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Abstract

A longstanding problem of crossing number, Zarankiewicz’s conjecture, asserts that the crossing number of the complete
bipartite graph Km,n is bm

2 cb
m−1

2 cb
n
2 cb

n−1
2 c, which is known only for m ≤ 6. It is natural to generalize Zarankiewicz conjecture

and ask: What is the crossing number for the complete multipartite graph? In this paper, we prove the following lower bounds for
the crossing number of K1,m,n in terms of the crossing number of the complete bipartite graph:

cr(K1,m,n) ≥ cr(Km+1,n+1)−

⌊
n

m

⌊m

2

⌋⌊m + 1
2

⌋⌋
;

cr(K1,2M,n) ≥
1
2
(cr(K2M+1,n+2)+ cr(K2M+1,n)− M(M + n − 1)).

As a corollary, we show that:

1. cr(K1,m,n) ≥ 0.8594Z(m + 1, n + 1)− b n
m b

m
2 cb

m+1
2 cc;

2. If Zarankiewicz’s conjecture is true for m = 2M + 1, then cr(K1,2M,n) = M2
b

n+1
2 cb

n
2 c − Mb n

2 c;

3. cr(K1,4,n) = 4b n+1
2 cb

n
2 c − 2b n

2 c.
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1. Introduction

Determining the crossing numbers of graphs is a notorious problem in Graph Theory, as in general it is quite easy
to find a drawing of a sufficiently “nice” graph in which the number of crossings can hardly be decreased, but it is
very difficult to prove that such a drawing indeed has the smallest possible number of crossings. In fact, computing
the crossing number of a graph is NP-complete [4,7], and exact values are known only for very restricted classes
of graphs. Bhatt and Leighton [2] showed that the crossing number of a network (graph) is closely related to the
minimum layout area required for the implementation of a VLSI circuit for that network. For more about crossing
number, see [15] and the references therein.
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One of the conjecture in crossing number states that the crossing number for a complete graph of order n is

cr(Kn) =
1
4

⌊n

2

⌋⌊n − 1
2

⌋⌊
n − 2

2

⌋⌊
n − 3

2

⌋
,

which is known only for n ≤ 10 [5]. Recently, Pan and Richter [14] proved that it is true for n = 11 and 12. Another
problem in crossing number is Zarankiewicz’s conjecture, which asserts that the crossing number of the complete
bipartite graph Km,n is

cr(Km,n) =
⌊m

2

⌋⌊m − 1
2

⌋⌊n

2

⌋⌊n − 1
2

⌋
, (1)

(we assume m ≤ n throughout this paper) which is known only for m ≤ 6 [13]; and for 7 ≤ m ≤ 8 and n ≤ 10 [16].
In the following, Z(m, n) will denote the right member of (1). Recently, in [3], deKlerk et al. gave a new lower bound
for the crossing number of Km,n .

It is natural to generalize Zarankiewicz conjecture and ask: What is the crossing number for the complete
multipartite graph? In [6], Harboth gave an upper bound for the crossing number of Kn1,n2,...,nk for any positive
ni and k. In particular, he proved that

cr(K1,m,n) ≤ Z(m + 1, n + 1)−
⌊m

2

⌋⌊n

2

⌋
. (2)

He also conjectured that equality holds in (2). In [1], Asano showed that the crossing numbers of K1,3,n and K2,3,n are
Z(4, n)+ b n

2 c and Z(5, n)+ n respectively. Recently, Huang and Zhao have computed the crossing of K1,4,n in [12].
See also [9–11]. In [8], the author computed the crossing numbers of K1,1,1,1,n , K1,2,2,n , K1,1,1,2,n and K1,4,n . The
technique the author used in [8] is similar to Asano in [1], that is: If the crossing number of Kt1,...,tk ,n is less than the
expected value, then the Kt1,...,tk in the optimal drawing of Kt1,...,tk ,n must be drawn in some special forms. Then by
analyzing each of these drawings of Kt1,...,tk carefully, one can show that it is impossible to extend these drawings to
the optimal drawing of Kt1,...,tk ,n .

In this paper, we study the crossing number of the complete tripartite graph K1,m,n . We obtain the lower bounds of
cr(K1,m,n) in terms of the crossing number of the complete bipartite graphs by showing that:

cr(K1,m,n) ≥ cr(Km+1,n+1)−

⌊
n

m

⌊m

2

⌋⌊m + 1
2

⌋⌋
;

cr(K1,2M,n) ≥
1
2
(cr(K2M+1,n+2)+ cr(K2M+1,n)− M(M + n − 1)).

We prove these inequalities by constructing drawings of the complete bipartite graphs from the drawing of K1,m,n . As
a corollary, we show that:

1. cr(K1,m,n) ≥ 0.8594Z(m + 1, n + 1)− b n
m b

m
2 cb

m+1
2 cc;

2. If Zarankiewicz’s conjecture is true for m = 2M+1, then the equality holds in (2) for m = 2M , i.e. cr(K1,2M,n) =

M2
b

n+1
2 cb

n
2 c − Mb n

2 c;

3. cr(K1,4,n) = 4b n+1
2 cb

n
2 c − 2b n

2 c.

Here are some definitions. Let G be a graph with edge set E . A drawing of a graph G is a mapping from G into the
plane. A drawing is good if no edge crosses itself; adjacent edges do not cross; two crossing edges cross only once;
edges do not cross vertices; and no more than two edges cross at a point. Let A and B be subsets of E . In a drawing
φ, the number of crossings of edges in A with edges in B is denoted by crφ(A, B). Especially, crφ(A, A) will be
denoted by crφ(A). Then the total number of crossings of φ is crφ(E). The crossing number of a graph G, cr(G),
is the minimum of crφ(E) among all good drawings φ of G. We note the following formulas, which can be shown
easily.

crφ(A ∪ B) = crφ(A)+ crφ(B)+ crφ(A, B) (3)

crφ(A, B ∪ C) = crφ(A, B)+ crφ(A,C), (4)
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Fig. 1(a). Subgraph induced by X ∪ Y .

Fig. 1(b). zi ∈ A1.

Fig. 1(c). zn+1 is drawn.

where A, B and C are mutually disjoint subsets of E . For the complete tripartite graph K1,m,n with the partition
(X, Y, Z), where X = {x1}, Y = {y1, . . . , ym} and Z = {z1, . . . , zn} we write EXY for the set of all edges incident to
X and Y ; and E(zi ) for the set of all edges incident to zi .

2. Lower bounds for cr(K1,m,n)

Firstly, we give the following lower bound of the crossing number of K1,m,n in terms of the crossing number of
Km+1,n+1:

Theorem 2.1. cr(K1,m,n) ≥ cr(Km+1,n+1)− b
n
m b

m
2 cb

m+1
2 cc.

Proof. Let φ be a good drawing of K1,m,n with crossing number cr(K1,m,n). Since φ is good, crφ(EXY ) = 0. By (3)
and (4),

cr(K1,m,n) = crφ(E) = crφ

(
n⋃

i=1

E(zi )

)
+

n∑
i=1

crφ(EXY , E(zi )). (5)

By renaming the vertices of y j if necessary, we may assume that the subgraph induced by X ∪ Y is drawn such that
x1 y j lies between x1 y j−1 and x1 y j+1 (mod m for j + 1), as in Fig. 1(a). For 1 ≤ j ≤ m, let A j be the set of zi where
1 ≤ i ≤ n, such that x1zi lies between the edges x1 y j and x1 y j+1. See Fig. 1(b) for zi ∈ A1.

We are going to obtain a drawing of Km+1,n+1 from φ. To do this, we draw a new vertex, zn+1, near the vertex x1
and lying in the region between the edges x1 ym and x1 y1 such that zn+1 lies between x1 ym and x1zi for all zi ∈ Am ,
as shown in Fig. 1(c). Let m′ = bm/2c. For 1 ≤ j ≤ m′, draw the edge zn+1 y j next to the edge x1 y j such that zn+1 y j
only crosses x1 yi where 1 ≤ i ≤ j − 1 and does not cross other edges in EXY . For m′ + 1 ≤ j ≤ m, draw the edge
zn+1 y j next to the edge x1 y j such that zn+1 y j only crosses x1 yi where j + 1 ≤ i ≤ m and does not cross other edges
in EXY . Draw the edge zn+1x1 without crossing any edges. Then remove the edges x1 y j for 1 ≤ j ≤ m. See Fig. 1(d).

Now we have a drawing φ′ of Km+1,n+1 with {x1, y1, . . . , ym} as the partition with m + 1 vertices and
{z1, . . . , zn+1} as the partition with n + 1 vertices. Note that if zi ∈ A j where 1 ≤ j ≤ m′ (see Fig. 2(a) for
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Fig. 1(d). Remove the edges x1 y j .

Fig. 2(a). zi ∈ A2 for m = 5.

Fig. 2(b). zi ∈ A3 for m = 5.

Fig. 2(c). zi ∈ A5 for m = 5.

m = 5 and j = 2), then

crφ′(E(zi ), E(zn+1)) = crφ(E(zi ), EXY )+ m′ − j. (6)

If zi ∈ A j where m′ + 1 ≤ j ≤ m − 1 (see Fig. 2(b) for m = 5 and j = 3), then

crφ′(E(zi ), E(zn+1)) = crφ(E(zi ), EXY )+ j − m′. (7)

If zi ∈ Am , then by our construction that zn+1 lies between x1 ym and x1zi for all zi ∈ Am (see Fig. 2(c) for m = 5),
we have

crφ′(E(zi ), E(zn+1)) = crφ(E(zi ), EXY )+ m′. (8)

Note also that

crφ′

(
n⋃

i=1

E(zi )

)
= crφ

(
n⋃

i=1

E(zi )

)
. (9)

By (3) and (4), the crossing number of φ′ is

crφ′

(
n⋃

i=1

E(zi )

)
+

n∑
i=1

crφ′(E(zi ), E(zn+1)). (10)

Putting (6)–(9) into (10), we obtain that the crossing number of φ′ is

crφ

(
n⋃

i=1

E(zi )

)
+

n∑
i=1

crφ(EXY , E(zi ))+

m′∑
j=1

(m′ − j)|A j | +

m−1∑
j=m′+1

( j − m′)|A j | + m′|Am |,
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Fig. 3(a). zn+1 and zn+2 are drawn.

which is at least cr(Km+1,n+1). Combining this with (5), we have

m′∑
j=1

(m′ − j)|A j | +

m−1∑
j=m′+1

( j − m′)|A j | + m′|Am | ≥ cr(Km+1,n+1)− cr(K1,m,n). (11)

If we put zn+1 between the edges x1 yi and x1 yi+1 where 1 ≤ i ≤ m in the above construction of Km+1,n+1, then
by the same arguments, we can show that for 1 ≤ i ≤ m,

m′∑
j=1

(m′ − j)|A j+i | +

m−1∑
j=m′+1

( j − m′)|A j+i | + m′|Am+i | ≥ cr(Km+1,n+1)− cr(K1,m,n), (12)

where the indices of A j+i read modulo m. Summing up (12) for 1 ≤ i ≤ m, we get

m∑
i=1

 m′∑
j=1

(m′ − j)|A j+i | +

m−1∑
j=m′+1

( j − m′)|A j+i | + m′|Am+i |

 ≥ m(cr(Km+1,n+1)− cr(K1,m,n)), (13)

where the indices of A j+i read modulo m. One can show that the left-hand side of (13) is equal to
b

m
2 cb

m+1
2 c

∑m
j=1 |A j |. Note also that

∑m
j=1 |A j | = n. Combining all these, (13) becomes nbm

2 cb
m+1

2 c ≥

m(cr(Km+1,n+1)− cr(K1,m,n)), as required. �

In [3], deKlerk et al. give the lower bound of the crossing number of Km,n by showing that cr(Km,n) ≥

0.8594Z(m, n). Combining this with Theorem 2.1, we can obtain a numerical lower bound for the crossing number
of K1,m,n :

Corollary 2.1. cr(K1,m,n) ≥ 0.8594Z(m + 1, n + 1)− b n
m b

m
2 cb

m+1
2 cc.

Using similar arguments in the proof of Theorem 2.1, we can also prove the following:

Theorem 2.2. cr(K1,2M,n) ≥
1
2 (cr(K2M+1,n+2)+ cr(K2M+1,n)− M(M + n − 1)).

Proof. Let φ be a drawing of K1,2M,n with crφ(E) = cr(K1,2M,n). Then (5) still holds for φ with m = 2M . We are
going to obtain a drawing of K2M+1,n+2 from φ. Following the same arguments in the proof of Theorem 2.1, we draw
a new vertex zn+1 between x1z2M and x1z1, as in Fig. 1(c). On the other hand, we draw a vertex zn+2 between x1zM
and x1zM+1. See Fig. 3(a) for M = 3.

Then draw the edges zn+1x1 and zn+1 y j where 1 ≤ j ≤ 2M as in the proof of Theorem 2.1. Moreover, for
1 ≤ j ≤ M , draw the edge zn+2 y j next to the edge x1 y j such that zn+2 y j only crosses x1 yi where j + 1 ≤ i ≤ M
and does not cross other edges in EXY . For M + 1 ≤ j ≤ 2M , draw the edge zn+2 y j next to the edge x1 y j such that
zn+2 y j only crosses x1 yi where M + 1 ≤ i ≤ j − 1 and does not cross other edges in EXY . Draw the edge zn+2x1
without crossing any edges. Finally remove the edges x1 y j for 1 ≤ j ≤ 2M . See Fig. 3(b) for M = 3.

Therefore we obtain a drawing φ′′ of K2M+1,n+2 with {x1, y1, . . . , y2M } as the partition with 2M + 1 vertices and
{z1, . . . , zn, zn+1, zn+2} as the partition with n+2 vertices. Using the notion of A j defined in the proof of Theorem 2.1,
one can show that if zi ∈ A j

crφ′′(E(zi ), E(zn+1)) = crφ(E(zi ), EXY )+ M − j if 1 ≤ j ≤ M; (14)

crφ′′(E(zi ), E(zn+1)) = crφ(E(zi ), EXY )+ j − M if M + 1 ≤ j ≤ 2M. (15)



P.T. Ho / Discrete Mathematics 308 (2008) 5996–6002 6001

Fig. 3(b). The result drawing.

Also, one can show that if zi ∈ A j

crφ′′(E(zi ), E(zn+2)) = crφ(E(zi ), EXY )+ j if 1 ≤ j ≤ M; (16)

crφ′′(E(zi ), E(zn+2)) = crφ(E(zi ), EXY )+ 2M − j if M + 1 ≤ j ≤ 2M. (17)

On the other hand, we have

crφ′′(E(zn+1), E(zn+2)) = M(M − 1). (18)

Note also that

crφ′′

(
n⋃

i=1

E(zi )

)
= crφ

(
n⋃

i=1

E(zi )

)
. (19)

By (3) and (4), the crossing number of φ′′ is

crφ′′

(
n⋃

i=1

E(zi )

)
+ crφ′′(E(zn+1), E(zn+2))+

n∑
i=1

(
crφ′′(E(zi ), E(zn+1))+ crφ′′(E(zi ), E(zn+2))

)
. (20)

Hence, by putting (14)–(19) into (20), and by the fact that
∑2M

i=1 |Ai | = n, we obtain that the crossing number of
φ′′ is

crφ

(
n⋃

i=1

E(zi )

)
+ M(M − 1)+ 2

n∑
i=1

crφ(EXY , E(zi ))+ Mn

= 2cr(K1,2M,n)− crφ

(
n⋃

i=1

E(zi )

)
+ M(M − 1)+ Mn

≤ 2cr(K1,2M,n)− cr(K2M+1,n)+ M(M + n − 1),

where the first equality follows from (5) with m = 2M ; and the second inequality follows from the fact that the graph
induced by

⋃n
i=1 E(zi ) is K2M+1,n . Note also that the crossing number of φ′′ is at least cr(K2M+1,n+2). Combining

all these, we obtain 2cr(K1,2M,n)− cr(K2M+1,n)+ M(M + n − 1) ≥ cr(K2M+1,n+2) as required. �

From Theorems 2.1 and 2.2, we can derive the following:

Theorem 2.3. If Zarankiewicz’s conjecture is true for m = 2M + 1, then

cr(K1,2M,n) = Z(2M + 1, n + 1)− M
⌊n

2

⌋
.

Proof. From (2), it suffices to prove

cr(K1,2M,n) ≥ Z(2M + 1, n + 1)− M
⌊n

2

⌋
. (21)

If Zarankiewicz’s conjecture is true for m = 2M + 1, then cr(K2M+1,n) = Z(2M + 1, n). Then (21) follows from
Theorem 2.1 for n is even, and from Theorem 2.2 for n is odd. �

Therefore if Zarankiewicz’s conjecture is true for m = 2M + 1, then equality holds in (2) for m = 2M . Since
Zarankiewicz’s conjecture is true for m = 5 [13], by putting M = 2 in Theorem 2.3, we have the following result
appeared in [8,12]:
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Corollary 2.2. cr(K1,4,n) = Z(5, n)+ 2b n
2 c.

By putting M = 3, 4 in Theorem 2.3, we have the following results appeared in [10,11]:

Corollary 2.3. The crossing number of K1,6,n (and K1,8,n respectively) is Z(7, n) + 6b n
2 c (and Z(9, n) + 12b n

2 c

respectively) provided that Zarankiewicz’s conjecture holds for m = 7 (and m = 9 respectively).

To conclude, we state the following:

Conjecture 2.1.

cr(K1,m,n) = cr(Km+1,n+1)−

⌊
n

m

⌊m

2

⌋⌊m + 1
2

⌋⌋
;

cr(K1,2M,n) =
1
2
(cr(K2M+1,n+2)+ cr(K2M+1,n)− M(M + n − 1)).

Theorems 2.1 and 2.2 provide some evidences supporting Conjecture 2.1.
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