_{\phi^{\prime}}\left(\bigcup_{i=1}^{n} E\left(z_{i}\right)\right)=c r_{\phi}\left(\bigcup_{i=1}^{n} E\left(z_{i}\right)\right) . \tag{9}
\end{equation*}
$$

By (3) and (4), the crossing number of ϕ^{\prime} is

$$
\begin{equation*}
c r_{\phi^{\prime}}\left(\bigcup_{i=1}^{n} E\left(z_{i}\right)\right)+\sum_{i=1}^{n} c r_{\phi^{\prime}}\left(E\left(z_{i}\right), E\left(z_{n+1}\right)\right) . \tag{10}
\end{equation*}
$$

Putting (6)-(9) into (10), we obtain that the crossing number of ϕ^{\prime} is

$$
c r_{\phi}\left(\bigcup_{i=1}^{n} E\left(z_{i}\right)\right)+\sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E\left(z_{i}\right)\right)+\sum_{j=1}^{m^{\prime}}\left(m^{\prime}-j\right)\left|A_{j}\right|+\sum_{j=m^{\prime}+1}^{m-1}\left(j-m^{\prime}\right)\left|A_{j}\right|+m^{\prime}\left|A_{m}\right|,
$$

Fig. 3(a). z_{n+1} and z_{n+2} are drawn.
which is at least $c r\left(K_{m+1, n+1}\right)$. Combining this with (5), we have

$$
\begin{equation*}
\sum_{j=1}^{m^{\prime}}\left(m^{\prime}-j\right)\left|A_{j}\right|+\sum_{j=m^{\prime}+1}^{m-1}\left(j-m^{\prime}\right)\left|A_{j}\right|+m^{\prime}\left|A_{m}\right| \geq \operatorname{cr}\left(K_{m+1, n+1}\right)-\operatorname{cr}\left(K_{1, m, n}\right) . \tag{11}
\end{equation*}
$$

If we put z_{n+1} between the edges $x_{1} y_{i}$ and $x_{1} y_{i+1}$ where $1 \leq i \leq m$ in the above construction of $K_{m+1, n+1}$, then by the same arguments, we can show that for $1 \leq i \leq m$,

$$
\begin{equation*}
\sum_{j=1}^{m^{\prime}}\left(m^{\prime}-j\right)\left|A_{j+i}\right|+\sum_{j=m^{\prime}+1}^{m-1}\left(j-m^{\prime}\right)\left|A_{j+i}\right|+m^{\prime}\left|A_{m+i}\right| \geq \operatorname{cr}\left(K_{m+1, n+1}\right)-c r\left(K_{1, m, n}\right) \tag{12}
\end{equation*}
$$

where the indices of A_{j+i} read modulo m. Summing up (12) for $1 \leq i \leq m$, we get

$$
\begin{equation*}
\sum_{i=1}^{m}\left(\sum_{j=1}^{m^{\prime}}\left(m^{\prime}-j\right)\left|A_{j+i}\right|+\sum_{j=m^{\prime}+1}^{m-1}\left(j-m^{\prime}\right)\left|A_{j+i}\right|+m^{\prime}\left|A_{m+i}\right|\right) \geq m\left(c r\left(K_{m+1, n+1}\right)-\operatorname{cr}\left(K_{1, m, n}\right)\right), \tag{13}
\end{equation*}
$$

where the indices of A_{j+i} read modulo m. One can show that the left-hand side of (13) is equal to $\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor \sum_{j=1}^{m}\left|A_{j}\right|$. Note also that $\sum_{j=1}^{m}\left|A_{j}\right|=n$. Combining all these, (13) becomes $n\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor \geq$ $m\left(\operatorname{cr}\left(K_{m+1, n+1}\right)-\operatorname{cr}\left(K_{1, m, n}\right)\right)$, as required.

In [3], deKlerk et al. give the lower bound of the crossing number of $K_{m, n}$ by showing that $c r\left(K_{m, n}\right) \geq$ $0.8594 Z(m, n)$. Combining this with Theorem 2.1, we can obtain a numerical lower bound for the crossing number of $K_{1, m, n}$:

Corollary 2.1. $\operatorname{cr}\left(K_{1, m, n}\right) \geq 0.8594 Z(m+1, n+1)-\left\lfloor\frac{n}{m}\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor\right\rfloor$.
Using similar arguments in the proof of Theorem 2.1, we can also prove the following:
Theorem 2.2. $\operatorname{cr}\left(K_{1,2 M, n}\right) \geq \frac{1}{2}\left(\operatorname{cr}\left(K_{2 M+1, n+2}\right)+\operatorname{cr}\left(K_{2 M+1, n}\right)-M(M+n-1)\right)$.
Proof. Let ϕ be a drawing of $K_{1,2 M, n}$ with $\operatorname{cr}_{\phi}(E)=\operatorname{cr}\left(K_{1,2 M, n}\right)$. Then (5) still holds for ϕ with $m=2 M$. We are going to obtain a drawing of $K_{2 M+1, n+2}$ from ϕ. Following the same arguments in the proof of Theorem 2.1, we draw a new vertex z_{n+1} between $x_{1} z_{2 M}$ and $x_{1} z_{1}$, as in Fig. 1(c). On the other hand, we draw a vertex z_{n+2} between $x_{1} z_{M}$ and $x_{1} z_{M+1}$. See Fig. 3(a) for $M=3$.

Then draw the edges $z_{n+1} x_{1}$ and $z_{n+1} y_{j}$ where $1 \leq j \leq 2 M$ as in the proof of Theorem 2.1. Moreover, for $1 \leq j \leq M$, draw the edge $z_{n+2} y_{j}$ next to the edge $x_{1} y_{j}$ such that $z_{n+2} y_{j}$ only crosses $x_{1} y_{i}$ where $j+1 \leq i \leq M$ and does not cross other edges in $E_{X Y}$. For $M+1 \leq j \leq 2 M$, draw the edge $z_{n+2} y_{j}$ next to the edge $x_{1} y_{j}$ such that $z_{n+2} y_{j}$ only crosses $x_{1} y_{i}$ where $M+1 \leq i \leq j-1$ and does not cross other edges in $E_{X Y}$. Draw the edge $z_{n+2} x_{1}$ without crossing any edges. Finally remove the edges $x_{1} y_{j}$ for $1 \leq j \leq 2 M$. See Fig. 3(b) for $M=3$.

Therefore we obtain a drawing $\phi^{\prime \prime}$ of $K_{2 M+1, n+2}$ with $\left\{x_{1}, y_{1}, \ldots, y_{2 M}\right\}$ as the partition with $2 M+1$ vertices and $\left\{z_{1}, \ldots, z_{n}, z_{n+1}, z_{n+2}\right\}$ as the partition with $n+2$ vertices. Using the notion of A_{j} defined in the proof of Theorem 2.1, one can show that if $z_{i} \in A_{j}$

$$
\begin{array}{ll}
c r_{\phi^{\prime \prime}}\left(E\left(z_{i}\right), E\left(z_{n+1}\right)\right)=c r_{\phi}\left(E\left(z_{i}\right), E_{X Y}\right)+M-j & \text { if } 1 \leq j \leq M \\
c r_{\phi^{\prime \prime}}\left(E\left(z_{i}\right), E\left(z_{n+1}\right)\right)=\operatorname{cr}_{\phi}\left(E\left(z_{i}\right), E_{X Y}\right)+j-M & \text { if } M+1 \leq j \leq 2 M . \tag{15}
\end{array}
$$

Fig. 3(b). The result drawing.
Also, one can show that if $z_{i} \in A_{j}$

$$
\begin{align*}
& \operatorname{cr}_{\phi^{\prime \prime}}\left(E\left(z_{i}\right), E\left(z_{n+2}\right)\right)=\operatorname{cr}_{\phi}\left(E\left(z_{i}\right), E_{X Y}\right)+j \quad \text { if } 1 \leq j \leq M \tag{16}\\
& \operatorname{cr}_{\phi^{\prime \prime}}\left(E\left(z_{i}\right), E\left(z_{n+2}\right)\right)=\operatorname{cr}_{\phi}\left(E\left(z_{i}\right), E_{X Y}\right)+2 M-j \quad \text { if } M+1 \leq j \leq 2 M . \tag{17}
\end{align*}
$$

On the other hand, we have

$$
\begin{equation*}
c r_{\phi^{\prime \prime}}\left(E\left(z_{n+1}\right), E\left(z_{n+2}\right)\right)=M(M-1) . \tag{18}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
c r_{\phi^{\prime \prime}}\left(\bigcup_{i=1}^{n} E\left(z_{i}\right)\right)=c r_{\phi}\left(\bigcup_{i=1}^{n} E\left(z_{i}\right)\right) . \tag{19}
\end{equation*}
$$

By (3) and (4), the crossing number of $\phi^{\prime \prime}$ is

$$
\begin{equation*}
c r_{\phi^{\prime \prime}}\left(\bigcup_{i=1}^{n} E\left(z_{i}\right)\right)+c r_{\phi^{\prime \prime}}\left(E\left(z_{n+1}\right), E\left(z_{n+2}\right)\right)+\sum_{i=1}^{n}\left(c r_{\phi^{\prime \prime}}\left(E\left(z_{i}\right), E\left(z_{n+1}\right)\right)+c r_{\phi^{\prime \prime}}\left(E\left(z_{i}\right), E\left(z_{n+2}\right)\right)\right) . \tag{20}
\end{equation*}
$$

Hence, by putting (14)-(19) into (20), and by the fact that $\sum_{i=1}^{2 M}\left|A_{i}\right|=n$, we obtain that the crossing number of $\phi^{\prime \prime}$ is

$$
\begin{aligned}
& c r_{\phi}\left(\bigcup_{i=1}^{n} E\left(z_{i}\right)\right)+M(M-1)+2 \sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E\left(z_{i}\right)\right)+M n \\
& \quad=2 \operatorname{cr}\left(K_{1,2 M, n}\right)-\operatorname{cr} r_{\phi}\left(\bigcup_{i=1}^{n} E\left(z_{i}\right)\right)+M(M-1)+M n \\
& \quad \leq 2 \operatorname{cr}\left(K_{1,2 M, n}\right)-\operatorname{cr}\left(K_{2 M+1, n}\right)+M(M+n-1),
\end{aligned}
$$

where the first equality follows from (5) with $m=2 M$; and the second inequality follows from the fact that the graph induced by $\bigcup_{i=1}^{n} E\left(z_{i}\right)$ is $K_{2 M+1, n}$. Note also that the crossing number of $\phi^{\prime \prime}$ is at least $\operatorname{cr}\left(K_{2 M+1, n+2}\right)$. Combining all these, we obtain $2 \operatorname{cr}\left(K_{1,2 M, n}\right)-\operatorname{cr}\left(K_{2 M+1, n}\right)+M(M+n-1) \geq \operatorname{cr}\left(K_{2 M+1, n+2}\right)$ as required.

From Theorems 2.1 and 2.2 , we can derive the following:
Theorem 2.3. If Zarankiewicz's conjecture is true for $m=2 M+1$, then

$$
\operatorname{cr}\left(K_{1,2 M, n}\right)=Z(2 M+1, n+1)-M\left\lfloor\frac{n}{2}\right\rfloor .
$$

Proof. From (2), it suffices to prove

$$
\begin{equation*}
\operatorname{cr}\left(K_{1,2 M, n}\right) \geq Z(2 M+1, n+1)-M\left\lfloor\frac{n}{2}\right\rfloor . \tag{21}
\end{equation*}
$$

If Zarankiewicz's conjecture is true for $m=2 M+1$, then $\operatorname{cr}\left(K_{2 M+1, n}\right)=Z(2 M+1, n)$. Then (21) follows from Theorem 2.1 for n is even, and from Theorem 2.2 for n is odd.

Therefore if Zarankiewicz's conjecture is true for $m=2 M+1$, then equality holds in (2) for $m=2 M$. Since Zarankiewicz's conjecture is true for $m=5$ [13], by putting $M=2$ in Theorem 2.3, we have the following result appeared in [8,12]:

Corollary 2.2. $\operatorname{cr}\left(K_{1,4, n}\right)=Z(5, n)+2\left\lfloor\frac{n}{2}\right\rfloor$.
By putting $M=3,4$ in Theorem 2.3, we have the following results appeared in [10,11]:
Corollary 2.3. The crossing number of $K_{1,6, n}$ (and $K_{1,8, n}$ respectively) is $Z(7, n)+6\left\lfloor\frac{n}{2}\right\rfloor$ (and $Z(9, n)+12\left\lfloor\frac{n}{2}\right\rfloor$ respectively) provided that Zarankiewicz's conjecture holds for $m=7$ (and $m=9$ respectively).

To conclude, we state the following:

Conjecture 2.1.

$$
\begin{aligned}
& \operatorname{cr}\left(K_{1, m, n}\right)=\operatorname{cr}\left(K_{m+1, n+1}\right)-\left\lfloor\frac{n}{m}\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor\right\rfloor \\
& \operatorname{cr}\left(K_{1,2 M, n}\right)=\frac{1}{2}\left(\operatorname{cr}\left(K_{2 M+1, n+2}\right)+\operatorname{cr}\left(K_{2 M+1, n}\right)-M(M+n-1)\right) .
\end{aligned}
$$

Theorems 2.1 and 2.2 provide some evidences supporting Conjecture 2.1.

References

[1] K. Asano, The crossing number of $K_{1,3, n}$ and $K_{2,3, n}$, J. Graph Theory 10 (1986) 1-8.
[2] S.N. Bhatt, F.T. Leighton, A framework for solving VLSI graph layout problems, J. Comput. System Sci. 28 (1984) $300-343$.
[3] E. deKlerk, D.V. Pasechnik, A. Schrijver, Reduction of symmetric semidefinite programs using the regular *-representation, Math. Program. 109 (2007) 613-624.
[4] M.R. Garey, D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods 4 (1983) 312-316.
[5] R.K. Guy, Latest results on crossing numbers, in: Recent Trends in Graph Theory, Springer, NY, 1971, pp. $143-156$.
[6] H. Harborth, Über die Kreuzungszahl vollständiger, n-geteilter Graphen, Math. Nachr. 48 (1971) 179-188.
[7] P. Hliněný, Crossing number is hard for cubic graphs, J. Combin. Theory Ser. B 96 (2006) 455-471.
[8] P.T. Ho, On the crossing number of some complete multipartite graphs, Util. Math. (in press).
[9] P.T. Ho, The crossing number of $K_{1,5, n}, K_{2,4, n}$ and $K_{3,3, n}$, Int. J. Pure Appl. Math. 17 (2004) 491-515.
[10] Y. Huang, T. Zhao, On the crossing number of the complete tripartite $K_{1,6, n}$, Acta Math. Appl. Sin. 29 (2006) 1046-1053.
[11] Y. Huang, T. Zhao, On the crossing number of the complete tripartite graph $K_{1,8, n}$, Acta Math. Sci. Ser. A Chin. Ed. 26 (2006) $1115-1122$.
[12] Y. Huang, T. Zhao, The crossing number of $K_{1,4, n}$, Discrete Math. (in press).
[13] D.J. Kleitman, The crossing number of $K_{5, n}$, J. Combin. Theory 9 (1970) 315-323.
[14] S. Pan, R.B. Richter, The crossing number of K_{11} is 100, J. Graph Theory 56 (2007) 128-134.
[15] L.A. Székely, A successful concept for measuring non-planarity of graphs: The crossing number, Discrete Math. 276 (2004) $331-352$.
[16] D.R. Woodall, Cyclic-order graphs and Zarankiewicz's crossing number conjecture, J. Graph Theory 17 (1993) 657-671.

[^0]: E-mail address: paktungho@yahoo.com.hk.

