

Available online at www.sciencedirect.com



DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 5996-6002

www.elsevier.com/locate/disc

# The crossing number of $K_{1,m,n}$

# Pak Tung Ho

Department of Mathematics, Purdue University, West Lafayette 47907, USA

Received 29 June 2007; received in revised form 10 November 2007; accepted 13 November 2007 Available online 21 February 2008

#### Abstract

A longstanding problem of crossing number, Zarankiewicz's conjecture, asserts that the crossing number of the complete bipartite graph  $K_{m,n}$  is  $\lfloor \frac{m}{2} \rfloor \lfloor \frac{m-1}{2} \rfloor \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor$ , which is known only for  $m \le 6$ . It is natural to generalize Zarankiewicz conjecture and ask: What is the crossing number for the complete multipartite graph? In this paper, we prove the following lower bounds for the crossing number of  $K_{1,m,n}$  in terms of the crossing number of the complete bipartite graph:

$$cr(K_{1,m,n}) \ge cr(K_{m+1,n+1}) - \left\lfloor \frac{n}{m} \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m+1}{2} \right\rfloor \right\rfloor;$$
  
$$cr(K_{1,2M,n}) \ge \frac{1}{2} (cr(K_{2M+1,n+2}) + cr(K_{2M+1,n}) - M(M+n-1)).$$

As a corollary, we show that:

1. 
$$cr(K_{1,m,n}) \ge 0.8594Z(m+1, n+1) - \lfloor \frac{n}{m} \lfloor \frac{m}{2} \rfloor \lfloor \frac{m+1}{2} \rfloor \rfloor;$$

2. If Zarankiewicz's conjecture is true for m = 2M + 1, then  $cr(K_{1,2M,n}) = M^2 \lfloor \frac{n+1}{2} \rfloor \lfloor \frac{n}{2} \rfloor - M \lfloor \frac{n}{2} \rfloor$ ;

3.  $cr(K_{1,4,n}) = 4\lfloor \frac{n+1}{2} \rfloor \lfloor \frac{n}{2} \rfloor - 2\lfloor \frac{n}{2} \rfloor$ .

© 2007 Elsevier B.V. All rights reserved.

Keywords: Crossing number; Multipartite graphs; Zarankiewicz's conjecture

## 1. Introduction

Determining the crossing numbers of graphs is a notorious problem in Graph Theory, as in general it is quite easy to find a drawing of a sufficiently "nice" graph in which the number of crossings can hardly be decreased, but it is very difficult to prove that such a drawing indeed has the smallest possible number of crossings. In fact, computing the crossing number of a graph is NP-complete [4,7], and exact values are known only for very restricted classes of graphs. Bhatt and Leighton [2] showed that the crossing number of a network (graph) is closely related to the minimum layout area required for the implementation of a VLSI circuit for that network. For more about crossing number, see [15] and the references therein.

E-mail address: paktungho@yahoo.com.hk.

One of the conjecture in crossing number states that the crossing number for a complete graph of order *n* is

$$cr(K_n) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor,$$

which is known only for  $n \le 10$  [5]. Recently, Pan and Richter [14] proved that it is true for n = 11 and 12. Another problem in crossing number is Zarankiewicz's conjecture, which asserts that the crossing number of the complete bipartite graph  $K_{m,n}$  is

$$cr(K_{m,n}) = \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor,\tag{1}$$

(we assume  $m \le n$  throughout this paper) which is known only for  $m \le 6$  [13]; and for  $7 \le m \le 8$  and  $n \le 10$  [16]. In the following, Z(m, n) will denote the right member of (1). Recently, in [3], deKlerk et al. gave a new lower bound for the crossing number of  $K_{m,n}$ .

It is natural to generalize Zarankiewicz conjecture and ask: What is the crossing number for the complete multipartite graph? In [6], Harboth gave an upper bound for the crossing number of  $K_{n_1,n_2,...,n_k}$  for any positive  $n_i$  and k. In particular, he proved that

$$cr(K_{1,m,n}) \le Z(m+1,n+1) - \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor.$$
<sup>(2)</sup>

He also conjectured that equality holds in (2). In [1], Asano showed that the crossing numbers of  $K_{1,3,n}$  and  $K_{2,3,n}$  are  $Z(4, n) + \lfloor \frac{n}{2} \rfloor$  and Z(5, n) + n respectively. Recently, Huang and Zhao have computed the crossing of  $K_{1,4,n}$  in [12]. See also [9–11]. In [8], the author computed the crossing numbers of  $K_{1,1,1,1,n}$ ,  $K_{1,2,2,n}$ ,  $K_{1,1,1,2,n}$  and  $K_{1,4,n}$ . The technique the author used in [8] is similar to Asano in [1], that is: If the crossing number of  $K_{t_1,...,t_k,n}$  is less than the expected value, then the  $K_{t_1,...,t_k}$  in the optimal drawing of  $K_{t_1,...,t_k,n}$  must be drawn in some special forms. Then by analyzing each of these drawings of  $K_{t_1,...,t_k}$  carefully, one can show that it is impossible to extend these drawings to the optimal drawing of  $K_{t_1,...,t_k,n}$ .

In this paper, we study the crossing number of the complete tripartite graph  $K_{1,m,n}$ . We obtain the lower bounds of  $cr(K_{1,m,n})$  in terms of the crossing number of the complete bipartite graphs by showing that:

$$cr(K_{1,m,n}) \ge cr(K_{m+1,n+1}) - \left\lfloor \frac{n}{m} \lfloor \frac{m}{2} \rfloor \lfloor \frac{m+1}{2} \rfloor \right\rfloor;$$
  
$$cr(K_{1,2M,n}) \ge \frac{1}{2} (cr(K_{2M+1,n+2}) + cr(K_{2M+1,n}) - M(M+n-1)).$$

We prove these inequalities by constructing drawings of the complete bipartite graphs from the drawing of  $K_{1,m,n}$ . As a corollary, we show that:

- 1.  $cr(K_{1,m,n}) \ge 0.8594Z(m+1, n+1) \lfloor \frac{n}{m} \lfloor \frac{m}{2} \rfloor \lfloor \frac{m+1}{2} \rfloor \rfloor;$
- 2. If Zarankiewicz's conjecture is true for m = 2M + 1, then the equality holds in (2) for m = 2M, i.e.  $cr(K_{1,2M,n}) = M^2 \lfloor \frac{n+1}{2} \rfloor \lfloor \frac{n}{2} \rfloor M \lfloor \frac{n}{2} \rfloor$ ;
- 3.  $cr(K_{1,4,n}) = 4\lfloor \frac{n+1}{2} \rfloor \lfloor \frac{n}{2} \rfloor 2\lfloor \frac{n}{2} \rfloor$ .

Here are some definitions. Let G be a graph with edge set E. A drawing of a graph G is a mapping from G into the plane. A drawing is good if no edge crosses itself; adjacent edges do not cross; two crossing edges cross only once; edges do not cross vertices; and no more than two edges cross at a point. Let A and B be subsets of E. In a drawing  $\phi$ , the number of crossings of edges in A with edges in B is denoted by  $cr_{\phi}(A, B)$ . Especially,  $cr_{\phi}(A, A)$  will be denoted by  $cr_{\phi}(A)$ . Then the total number of crossings of  $\phi$  is  $cr_{\phi}(E)$ . The crossing number of a graph G, cr(G), is the minimum of  $cr_{\phi}(E)$  among all good drawings  $\phi$  of G. We note the following formulas, which can be shown easily.

$$cr_{\phi}(A \cup B) = cr_{\phi}(A) + cr_{\phi}(B) + cr_{\phi}(A, B)$$
(3)

$$cr_{\phi}(A, B \cup C) = cr_{\phi}(A, B) + cr_{\phi}(A, C), \tag{4}$$



Fig. 1(a). Subgraph induced by  $X \cup Y$ .



Fig. 1(c).  $z_{n+1}$  is drawn.

where A, B and C are mutually disjoint subsets of E. For the complete tripartite graph  $K_{1,m,n}$  with the partition (X, Y, Z), where  $X = \{x_1\}, Y = \{y_1, \ldots, y_m\}$  and  $Z = \{z_1, \ldots, z_n\}$  we write  $E_{XY}$  for the set of all edges incident to X and Y; and  $E(z_i)$  for the set of all edges incident to  $z_i$ .

### 2. Lower bounds for $cr(K_{1,m,n})$

Firstly, we give the following lower bound of the crossing number of  $K_{1,m,n}$  in terms of the crossing number of  $K_{m+1,n+1}$ :

**Theorem 2.1.**  $cr(K_{1,m,n}) \ge cr(K_{m+1,n+1}) - \lfloor \frac{n}{m} \lfloor \frac{m}{2} \rfloor \lfloor \frac{m+1}{2} \rfloor \rfloor$ .

**Proof.** Let  $\phi$  be a good drawing of  $K_{1,m,n}$  with crossing number  $cr(K_{1,m,n})$ . Since  $\phi$  is good,  $cr_{\phi}(E_{XY}) = 0$ . By (3) and (4),

$$cr(K_{1,m,n}) = cr_{\phi}(E) = cr_{\phi}\left(\bigcup_{i=1}^{n} E(z_i)\right) + \sum_{i=1}^{n} cr_{\phi}(E_{XY}, E(z_i)).$$
 (5)

By renaming the vertices of  $y_j$  if necessary, we may assume that the subgraph induced by  $X \cup Y$  is drawn such that  $x_1y_j$  lies between  $x_1y_{j-1}$  and  $x_1y_{j+1}$  (mod *m* for j + 1), as in Fig. 1(a). For  $1 \le j \le m$ , let  $A_j$  be the set of  $z_i$  where  $1 \le i \le n$ , such that  $x_1z_i$  lies between the edges  $x_1y_j$  and  $x_1y_{j+1}$ . See Fig. 1(b) for  $z_i \in A_1$ .

We are going to obtain a drawing of  $K_{m+1,n+1}$  from  $\phi$ . To do this, we draw a new vertex,  $z_{n+1}$ , near the vertex  $x_1$ and lying in the region between the edges  $x_1y_m$  and  $x_1y_1$  such that  $z_{n+1}$  lies between  $x_1y_m$  and  $x_1z_i$  for all  $z_i \in A_m$ , as shown in Fig. 1(c). Let  $m' = \lfloor m/2 \rfloor$ . For  $1 \le j \le m'$ , draw the edge  $z_{n+1}y_j$  next to the edge  $x_1y_j$  such that  $z_{n+1}y_j$ only crosses  $x_1y_i$  where  $1 \le i \le j - 1$  and does not cross other edges in  $E_{XY}$ . For  $m' + 1 \le j \le m$ , draw the edge  $z_{n+1}y_j$  next to the edge  $x_1y_j$  such that  $z_{n+1}y_j$  only crosses  $x_1y_i$  where  $j + 1 \le i \le m$  and does not cross other edges in  $E_{XY}$ . Draw the edge  $z_{n+1}x_1$  without crossing any edges. Then remove the edges  $x_1y_j$  for  $1 \le j \le m$ . See Fig. 1(d).

Now we have a drawing  $\phi'$  of  $K_{m+1,n+1}$  with  $\{x_1, y_1, \ldots, y_m\}$  as the partition with m + 1 vertices and  $\{z_1, \ldots, z_{n+1}\}$  as the partition with n + 1 vertices. Note that if  $z_i \in A_j$  where  $1 \leq j \leq m'$  (see Fig. 2(a) for



Fig. 1(d). Remove the edges  $x_1 y_i$ .



Fig. 2(a).  $z_i \in A_2$  for m = 5.



Fig. 2(b).  $z_i \in A_3$  for m = 5.



Fig. 2(c).  $z_i \in A_5$  for m = 5.

m = 5 and j = 2), then

$$cr_{\phi'}(E(z_i), E(z_{n+1})) = cr_{\phi}(E(z_i), E_{XY}) + m' - j.$$
(6)

If  $z_i \in A_j$  where  $m' + 1 \le j \le m - 1$  (see Fig. 2(b) for m = 5 and j = 3), then

$$cr_{\phi'}(E(z_i), E(z_{n+1})) = cr_{\phi}(E(z_i), E_{XY}) + j - m'.$$
(7)

If  $z_i \in A_m$ , then by our construction that  $z_{n+1}$  lies between  $x_1y_m$  and  $x_1z_i$  for all  $z_i \in A_m$  (see Fig. 2(c) for m = 5), we have

$$cr_{\phi'}(E(z_i), E(z_{n+1})) = cr_{\phi}(E(z_i), E_{XY}) + m'.$$
(8)

Note also that

$$cr_{\phi'}\left(\bigcup_{i=1}^{n} E(z_i)\right) = cr_{\phi}\left(\bigcup_{i=1}^{n} E(z_i)\right).$$
(9)

By (3) and (4), the crossing number of  $\phi'$  is

$$cr_{\phi'}\left(\bigcup_{i=1}^{n} E(z_i)\right) + \sum_{i=1}^{n} cr_{\phi'}(E(z_i), E(z_{n+1})).$$
 (10)

Putting (6)–(9) into (10), we obtain that the crossing number of  $\phi'$  is

$$cr_{\phi}\left(\bigcup_{i=1}^{n} E(z_{i})\right) + \sum_{i=1}^{n} cr_{\phi}(E_{XY}, E(z_{i})) + \sum_{j=1}^{m'} (m'-j)|A_{j}| + \sum_{j=m'+1}^{m-1} (j-m')|A_{j}| + m'|A_{m}|,$$



Fig. 3(a).  $z_{n+1}$  and  $z_{n+2}$  are drawn.

which is at least  $cr(K_{m+1,n+1})$ . Combining this with (5), we have

$$\sum_{j=1}^{m'} (m'-j)|A_j| + \sum_{j=m'+1}^{m-1} (j-m')|A_j| + m'|A_m| \ge cr(K_{m+1,n+1}) - cr(K_{1,m,n}).$$
(11)

If we put  $z_{n+1}$  between the edges  $x_1y_i$  and  $x_1y_{i+1}$  where  $1 \le i \le m$  in the above construction of  $K_{m+1,n+1}$ , then by the same arguments, we can show that for  $1 \le i \le m$ ,

$$\sum_{j=1}^{m'} (m'-j)|A_{j+i}| + \sum_{j=m'+1}^{m-1} (j-m')|A_{j+i}| + m'|A_{m+i}| \ge cr(K_{m+1,n+1}) - cr(K_{1,m,n}),$$
(12)

where the indices of  $A_{i+i}$  read modulo *m*. Summing up (12) for  $1 \le i \le m$ , we get

$$\sum_{i=1}^{m} \left( \sum_{j=1}^{m'} (m'-j) |A_{j+i}| + \sum_{j=m'+1}^{m-1} (j-m') |A_{j+i}| + m' |A_{m+i}| \right) \ge m(cr(K_{m+1,n+1}) - cr(K_{1,m,n})), \quad (13)$$

where the indices of  $A_{j+i}$  read modulo m. One can show that the left-hand side of (13) is equal to  $\lfloor \frac{m}{2} \rfloor \lfloor \frac{m+1}{2} \rfloor \sum_{j=1}^{m} |A_j|$ . Note also that  $\sum_{j=1}^{m} |A_j| = n$ . Combining all these, (13) becomes  $n \lfloor \frac{m}{2} \rfloor \lfloor \frac{m+1}{2} \rfloor \ge m(cr(K_{m+1,n+1}) - cr(K_{1,m,n}))$ , as required.  $\Box$ 

In [3], deKlerk et al. give the lower bound of the crossing number of  $K_{m,n}$  by showing that  $cr(K_{m,n}) \ge 0.8594Z(m, n)$ . Combining this with Theorem 2.1, we can obtain a numerical lower bound for the crossing number of  $K_{1,m,n}$ :

**Corollary 2.1.**  $cr(K_{1,m,n}) \ge 0.8594Z(m+1, n+1) - \lfloor \frac{n}{m} \lfloor \frac{m}{2} \rfloor \lfloor \frac{m+1}{2} \rfloor \rfloor$ .

Using similar arguments in the proof of Theorem 2.1, we can also prove the following:

**Theorem 2.2.** 
$$cr(K_{1,2M,n}) \ge \frac{1}{2}(cr(K_{2M+1,n+2}) + cr(K_{2M+1,n}) - M(M+n-1)).$$

**Proof.** Let  $\phi$  be a drawing of  $K_{1,2M,n}$  with  $cr_{\phi}(E) = cr(K_{1,2M,n})$ . Then (5) still holds for  $\phi$  with m = 2M. We are going to obtain a drawing of  $K_{2M+1,n+2}$  from  $\phi$ . Following the same arguments in the proof of Theorem 2.1, we draw a new vertex  $z_{n+1}$  between  $x_1z_{2M}$  and  $x_1z_1$ , as in Fig. 1(c). On the other hand, we draw a vertex  $z_{n+2}$  between  $x_1z_M$  and  $x_1z_{1+1}$ . See Fig. 3(a) for M = 3.

Then draw the edges  $z_{n+1}x_1$  and  $z_{n+1}y_j$  where  $1 \le j \le 2M$  as in the proof of Theorem 2.1. Moreover, for  $1 \le j \le M$ , draw the edge  $z_{n+2}y_j$  next to the edge  $x_1y_j$  such that  $z_{n+2}y_j$  only crosses  $x_1y_i$  where  $j + 1 \le i \le M$  and does not cross other edges in  $E_{XY}$ . For  $M + 1 \le j \le 2M$ , draw the edge  $z_{n+2}y_j$  next to the edge  $x_1y_j$  such that  $z_{n+2}y_j$  only crosses  $x_1y_i$  where  $M + 1 \le i \le j - 1$  and does not cross other edges in  $E_{XY}$ . Draw the edge  $z_{n+2}x_1$  without crossing any edges. Finally remove the edges  $x_1y_j$  for  $1 \le j \le 2M$ . See Fig. 3(b) for M = 3.

Therefore we obtain a drawing  $\phi''$  of  $K_{2M+1,n+2}$  with  $\{x_1, y_1, \dots, y_{2M}\}$  as the partition with 2M + 1 vertices and  $\{z_1, \dots, z_n, z_{n+1}, z_{n+2}\}$  as the partition with n+2 vertices. Using the notion of  $A_j$  defined in the proof of Theorem 2.1, one can show that if  $z_i \in A_j$ 

$$cr_{\phi''}(E(z_i), E(z_{n+1})) = cr_{\phi}(E(z_i), E_{XY}) + M - j \quad \text{if } 1 \le j \le M;$$
(14)

$$cr_{\phi''}(E(z_i), E(z_{n+1})) = cr_{\phi}(E(z_i), E_{XY}) + j - M \quad \text{if } M + 1 \le j \le 2M.$$
 (15)



Fig. 3(b). The result drawing.

Also, one can show that if  $z_i \in A_j$ 

$$cr_{\phi''}(E(z_i), E(z_{n+2})) = cr_{\phi}(E(z_i), E_{XY}) + j \quad \text{if } 1 \le j \le M;$$
(16)

$$cr_{\phi''}(E(z_i), E(z_{n+2})) = cr_{\phi}(E(z_i), E_{XY}) + 2M - j \quad \text{if } M + 1 \le j \le 2M.$$
 (17)

On the other hand, we have

$$cr_{\phi''}(E(z_{n+1}), E(z_{n+2})) = M(M-1).$$
 (18)

Note also that

$$cr_{\phi''}\left(\bigcup_{i=1}^{n} E(z_i)\right) = cr_{\phi}\left(\bigcup_{i=1}^{n} E(z_i)\right).$$
(19)

By (3) and (4), the crossing number of  $\phi''$  is

$$cr_{\phi''}\left(\bigcup_{i=1}^{n} E(z_i)\right) + cr_{\phi''}(E(z_{n+1}), E(z_{n+2})) + \sum_{i=1}^{n} \left(cr_{\phi''}(E(z_i), E(z_{n+1})) + cr_{\phi''}(E(z_i), E(z_{n+2}))\right).$$
(20)

Hence, by putting (14)–(19) into (20), and by the fact that  $\sum_{i=1}^{2M} |A_i| = n$ , we obtain that the crossing number of  $\phi''$  is

$$cr_{\phi}\left(\bigcup_{i=1}^{n} E(z_{i})\right) + M(M-1) + 2\sum_{i=1}^{n} cr_{\phi}(E_{XY}, E(z_{i})) + Mn$$
  
=  $2cr(K_{1,2M,n}) - cr_{\phi}\left(\bigcup_{i=1}^{n} E(z_{i})\right) + M(M-1) + Mn$   
 $\leq 2cr(K_{1,2M,n}) - cr(K_{2M+1,n}) + M(M+n-1),$ 

where the first equality follows from (5) with m = 2M; and the second inequality follows from the fact that the graph induced by  $\bigcup_{i=1}^{n} E(z_i)$  is  $K_{2M+1,n}$ . Note also that the crossing number of  $\phi''$  is at least  $cr(K_{2M+1,n+2})$ . Combining all these, we obtain  $2cr(K_{1,2M,n}) - cr(K_{2M+1,n}) + M(M+n-1) \ge cr(K_{2M+1,n+2})$  as required.  $\Box$ 

From Theorems 2.1 and 2.2, we can derive the following:

**Theorem 2.3.** If Zarankiewicz's conjecture is true for m = 2M + 1, then

$$cr(K_{1,2M,n}) = Z(2M+1, n+1) - M\left\lfloor \frac{n}{2} \right\rfloor.$$

**Proof.** From (2), it suffices to prove

$$cr(K_{1,2M,n}) \ge Z(2M+1,n+1) - M\left\lfloor \frac{n}{2} \right\rfloor.$$
(21)

If Zarankiewicz's conjecture is true for m = 2M + 1, then  $cr(K_{2M+1,n}) = Z(2M + 1, n)$ . Then (21) follows from Theorem 2.1 for *n* is even, and from Theorem 2.2 for *n* is odd.  $\Box$ 

Therefore if Zarankiewicz's conjecture is true for m = 2M + 1, then equality holds in (2) for m = 2M. Since Zarankiewicz's conjecture is true for m = 5 [13], by putting M = 2 in Theorem 2.3, we have the following result appeared in [8,12]:

**Corollary 2.2.**  $cr(K_{1,4,n}) = Z(5,n) + 2\lfloor \frac{n}{2} \rfloor$ .

By putting M = 3, 4 in Theorem 2.3, we have the following results appeared in [10,11]:

**Corollary 2.3.** The crossing number of  $K_{1,6,n}$  (and  $K_{1,8,n}$  respectively) is  $Z(7, n) + 6\lfloor \frac{n}{2} \rfloor$  (and  $Z(9, n) + 12\lfloor \frac{n}{2} \rfloor$  respectively) provided that Zarankiewicz's conjecture holds for m = 7 (and m = 9 respectively).

To conclude, we state the following:

#### Conjecture 2.1.

$$cr(K_{1,m,n}) = cr(K_{m+1,n+1}) - \left\lfloor \frac{n}{m} \lfloor \frac{m}{2} \rfloor \left\lfloor \frac{m+1}{2} \rfloor \right\rfloor;$$
  
$$cr(K_{1,2M,n}) = \frac{1}{2}(cr(K_{2M+1,n+2}) + cr(K_{2M+1,n}) - M(M+n-1)).$$

Theorems 2.1 and 2.2 provide some evidences supporting Conjecture 2.1.

# References

- [1] K. Asano, The crossing number of  $K_{1,3,n}$  and  $K_{2,3,n}$ , J. Graph Theory 10 (1986) 1–8.
- [2] S.N. Bhatt, F.T. Leighton, A framework for solving VLSI graph layout problems, J. Comput. System Sci. 28 (1984) 300-343.
- [3] E. deKlerk, D.V. Pasechnik, A. Schrijver, Reduction of symmetric semidefinite programs using the regular \*-representation, Math. Program. 109 (2007) 613–624.
- [4] M.R. Garey, D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods 4 (1983) 312-316.
- [5] R.K. Guy, Latest results on crossing numbers, in: Recent Trends in Graph Theory, Springer, NY, 1971, pp. 143–156.
- [6] H. Harborth, Über die Kreuzungszahl vollständiger, n-geteilter Graphen, Math. Nachr. 48 (1971) 179–188.
- [7] P. Hliněný, Crossing number is hard for cubic graphs, J. Combin. Theory Ser. B 96 (2006) 455-471.
- [8] P.T. Ho, On the crossing number of some complete multipartite graphs, Util. Math. (in press).
- [9] P.T. Ho, The crossing number of *K*<sub>1,5,*n*</sub>, *K*<sub>2,4,*n*</sub> and *K*<sub>3,3,*n*</sub>, Int. J. Pure Appl. Math. 17 (2004) 491–515.
- [10] Y. Huang, T. Zhao, On the crossing number of the complete tripartite  $K_{1,6,n}$ , Acta Math. Appl. Sin. 29 (2006) 1046–1053.
- [11] Y. Huang, T. Zhao, On the crossing number of the complete tripartite graph  $K_{1,8,n}$ , Acta Math. Sci. Ser. A Chin. Ed. 26 (2006) 1115–1122.
- [12] Y. Huang, T. Zhao, The crossing number of  $K_{1,4,n}$ , Discrete Math. (in press).
- [13] D.J. Kleitman, The crossing number of  $K_{5,n}$ , J. Combin. Theory 9 (1970) 315–323.
- [14] S. Pan, R.B. Richter, The crossing number of K<sub>11</sub> is 100, J. Graph Theory 56 (2007) 128–134.
- [15] L.A. Székely, A successful concept for measuring non-planarity of graphs: The crossing number, Discrete Math. 276 (2004) 331–352.
- [16] D.R. Woodall, Cyclic-order graphs and Zarankiewicz's crossing number conjecture, J. Graph Theory 17 (1993) 657-671.