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Abstract

We estimate the bounds for the difference between the ordinary height and the canonical height on elliptic
curves over number fields. Our result is an improvement of the recent result of Cremona, Prickett, and
Siksek [J.E. Cremona, M. Prickett, S. Siksek, Height difference bounds for elliptic curves over number
fields, J. Number Theory 116 (2006) 42–68]. Our bounds are usually sharper than the other known bounds.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let E be an elliptic curve over a number field K . Height functions on E are real-valued
functions on the Mordell–Weil group E(K). In the study of elliptic curves, height functions are
important in both the theory and applications. There are several height functions, each having its
own advantage. For example, the ordinary (or Weil, naive) height h is easily calculated, and the
canonical (or Néron–Tate) height ĥ is easy to treat theoretically.

It is known that there are constants c1, c2 depending only on the model for the elliptic curve E

and the field of definition K such that

c1 � h(P ) − ĥ(P ) � c2
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for all P ∈ E(K). It is important to estimate the bounds c1, c2 effectively. These bounds are used
to determine Mordell–Weil bases of elliptic curves, and to determine integral points on elliptic
curves. Since these height are logarithmic, we can save much time if we can obtain sharp bounds.

The bounds for the difference h − ĥ have been estimated by many authors, for example,
Zimmer [10], Silverman [7], Siksek [6], and Cremona, Prickett, and Siksek [2]. Although there
are various methods for estimating the bounds, we estimate the bounds as follows.

Let MK be the set of all places of K . For v ∈ MK , we denote by Kv the completion of K at v.
It is possible to decompose the difference h − ĥ as

h(P ) − ĥ(P ) = 1

[K : Q]
∑

v∈MK

Ψv(P ),

where Ψv are continuous bounded functions Ψv :E(Kv) → R. If we can estimate the bounds
for Ψv for all v ∈ MK , we can estimate the bounds for h − ĥ. This approach is used in [6,7],
and [2]. In particular, using an exhaustive analysis of possible reduction type of elliptic curves,
Cremona et al. obtain the extrema of Ψv for non-Archimedean places v in [2]. Therefore, it
is sufficient to consider Archimedean places. Siksek [6] and Cremona et al. [2] used only the
duplication map to obtain the bounds for non-Archimedean places. Using general multiplication
maps instead of the duplication map, we obtain sharper bounds than theirs. Moreover, if we have
sufficient time, we can obtain the approximation to the extrema of Ψv with arbitrary accuracy. In
this sense, we obtain the best bound for Ψv for Archimedean places.

Our algorithm is quite similar to that in [2]. Hence, it is easy to implement this algorithm. And
we can make our bounds entirely rigorous.

This paper is organized as follows. In Section 2, we fix notation used in this paper. Section 3
gives the statement of the main theorem, which gives the bound for the difference h − ĥ. In Sec-
tion 4, we give the definition of division polynomials, and describe their properties. In Section 5,
we describe local height functions. This section is an important part of this paper. Section 6 gives
the proof for the main theorem. In Section 7, we investigate the behavior of the bounds when we
replace a multiplication map by another one. Section 8 gives some remarks on actual implemen-
tation. In Section 9, we give some examples to compare our bounds with those of Silverman or
Zimmer.

The results of this paper are announced without proof in [9].

2. Notation

We fix the following notation.

K a number field,
OK the ring of integers of K ,
MK the set of all places of K ,

M0
K the set of non-Archimedean places of K ,

M∞
K the set of Archimedean places of K ,
v a place of K ,

Kv the completion of K at v,
nv the local degree [Kv : Qv],

| · |v the standard absolute value associated to v.
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For v ∈ M0
K , we use the following notation.

kv the residue field at v,
qv the cardinality of the residue field kv .

Let E be an elliptic curve given by the Weierstrass equation

E: y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where a1, a2, a3, a4, a6 ∈ OK . For v ∈ M0
K , we denote by E0(Kv) the set of points with non-

singular reduction. E0(Kv) is a subgroup of E(Kv). The index cv = [E(Kv) : E0(Kv)] is called
Tamagawa index at v.

We define as usual

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b2
2 − 24b4,

c6 = −b3
2 + 36b2b4 − 216b6,

� = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6,

j = c3
4

�
.

Let φm, ψ2
m be division polynomials of E (see Section 4).

The ordinary height function h :E(K) → R is defined by

h(P ) =
{0 if P = O,

1
[K:Q]

∑
v∈MK

nv log max{1, |x(P )|v} if P �= O.

The canonical height function ĥ :E(K) → R is defined by

ĥ(P ) = lim
i→∞

1

4i
h
(
2iP

)
.

3. Statement of the main theorem

For a positive integer m, we define the function Φm,v :E(Kv) → R by

Φm,v(P ) =
{1 if P = O,

max{|φm(x(P ))|v,|ψ2
m(x(P ))|v}

m2 if P �= O.
(1)
max{1,|x(P )|v}
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Table 1
Values of αv

Kodaira type of E at v Tamagawa index cv αv

Any 1 0
Im, m even 2 or m m/4
Im, m odd m (m2 − 1)/4m

III 2 1/2
IV 3 2/3
I∗0 2 or 4 1
I∗m 2 1
I∗m 4 (m + 4)/4
IV∗ 3 4/3
III∗ 2 3/2

We will prove that Φm,v is a bounded continuous function (Proposition 6). We define

ε−1
m,v = inf

P∈E(Kv)
Φm,v(P ), δ−1

m,v = sup
P∈E(Kv)

Φm,v(P ).

We will prove that εm,v exists, i.e., the infimum appearing in its definition is non-zero (Proposi-
tion 6).

Let

Sv(m) = log δm,v

m2 − 1
, Tv(m) = log εm,v

m2 − 1
.

For each valuation v ∈ M0
K let Emin

v be a minimal model for E over Kv , and let �min
v be the

discriminant of Emin
v . Note that Ev is already minimal for almost all v ∈ M0

K . Hence we can take
Emin

v = Ev and �min
v = �v . For v ∈ M0

K , we define the constants αv according to the Kodaira
type of Emin

v and the Tamagawa index cv as in Table 1. Then our main theorem is as follows:

Theorem 1. Let m � 2 be an integer. For all P ∈ E(K),

1

[K : Q]
∑

v∈M∞
K

nvSv(m) � h(P ) − ĥ(P )

� 1

[K : Q]
∑

v∈M∞
K

nvTv(m)

+ 1

[K : Q]
∑

v∈M0
K

(
αv + 1

6
ordv

(
�/�min

v

))
logqv.

Remark 2. If m = 2, Theorem 1 is the same as [2, Theorem 1].

We will prove Theorem 1 in Section 6.
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4. Division polynomials

We review the definition and properties of division polynomials. For the details and proofs,
see [5, Section 1.3].

We define division polynomials φm,ψm ∈ K[X,Y ] as follows:

φ1(X,Y ) = X,

φ2(X,Y ) = X4 − b4X
2 − 2b6X − b8,

ψ0(X,Y ) = 0,

ψ1(X,Y ) = 1,

ψ2(X,Y ) = 2Y + a1X + a3,

ψ3(X,Y ) = 3X4 + b2X
3 + 3b4X

2 + 3b6X + b8,

ψ4(X,Y ) = ψ2(X,Y )
(
2X6 + b2X

5 + 5b4X
4 + 10b6X

3 + 10b8X
2

+ (b2b8 − b4b6)X + (
b4b8 − b2

6

))
,

for m � 2,

φm(X,Y ) = Xψm(X,Y )2 − ψm−1(X,Y )ψm+1(X,Y ),

ψ2m+1(X,Y ) = ψm+2(X,Y )ψm(X,Y )3 − ψm−1(X,Y )ψm+1(X,Y )3,

ψ2(X,Y )ψ2m(X,Y ) = ψm(X,Y )
(
ψm+2(X,Y )ψm−1(X,Y )2 − ψm−2(X,Y )ψm+1(X,Y )2).

It is easy to prove that this definition is well defined, i.e., ψ2m(X,Y ) is a polynomial.

Proposition 3. Let P = (x, y) ∈ E(K). Let m be a positive integer. Then, mP = O is equivalent
to ψm(x, y) = 0. If mP �= O , then

x(mP ) = φm(x, y)

ψm(x, y)2
.

Proposition 4. Let P = (x, y) ∈ E(K). Then, φm(x, y) and ψm(x, y)2 are polynomials in x over
Z[b2, b4, b6, b8]. We consider φm, ψ2

m as polynomials in x. Then,

(a) φm is a polynomial of degree m2 with leading coefficient 1,
(b) ψ2

m is a polynomial of degree m2 − 1 with leading coefficient m2.

By Proposition 4, we can consider φm, ψ2
m as polynomials in x.

Proposition 5. The polynomials φm and ψ2
m are relatively prime.
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5. Local height functions

In this section, we describe properties of local height functions.

Proposition 6. Φm,v is a bounded continuous function on E(Kv). Furthermore,

inf
P∈E(Kv)

Φm,v(P ) > 0.

Proof. It is clear that Φm,v is continuous at P ∈ E(Kv) \ {O}. By Proposition 4,

lim
P→O

Φm,v(P ) = 1.

Therefore, Φm,v is also continuous at O . Since E(Kv) is compact, Φm,v is bounded.
To show the latter part, assume that infP∈E(Kv) Φm,v(P ) = 0. Since E(Kv) is compact, there

exists P ∈ E(Kv) such that Φm,v(P ) = 0. By definition, P �= O . Hence, we have φm(x(P )) =
ψ2

m(x(P )) = 0. Since φm and ψ2
m are relatively prime by Proposition 5, this is a contradic-

tion. �
We define a local height function λv :E(Kv) \ {O} → R by

λv(P ) = log max
{
1,

∣∣x(P )
∣∣
v

} +
∞∑
i=0

1

4i+1
logΦ2,v

(
2iP

)
.

Remark 7. Some authors use different definitions of local height functions. Let λ′
v be the defin-

ition of [8,11], or [12]. Then we have

λv = 2λ′
v + 1

6
log |�|v.

We have the following proposition.

Proposition 8 (Néron, Tate). The function λv satisfies the following properties.

(a) The function λv is bounded and continuous on the complement of any open neighborhood
of O .

(b) The limit

lim
P→O

(
λv(P ) − log

∣∣x(P )
∣∣
v

)
exists.

(c) For all P,Q ∈ E(Kv) with P �= O , Q �= O , P ± Q �= O ,

λv(P + Q) + λv(P − Q) = 2λv(P ) + 2λv(Q) − 2 log
∣∣x(P ) − x(Q)

∣∣
v
.

(d) Let m be any positive integer. For all P ∈ E(Kv) with mP �= O ,

λv(mP ) = m2λv(P ) − log
∣∣ψ2

m

(
x(P )

)∣∣
v
.
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Proof. See [8, Chapter VI], or see [11] and [12]. �
The local height function satisfies the uniqueness property as follows.

Proposition 9. The function λv :E(Kv) \ {O} → R is uniquely determined by (a), (b), and (d)
for any given integer m � 2 of Proposition 8.

Proof. Suppose that λv and λ′
v satisfy (a), (b), and (d) for any given integer m � 2 of Proposi-

tion 8. Define Λ :E(Kv) → R by

Λ(P ) =
{

limQ→O(λv(Q) − λ′
v(Q)) if P = O,

λv(P ) − λ′
v(P ) if P �= O.

Then (b) implies that Λ is well defined at P = O . And (a) implies that Λ is a bounded continuous
function on E(Kv). Therefore, there exists M > 0 such that for all P ∈ E(Kv),∣∣Λ(P )

∣∣ � M.

From (d), for all P ∈ E(Kv) with mP �= O ,

Λ(mP) = m2Λ(P ).

However, since the set of points with mP = O is a discrete subset of E(Kv), this equality also
holds when mP = O by continuity. Hence

∣∣Λ(P )
∣∣ =

∣∣∣∣Λ(miP )

m2i

∣∣∣∣ � M

m2i
.

This proves Λ(P ) = 0, hence λv = λ′
v . �

Proposition 10. Let m � 2 be an integer. Then, for all P ∈ E(Kv) \ {O},

λv(P ) = log max
{
1,

∣∣x(P )
∣∣
v

} +
∞∑
i=0

1

m2(i+1)
logΦm,v

(
miP

)
. (2)

Proof. Let λ′
v(P ) be the right-hand side of (2). It is easy to show that λ′

v satisfies (a) and (b) of
Proposition 8. It is sufficient to prove (d) for m:

λ′
v(mP ) = log max

{
1,

∣∣x(mP )
∣∣
v

} +
∞∑
i=0

1

m2(i+1)
logΦm,v

(
mi+1P

)

= log max

{
1,

∣∣∣∣ φm(x(P ))

ψ2
m(x(P ))

∣∣∣∣
v

}
+ m2

∞∑
i=1

1

m2(i+1)
logΦm,v

(
miP

)

= m2 log max
{
1,

∣∣x(P )
∣∣
v

} + log
max{|φm(x(P ))|v, |ψ2

m(x(P ))|v}
m2
max{1, |x(P )|v}
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+ m2
∞∑
i=1

1

m2(i+1)
logΦm,v

(
miP

) − log
∣∣ψ2

m

(
x(P )

)∣∣
v

= m2λ′
v(P ) − log

∣∣ψ2
m

(
x(P )

)∣∣
v
.

Therefore, by Proposition 9, λv = λ′
v . �

The canonical height function is represented as the summation of the local height functions.

Proposition 11. For all P ∈ E(K) \ {O},

ĥ(P ) = 1

[K : Q]
∑

v∈MK

nvλv(P ).

Proof. See [8, Chapter VI, Theorem 2.1]. �
By Proposition 11, the difference between the ordinary height and the canonical height is

represented as follows:

h(P ) − ĥ(P ) = 1

[K : Q]
∑

v∈MK

nv

(
log max

{
1,

∣∣x(P )
∣∣
v

} − λv(P )
)
.

We define the function Ψv :E(Kv) → R by

Ψv(P ) =
{

0 if P = O,

log max{1, |x(P )|v} − λv(P ) if P �= O.

If we bound Ψv , we obtain the bounds for h − ĥ.
The following proposition says that the bounds for Ψv exist.

Proposition 12. Ψv is a bounded continuous function on E(Kv).

Proof. By definition, for all P ∈ E(Kv) \ {O},

Ψv(P ) = −
∞∑
i=0

1

4i+1
logΦ2,v

(
2iP

)
.

This equality holds when P = O . By Proposition 6, logΦ2,v is bounded and continuous. There-
fore, by Weierstrass M-test, Ψv is continuous on E(Kv). Since E(Kv) is compact, Ψv is bounded
on E(Kv). �

For non-Archimedean place, the following bounds are known. Note that these bounds are the
best estimates.
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Proposition 13. Let v ∈ M0
K . Then,

inf
P∈E(Kv)

Ψv(P ) = 0,

sup
P∈E(Kv)

Ψv(P ) =
(

αv + 1

6
ordv

(
�/�min

v

))
logqv,

where �min
v is the minimal discriminant of E at v, and αv is given by Table 1.

Proof. See [2, Proposition 8]. �
6. Proof of the main theorem

Proposition 14. Let m � 2 be an integer. Then, for all P ∈ E(Kv),

Sv(m) � Ψv(P ) � Tv(m).

Proof. By Proposition 10, for all P ∈ E(Kv) \ {O},

Ψv(P ) = −
∞∑
i=0

1

m2(i+1)
logΦm,v

(
miP

)
. (3)

This equality also holds when P = O . By the definitions of δm,v and εm,v ,

log δm,v � − logΦm,v

(
miP

)
� log εm,v.

Therefore, this proposition is proved by the equality

∞∑
i=0

1

m2(i+1)
= 1

m2 − 1
. �

Proof of Theorem 1. Theorem 1 follows from Propositions 13 and 14. �
7. Relation between bounds and multipliers

In this section, we consider the relation between the bounds in Theorem 1 and the multi-
plier m. First, we prove the following proposition.

Proposition 15. Let m � 2, l � 1 be integers. Then,

Sv(m) � Sv

(
ml

)
, Tv

(
ml

)
� Tv(m),

i.e., the bounds in Theorem 1 become sharper when we change m to ml .
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Remark 16. It is not necessarily true that

Sv(m) � Sv(m
′), Tv(m

′) � Tv(m),

if m is a divisor of m′. We will show some counterexamples in Section 9.

We begin by proving a few lemmas.

Lemma 17. Let m be a positive integer. Then, for all P ∈ E(Kv),

Ψv(mP ) = logΦm,v(P ) + m2Ψv(P ).

Proof. It is clear when m = 1. Let m � 2. By (3),

m2Ψv(P ) = −
∞∑
i=0

1

m2i
logΦm,v

(
miP

)

= − logΦm,v(P ) −
∞∑
i=1

1

m2i
logΦm,v

(
miP

)
= − logΦm,v(P ) + Ψv(mP ). �

Lemma 18. Let m and m′ be positive integers. Then, for all P ∈ E(Kv),

logΦmm′,v(P ) = m′2 logΦm,v(P ) + logΦm′,v(mP ).

Proof. By Lemma 17,

Ψv(mP ) = logΦm,v(P ) + m2Ψv(P ), (4)

Ψv(mm′P) = logΦm′,v(P ) + m′2Ψv(mP ), (5)

Ψv(mm′P) = logΦmm′,v(P ) + (mm′)2Ψv(P ). (6)

Multiply (4) by m′2, add (5), and subtract (6). Then we obtain

logΦmm′,v(P ) = m′2 logΦm,v(P ) + logΦm′,v(mP ). �
Corollary 19. Let m � 2, l � 1 be positive integers. Then, for all P ∈ E(Kv),

1

m2l
logΦml,v(P ) =

l−1∑
i=0

1

m2(i+1)
logΦm,v

(
miP

)
. (7)



Y. Uchida / Journal of Number Theory 128 (2008) 263–279 273
Proof. By Lemma 18,

l−1∑
i=0

1

m2(i+1)
logΦm,v

(
miP

) =
l−1∑
i=0

1

m2(i+1)

(
logΦmi+1,v(P ) − m2 logΦmi,v(P )

)

=
l−1∑
i=0

(
1

m2(i+1)
logΦmi+1,v(P ) − 1

m2i
logΦmi,v(P )

)

= 1

m2l
logΦml,v(P ),

where we use Φ1,v(P ) = 1. �
Now we can prove Proposition 15.

Proof of Proposition 15. Take suprema of the both sides of (7). Then we obtain

log δ−1
ml,v

m2l
�

l−1∑
i=0

log δ−1
m,v

m2(i+1)
= m2l − 1

m2l (m2 − 1)
log δ−1

m,v.

Hence,

log δm,v

m2 − 1
�

log δml,v

m2l − 1
.

The proof for ε is similar. �
Next, we consider the difference between the theoretical bounds and the bounds in Theorem 1.

Proposition 20. Let m � 2 be an integer. Then,

0 � inf
P∈E(Kv)

Ψv(P ) − Sv(m) � 1

m2 − 1

(
sup

P∈E(Kv)

Ψv(P ) − inf
P∈E(Kv)

Ψv(P )
)
, (8)

0 � Tv(m) − sup
P∈E(Kv)

Ψv(P ) � 1

m2 − 1

(
sup

P∈E(Kv)

Ψv(P ) − inf
P∈E(Kv)

Ψv(P )
)
. (9)

Proof. By Proposition 14,

0 � inf
P∈E(Kv)

Ψv(P ) − Sv(m).

By Lemma 17,

logΦm,v(P ) = Ψv(mP ) − m2Ψv(P ).
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Take the suprema of the both sides of this equality. We obtain

log δ−1
m,v � sup

P∈E(Kv)

Ψv(mP ) − m2 inf
P∈E(Kv)

Ψv(P ).

Hence,

inf
P∈E(Kv)

Ψv(P ) − Sv(m) � 1

m2 − 1

(
sup

P∈E(Kv)

Ψv(P ) − inf
P∈E(Kv)

Ψv(P )
)
.

The proof for Tv(m) is similar. �
The following corollary says that we can bring the bounds in Theorem 1 close to the theoreti-

cal bounds arbitrarily.

Corollary 21.

lim
m→∞Sv(m) = inf

P∈E(Kv)
Ψv(P ), lim

m→∞Tv(m) = sup
P∈E(Kv)

Ψv(P ).

Proof. Since Ψv is bounded on E(Kv) by Proposition 12, the corollary follows from Proposi-
tion 20. �

We can estimate the difference between the theoretical bounds and the bounds in Theorem 1
by the following corollary.

Corollary 22.

0 � inf
P∈E(Kv)

Ψv(P ) − Sv(m) � 1

m2

(
Tv(m) − Sv(m)

)
, (10)

0 � Tv(m) − sup
P∈E(Kv)

Ψv(P ) � 1

m2

(
Tv(m) − Sv(m)

)
. (11)

Proof. By (8),

m2 inf
P∈E(Kv)

Ψv(P ) − (
m2 − 1

)
Sv(m) � sup

P∈E(Kv)

Ψv(P ).

Hence,

m2 inf
P∈E(Kv)

Ψv(P ) − m2Sv(m) � sup
P∈E(Kv)

Ψv(P ) − Sv(m) � Tv(m) − Sv(m).

Therefore we obtain (10). The proof for (11) is similar. �
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8. Remarks on implementation

In this section, we describe a method for computing Sv(m) and Tv(m).
When v ∈ M0

K , it is sufficient to use Tate’s algorithm (see [8, Chapter IV, Section 9]).
Let v ∈ M∞

K . When v is a complex place, we can use the method based on Gröbner basis, or
the repeated quadrisection method. See [2, Sections 8, 9].

When v is a real place, we adapt the method of [2, Section 7]. However, since we need some
changes, we describe this case closely.

We can consider K ⊂ R and Kv = R. We define polynomials f (x), g(x), p(x) by

f (x) = ψ2
m(x), g(x) = φm(x), p(x) = ψ2

2 (x).

And we define polynomials F(x), G(x), P(x) by

F(x) = xm2
f (1/x), G(x) = xm2

g(1/x), P (x) = x4p(1/x).

Let

D = {
x ∈ [−1,1] ∣∣ p(x) � 0

}
,

D′ = {
x ∈ [−1,1] ∣∣ P(x) � 0

}
.

Note that f (x) = p(x) and F(x) = P(x) in [2] since m = 2.
We have the following elementary lemma.

Lemma 23. Define the constants e, e′, d , d ′ by

e = inf
x∈D

max
{∣∣f (x)

∣∣, ∣∣g(x)
∣∣},

e′ = inf
x∈D′ max

{∣∣F(x)
∣∣, ∣∣G(x)

∣∣},
d = sup

x∈D

max
{∣∣f (x)

∣∣, ∣∣g(x)
∣∣},

d ′ = sup
x∈D′

max
{∣∣F(x)

∣∣, ∣∣G(x)
∣∣}.

Then,

εm,v = min{e, e′}−1, δm,v = max{d, d ′}−1.

Proof. The lemma follows from the definition of εm,v and δm,v and the fact that (x, y) ∈ E(R)

if and only if p(x) = (2y + a1x + a3)
2. See [6, Lemma 2.3]. �

By definition, D and D′ are finite unions of closed intervals. Therefore, we can use the fol-
lowing lemma to determine e, e′, d , d ′.

Lemma 24. Let I ⊂ R be a closed interval. Let P and Q be continuous real-valued functions
on I . Then the extrema of the function max{|P(X)|, |Q(X)|} over the interval I are attained at
one of the following points:
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(1) an end point of I ;
(2) one of the roots of P + Q, P − Q in the interval I ;
(3) a turning point of one of the functions P , Q.

Proof. See [2, Lemma 10]. �
9. Examples

In this section, we compare our result (Theorem 1) with other results. As we noted in
Remark 2, our result is the same as [2, Theorem 1] if m = 2. Therefore we compare our re-
sult with Silberman’s bounds and Zimmer’s bounds. We quickly review their bounds. Note
that a1, a2, a3, a4, a6 ∈ OK .

Theorem 25. (See Silverman [7].) For x ∈ K , we define

h(x) = 1

[K : Q]
∑

v∈MK

nv log max
{
1, |x|v

}
,

h∞(x) = 1

[K : Q]
∑

v∈M∞
K

nv log max
{
1, |x|v

}
.

And we define

2∗ =
{

2 if b2 �= 0,

1 if b2 = 0,

and

μ(E) = 1

12
h(�) + 1

12
h∞(j) + 1

2
h∞

(
b2

12

)
+ 1

2
log 2∗.

Then, for all P ∈ E(K),

−2μ(E) − 2.14 � h(P ) − ĥ(P ) � 1

12
h(j) + 2μ(E) + 1.946.

Theorem 26 (Zimmer). For x ∈ K , v ∈ MK , we define v(x) = − log |x|v . Let

μv = min

{
v(b2),

v(b4)

2
,
v(b6)

3
,
v(b8)

4

}
,

and

μl = − 1

[K : Q]
∑

v∈MK

nv min{0,μv},

μh = 1

[K : Q]
∑

nv max{0,μv},

v∈MK
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μ = − 1

[K : Q]
∑

v∈MK

nvμv = μl − μh.

Then, for all P ∈ E(K),

−μl − log 2 � h(P ) − ĥ(P ) � 2μ + μh + 8

3
log 2.

Proof. The theorem follows from [5, Proposition 5.18(a), Theorem 5.35(c)]. �
To compare the bounds in Theorem 1 with the ones we described above, we give some exam-

ples. PARI/GP [4] is used in the computation.

Example 27. Consider the elliptic curve over Q,

E: y2 = x3 − 459x2 − 3478x + 169057.

This is taken from [2, Example 4]. Theorem 1 gives the following bounds:

−6.531924724 � h − ĥ � 0.4620981204 (m = 2),

−5.228881425 � h − ĥ � 0.4620981204 (m = 3),

−5.227187136 � h − ĥ � 0.4620981204 (m = 4),

−5.006931796 � h − ĥ � 0.4620981204 (m = 5).

Silverman’s bounds are

−15.40309857 � h − ĥ � 18.74780624,

and Zimmer’s bounds are

−8.208491752 � h − ĥ � 16.41698351.

We observe that the bounds in Theorem 1 are sharper than the other ones.
According to [2, Example 4], the rank of E(Q) is 4, and that E(Q) has a basis

P1 = (16,−1), P2 = (−4,−419), P3 = (−22,−113), P4 = (566,−5699).

Furthermore, it says that when P = 2P1,

h(P ) − ĥ(P ) = 0.4620980788 . . . ,

and when P = P1 − 3P2 + P3 + 3P4,

h(P ) − ĥ(P ) = −4.900153342 . . . .

We observe that the bounds in Theorem 1 are very sharp.
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Example 28. As an example with big coefficients, consider

E: y2 + xy + y = x3 − 120039822036992245303534619191166796374x

+ 504224992484910670010801799168082726759443756222911415116.

It is known that rankE(Q) � 24 (see [3]). The discriminant of E is factored as

� = 22 · 39 · 52 · 116 · 132 · 172 · 292 · 313 · 412

· 458619970494582607679296750333015081

· 264240973182971699094661154229360236070105974082503.

Then, by Theorem 1, we have the following estimates on E(Q):

−58.454 � h − ĥ � 16.560 (m = 2),

−49.244 � h − ĥ � 21.598 (m = 3),

−46.647 � h − ĥ � 16.392 (m = 4),

−45.516 � h − ĥ � 18.044 (m = 5),

−44.968 � h − ĥ � 16.368 (m = 6),

−44.626 � h − ĥ � 17.154 (m = 7),

−44.422 � h − ĥ � 16.360 (m = 8),

−44.264 � h − ĥ � 16.799 (m = 9).

Silverman’s bounds are

−48.610 � h − ĥ � 71.304,

and Zimmer’s bounds are

−44.881 � h − ĥ � 90.223.

We give counterexamples mentioned in Remark 16. These curves are taken from Cremona’s
elliptic curve data [1].

Example 29. Consider the curve 37a1 (cf. [1])

E: y2 + y = x3 − x.

Then, Theorem 1 gives

−0.48648 � h − ĥ � 0.12298 (m = 3),

−0.46933 � h − ĥ � 0.12650 (m = 6).

The upper bound with m = 6 is worse than that with m = 3.
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Example 30. Consider the curve 20888a1 (cf. [1])

E: y2 = x3 − 52x + 100.

Then, Theorem 1 gives

−2.1041 � h − ĥ � 1.8394 (m = 5),

−2.1193 � h − ĥ � 1.8394 (m = 10).

The lower bound with m = 10 is worse than that with m = 5.
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