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Abstract

A longstanding problem of crossing number, Zarankiewicz’s conjecture, asserts that the crossing number of the complete
bipartite graph Ky, is |5 | ™5 L 15] L%J, which is known only for m < 6. It is natural to generalize Zarankiewicz conjecture
and ask: What is the crossing number for the complete multipartite graph? In this paper, we prove the following lower bounds for

the crossing number of K ,, ,, in terms of the crossing number of the complete bipartite graph:

+1
cr(Kim,n) Z r(Knt1,n41) = L% L%J LmTH ;

1
cr(Kyomn) = E(CV(K2M+1,n+2) +er(Kopy1,n) — MM +n —1)).

As a corollary, we show that:

L r(Kymp) > 0.8594Z(m + 1,n+1) — [ 22| mFL | );

2. If Zarankiewicz’s conjecture is true for m = 2M + 1, then cr (K1 2pm 1) = MZL%J L%J - ML%J;
3. cr(Ky4,) = 41281 14] - 214

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Determining the crossing numbers of graphs is a notorious problem in Graph Theory, as in general it is quite easy
to find a drawing of a sufficiently “nice” graph in which the number of crossings can hardly be decreased, but it is
very difficult to prove that such a drawing indeed has the smallest possible number of crossings. In fact, computing
the crossing number of a graph is NP-complete [4,7], and exact values are known only for very restricted classes
of graphs. Bhatt and Leighton [2] showed that the crossing number of a network (graph) is closely related to the
minimum layout area required for the implementation of a VLSI circuit for that network. For more about crossing
number, see [15] and the references therein.
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One of the conjecture in crossing number states that the crossing number for a complete graph of order n is

woa=gls)| ][]

which is known only for n < 10 [5]. Recently, Pan and Richter [14] proved that it is true for n = 11 and 12. Another
problem in crossing number is Zarankiewicz’s conjecture, which asserts that the crossing number of the complete
bipartite graph K, , is

e =3[ Z7 1515

(we assume m < n throughout this paper) which is known only for m < 6 [13]; and for 7 <m < 8 and n < 10 [16].
In the following, Z (m, n) will denote the right member of (1). Recently, in [3], deKlerk et al. gave a new lower bound
for the crossing number of K, .

It is natural to generalize Zarankiewicz conjecture and ask: What is the crossing number for the complete
multipartite graph? In [6], Harboth gave an upper bound for the crossing number of K, n,,...n, for any positive
n; and k. In particular, he proved that

.....

er(Kiman) < Zom+ Ln+ ) = | 3] | 5] @)

He also conjectured that equality holds in (2). In [1], Asano showed that the crossing numbers of K 3 , and K> 3 , are
Z(4,n) + 5] and Z(5, n) + n respectively. Recently, Huang and Zhao have computed the crossing of K 4., in [12].
See also [9-11]. In [8], the author computed the crossing numbers of Ki 1,114, K1.2.2.n> K1,1,1,2.» and K1 4,,. The
technique the author used in [8] is similar to Asano in [1], that is: If the crossing number of Ky, . ., is less than the
expected value, then the K;, ., in the optimal drawing of K,  ; , must be drawn in some special forms. Then by
analyzing each of these drawings of K;, ., carefully, one can show that it is impossible to extend these drawings to
the optimal drawing of Ky, . 4 x.

In this paper, we study the crossing number of the complete tripartite graph K ,, ,. We obtain the lower bounds of
cr(K1,m,n) in terms of the crossing number of the complete bipartite graphs by showing that:

n|m m+1
cr(Kimn) = cr(Kmyins1) — | — L_J Ay
m L2 2

1
cr(Kiomn) = E(CV(KZM—HJH—Z) +cr(Kopyi,n) — MM +n —1)).

We prove these inequalities by constructing drawings of the complete bipartite graphs from the drawing of Ky j, ». As
a corollary, we show that:

1. er(Kimn) = 0.8594Z(m + 1,n + 1) — [ 2|2 ][ 2L

2. If Zarankiewicz’s conjecture is true for m = 2M + 1, then the equality holds in (2) form = 2M, i.e. cr(K12m.n) =
M?"F)15) - M5
3. cr(Kian) = 4125 115] - 215).

Here are some definitions. Let G be a graph with edge set E. A drawing of a graph G is a mapping from G into the
plane. A drawing is good if no edge crosses itself; adjacent edges do not cross; two crossing edges cross only once;
edges do not cross vertices; and no more than two edges cross at a point. Let A and B be subsets of E. In a drawing
¢, the number of crossings of edges in A with edges in B is denoted by cry(A, B). Especially, cry(A, A) will be
denoted by cry(A). Then the total number of crossings of ¢ is cry(E). The crossing number of a graph G, cr(G),
is the minimum of cry (E) among all good drawings ¢ of G. We note the following formulas, which can be shown
easily.

crp(AUB) = cry(A) + cry(B) +cry(A, B) 3)
cry(A, BUC) =cry(A, B) +cry(A, C), 4)
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Fig. 1(a). Subgraph induced by X UY.
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Fig. 1(b). z; € A].

Ym

Fig. 1(c). zj41 is drawn.

where A, B and C are mutually disjoint subsets of E. For the complete tripartite graph K ,, , with the partition
(X,Y,Z),where X = {x1}, Y ={y1,...,ym}and Z = {z1, ..., 2o} we write Exy for the set of all edges incident to
X and Y; and E(z;) for the set of all edges incident to z;.

2. Lower bounds for c¢r (K1, m,n)

Firstly, we give the following lower bound of the crossing number of K ;, , in terms of the crossing number of
K m+1,n+1"

Theorem 2.1. cr (K1 mn) > cr(Kmi1ap1) — L2211 2]

Proof. Let ¢ be a good drawing of K ,, ,, with crossing number cr (K ;,,,,). Since ¢ is good, cry(Exy) = 0. By (3)
and (4),

n n

cr(Kyman) = cro(E) = cry (U E(m) + Y cro(Exy. E@)). )
i=1 i=1

By renaming the vertices of y; if necessary, we may assume that the subgraph induced by X U Y is drawn such that

x1y; lies between x1y;_1 and x;y;41 (mod m for j + 1), as in Fig. 1(a). For 1 < j < m, let A; be the set of z; where

1 <i < n, such that xyz; lies between the edges x;y; and x;y;41. See Fig. 1(b) for z; € Aj.

We are going to obtain a drawing of K11 41 from ¢. To do this, we draw a new vertex, z,41, near the vertex xi
and lying in the region between the edges xy,, and x;y; such that 7, lies between x;y,, and xz; for all z; € A,
as shown in Fig. 1(c). Letm’ = |m/2]. For 1 < j < m’, draw the edge z,,+1y, next to the edge x1y; such that z, 4.1 y;
only crosses x1y; where 1 <i < j — 1 and does not cross other edges in Exy. Form’ + 1 < j < m, draw the edge
Zn+1Y; next to the edge x1y; such that z,1y; only crosses x1y; where j +1 < i < m and does not cross other edges
in Exy. Draw the edge z,,1x1 without crossing any edges. Then remove the edges x1y; for 1 < j < m. See Fig. 1(d).

Now we have a drawing ¢’ of Kp41,4+1 with {x1, y1,..., yu} as the partition with m + 1 vertices and
{z1, ..., Zns1} as the partition with n + 1 vertices. Note that if z; € A; where 1 < j < m' (see Fig. 2(a) for
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Fig. 1(d). Remove the edges x1y;.
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Fig. 2(a). z; € Ay form =5.
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Fig. 2(b). z; € Az form =5.
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Fig. 2(c). z; € A5 form = 5.
m =5 and j = 2), then
cry (E(zi), E(zns1)) = crg(E(z), Exy) +m' — j. (6)
If z; € Aj wherem’ +1 < j <m — 1 (see Fig. 2(b) for m = 5 and j = 3), then

cry (E(zi), E(zng1)) = crg(E(zi), Exy) + j —m’. @)

If z; € A, then by our construction that z,4 lies between x1y,, and x;z; for all z; € A, (see Fig. 2(c) for m = 5),
we have

cry (E(zi), E(zns1)) = crg(E(zi), Exy) +m’. (8)

Note also that

cry (U E(Zi)) = cry (U E(zi)> : 9)
i=1 i=1

By (3) and (4), the crossing number of ¢’ is

cry (U E(z,-)) + Y ery (EG), EGas): (10)
i=1 i=1

Putting (6)—(9) into (10), we obtain that the crossing number of ¢’ is

n n m’ m—1
cry <U1 E(a)) + Z}crq,(Exy, E(z) + Zl(m’ —DIAI+ DY G = mDIAj+m| Ay,
1= 1= Jj=

Jj=m'+1
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Fig. 3(a). 7,41 and z,, 47 are drawn.

which is at least c¢r (K +1.,+1). Combining this with (5), we have

m’ m—1
S = plajl+ D G=mHIAjl+m'|Anl = cr(Kmiins1) — cr (Kimn)- (11)
j=I1 j=m'+1

If we put z,,11 between the edges x;y; and x1y;+1 where 1 <i < m in the above construction of K, 11 ,+1, then
by the same arguments, we can show that for 1 <i < m,

m' m—1
Yo = PlAjil+ Y G=m)IAjil+m | Angil = er(Kginn) — cr (Kimn), (12)
j=1 j=m'+1

where the indices of A ; read modulo m. Summing up (12) for 1 <i < m, we get

m m’ m—1
Yoo = A+ D G =m)IA 4 m | Al | = mer Ky —cr(Kima), — (13)
i=1 \ j=1 j=m'+1

where the indices of Aj;y; read modulo m. One can show that the left-hand side of (13) is equal to
L5112 >0 1A Note also that 37, |A;| = n. Combining all these, (13) becomes n|%][2] >
m(cr (Km41,n+1) — cr (K1 m.n)), asrequired. O

In [3], deKlerk et al. give the lower bound of the crossing number of K, , by showing that cr(K, ,) >
0.8594Z(m, n). Combining this with Theorem 2.1, we can obtain a numerical lower bound for the crossing number
of K\ mn:

Corollary 2.1. cr (K ;) > 0.8594Z(m + 1,n + 1) — [ 2| 2|2 |].

Using similar arguments in the proof of Theorem 2.1, we can also prove the following:

Theorem 2.2. cr(K12m.n) = 5(cr(Kam1n42) + cr(Kapg1.0) — M(M +n — 1)),

Proof. Let ¢ be a drawing of K 2y, With cry(E) = cr(Kj 2m,,). Then (5) still holds for ¢ with m = 2M. We are
going to obtain a drawing of K7s41,,+2 from ¢. Following the same arguments in the proof of Theorem 2.1, we draw
a new vertex 7,41 between x1zz) and x1z1, as in Fig. 1(c). On the other hand, we draw a vertex z,4+> between x1zy
and xyzp+1. See Fig. 3(a) for M = 3.

Then draw the edges z,41x1 and z,41y; where 1 < j < 2M as in the proof of Theorem 2.1. Moreover, for
1 < j < M, draw the edge z;,42y; next to the edge x1y; such that z,2y; only crosses x1y; where j +1 <i < M
and does not cross other edges in Exy. For M + 1 < j < 2M, draw the edge z,,12y; next to the edge x;y; such that
Zn4+2yj only crosses x1y; where M + 1 < i < j — 1 and does not cross other edges in Exy. Draw the edge z,42x1
without crossing any edges. Finally remove the edges x1y; for 1 < j < 2M. See Fig. 3(b) for M = 3.

Therefore we obtain a drawing ¢” of Kopr41 442 With {x1, y1, ..., yap} as the partition with 2M + 1 vertices and
{z1, ..., Zn, Zn+1, Zus2} as the partition with n+2 vertices. Using the notion of A ; defined in the proof of Theorem 2.1,
one can show thatif z; € A;

crgr(E(2i), E(zng1)) = crg(E(zi), Exy) + M — j if 1 < j < M; (14)
crgn(E(zi), E(znt1)) = crg(E(zi), Exy) +j—M ifM+1<j<2M. (15)
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Fig. 3(b). The result drawing.

Also, one can show thatif z; € A

crer(E(zi), E(znt2)) = cryp(E(z), Exy) +j if1 < j < M; (16)

cren(E(zi), E(zp12)) = crp(E(zi), Exy) +2M — j it M +1<j <2M. 17
On the other hand, we have

crgr(E(znt1), E(zn42)) = M(M — 1). (18)
Note also that

Crer (U E(Zi)) = Crg (U E(Zi)) . (19)
i=1 i=1

By (3) and (4), the crossing number of ¢ is

cry (U E(z,-)) t crgr (EGnsn) EGrin)) + 3 (crgn (B, EGuy 1) + ergr(E@), EGria)) . (20)
i=1

i=1
Hence, by putting (14)—(19) into (20), and by the fact that leilll |A;| = n, we obtain that the crossing number of
¢// iS

crg (U E(zi)> +MM—-1) -I-ZZCH/)(Exy, E(z;)) + Mn
i=1 ‘

i=1

= 2cr(Ki2m,n) — CTg (U E(z,-)) + MM —1)+ Mn
i=1

< 2cr(K12mn) — cr(Kopy1,n) + M(M +n — 1),

where the first equality follows from (5) with m = 2M; and the second inequality follows from the fact that the graph
induced by U?:l E(z;) is Kapr41.,- Note also that the crossing number of ¢ is at least cr(Kop+1.n42). Combining
all these, we obtain 2cr (K1 2m.n) — cr(Kop+1.0) + M(M +n — 1) > cr(Kap+1,n+2) as required. U

From Theorems 2.1 and 2.2, we can derive the following:

Theorem 2.3. If Zarankiewicz’s conjecture is true for m = 2M + 1, then

er(Kioma) = ZQM +1n+1) = M| 3 |.

Proof. From (2), it suffices to prove

er(Kioma) = Z@M + Ln+ 1) =M | 3 |. @1

If Zarankiewicz’s conjecture is true for m = 2M + 1, then cr(Kap+1.,) = Z(2M + 1, n). Then (21) follows from
Theorem 2.1 for n is even, and from Theorem 2.2 for n is odd. [

Therefore if Zarankiewicz’s conjecture is true for m = 2M + 1, then equality holds in (2) for m = 2M. Since
Zarankiewicz’s conjecture is true for m = 5 [13], by putting M = 2 in Theorem 2.3, we have the following result
appeared in [8,12]:
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Corollary 2.2. cr(K14.,) = Z(5,n) +2[5].
By putting M = 3, 4 in Theorem 2.3, we have the following results appeared in [10,11]:

Corollary 2.3. The crossing number of K6, (and Ky g respectively) is Z(7,n) + 6|5 (and Z(9,n) + 12| 5]
respectively) provided that Zarankiewicz’s conjecture holds for m =7 (and m = 9 respectively).

To conclude, we state the following:

Conjecture 2.1.

1
cr(Kimn) = cr(Km41,n+1) — \J% L%J Lm; JJ ;

1
cr(Kiomn) = g(cr(K2M+1,n+2) +cr(Kops1,n) — M(M +n —1)).

Theorems 2.1 and 2.2 provide some evidences supporting Conjecture 2.1.
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