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Abstract--This article presents simulation results comparing various resampling estimators of classifica- 
tion error rate for linear discriminant type classification algorithms. Three non-Gaussian multivariate 
populations are studied namely, exponential, Cauchy and uniform. Simulations are conducted for small 
sample sizes, two-class and three-class problems and 2-D, 3-D and 5-D distributions. Estimation 
procedures and sample sizes are the same as in our previous study of Gaussian populations; again 200 
bootstrap replications are used for each simulation trial. For exponential and uniform distributions the 
0.632 estimator generally performs best. However, for Cauchy distributions the convex bootstrap and the 
e0 often outperform the 0.632 estimator. 

1. I N T R O D U C T I O N  

This paper deals with the estimation of  classification error rates for linear discriminant rules when 
the unknown population distributions have multivariate distributions which are not Gaussian. The 
basic problem is that the naive estimator (referred to in the literature as the apparent error rate 
or the resubstitution estimate) is known to be optimistically biased. This is particularly true when 
the number of  training samples is small and the true error rate is high. The apparent error rate 
simply estimates the misclassification probability by applying the estimated discriminant rule to 
classify the training set. The estimate is then the number of  misclassifications divided by the number 
of  training vectors. 

There has been a great deal of  research in the estimation of  misclassification probability, as can 
be seen from the extensive bibliography by Toussaint [1]. In recent years, interest has been renewed 
due to the work of  Glick [2] and Efron [3]. We simulate bivariate exponential, bivariate uniform 
and 2-D, 3-D and 5-D Cauchy populations. This choice was made to learn something about the 
effect of  skewness and distribution tail length on the estimates. The approach is the same as in our 
study for Gaussian populations [4]. We consider the same seven estimators (the apparent error rate 
and six resampling methods). 

The method of  cross-validation (also referred to in the literature as the "U  method" or "leave- 
one-out" estimator) was first suggested by Lachenbruch [5] and popularized by Lachenbruch and 
Mickey [6]. This procedure removes most of  the bias of  the apparent error rate by computing the 
n estimates (n is the number of  training vectors) of  the discriminant functions obtained by leaving 
out one training vector each time. The discriminant functions are then used to classify the training 
vectors left out. The estimate is obtained by counting the number misclassified and dividing by n. 

Unfortunately, this estimator has been found to have a large variance [2-4]. Alternatives to 
cross-validation were proposed by Glick [2] and have been modified and studied by Snapinn and 
Knoke [7, 8]. Efron [3] proposed resampling or bootstrap-type procedures as an alternative. He 
demonstrated improvement through a simulation of  a few Gaussian cases using a small number 
of  training vectors. 

Most promising of  the bootstrap-type estimates was the 0.632 estimator. Efron [3] proposed the 
0.632 estimator and found it to be better than the other resampling estimators. The 0.632 estimator 
is formed by a weighted average of  the apparent error rate and the e0 estimator with weights 0.368 
and 0.632, respectively. The e0 estimate is obtained by simply totaling the number of  training 
vectors misclassified among those training vectors not included in the bootstrap samples and 
dividing by the total number of  training vectors left out of  the bootstrap samples. 
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Subsequent simulation studies [4, 9] confirm the superiority of the 0.632 estimator. In particular, 
recent results by Snapinn and Knoke [9] indicate that it is competitive with other estimators for 
non-Gaussian populations. We shall show why the 0.632 estimator works so well and shall 
demonstrate through simulations that for certain Cauchy populations it may not be the best 
estimator. A more detailed study of the sensitivity of  the 0.632 estimator to distribution tail length 
is the subject of a future paper of the authors using Pearson VII distributions in a systematic 
approach to multivariate distribution generation, as proposed by Johnson et al. [10, 11]. 

Modifications of some of the current estimators may produce improvement and these modifica- 
tions are proposed for future comparison with the smoothed estimators of Snapinn and Knoke 
[9]. Knoke [12] gives an interesting summary of error rate estimation and the value of bootstrap 
methods is emphasized by McLachlan [13]. 

2. T E C H N I C A L  APPROACH 

In this paper the 0.632, bootstrap, convex bootstrap, e0, apparent error rate and MC estimators 
are computed for each of 200 simulations for a variety of true error rates and multivariate 
distributions. The estimators are the same as those defined and compared by Chernick et al. [4]. 
The true expected unconditional error rate is used instead of the Mahalanobis distance as a measure 
of population separation. It seems to us to be a more natural parameter and is interpretable for 
non-Gaussian populations, whereas the Mahalanobis distance is a natural measure for Gaussian 
populations but is not easily interpretable for non-Gaussian populations. 

We shall now describe the various populations studied and then give the definitions of the 
estimators. It should be pointed out, as has been noted by Sorum [14], that there are at least three 
misclassification probabilities that can be estimated. Page [15] shows that the choice of estimator 
depends on the type of  error rate of interest and sample size. Here, as in our previous work, we 
estimate the expected probability of misclassification given a fixed training set. This is replicated 
for 200 training sets to obtain our measure of estimator performance, the unconditional mean 
square error, as in Refs [3, 4, 7-9]. We also average the 200 expected probabilities of mis- 
classification to obtain our approximate "true error rate", our measure of population separation. 

We simulated bivariate exponential distributions of the type described by Gumbel [16]. The 
general procedure for generating bivariate exponential and uniform random vectors of this type 
is described by Chernick [17] (see also Ref. [11]), and is defined as follows: 

F(x t ,  x2) = F, (x,) F2 (x2){ 1 + A [1 - F~ (x,)] [1 - F2 (x2)]}, (1) 

where F~ and Fz are the univariate exponential or uniform cumulative distributions and IA[~< 1 
(A = 0.5 in the simulations reported). Values of A other than 0.5 were tried but did not appear 
to affect the results. 

For the Cauchy distributions the following autoregressive scheme is used to generate 2-D, 3-D 
and 5-D distributions, with m, a constant location parameter: 

Xt = PXi-l  + ei+ (1 - p)m 

Xi = m + Cl, (2) 

where C~ is a Cauchy random variable with scale parameter 1 and location parameter 0, Ei are 
independent and Cauchy with scale parameter 1 - Ipl and location parameter 0 and IP[ ~< 1 (p = 0.5 
in the simulations reported). Results for other values of p were computed but there appeared to 
be no effect due to the autoregressive parameter. 

For the exponential and uniform cases, simulations are run for true error rates ranging from 0.1 
to 0.5, for two-class problems with 2-D feature vectors and training sample sizes of 14, 20 and 29. 
For the uniform case three-class problems are also considered with true error rates ranging from 
0.05 to 0.67 with training sample sizes of 20 and 29. 

For the Cauchy case two-class and three-class problems are considered for 2-D, 3-D and 5-D 
feature  vectors. For the two-class and 2-D problems, training sample sizes are 14, 20 and 29, and 
only 20 and 29 for the three-class or 3-D and 5-D problems. Error rates vary from 0.05 to 0.5 for 
two-class problems and from 0.05 to 0.67 for three-class problems. 



E r r o r  r a t e s  fo r  l inea r  d i s c r i m i n a n t  f u n c t i o n s  31 

For the Cauchy and uniform distributions, different true error rates are obtained by varying the 
shift in location parameters from one population to the next. For the bivariate exponential 
distribution the cumulative distributions FI and F2 in equation (1) are given by 

F~.(x) = 1 - exp( - ~,x), i = 1, 2, (3) 

where 2 is the rate parameter. Since the mean and variance both depend on 2, separation of 
the populations is achieved by varying 2. We did not consider any two-parameter exponential 
distributions. 

The apparent error rate and the cross-validation (U method) estimates are determined as we have 
previously defined them. The standard bootstrap estimated is obtained through the generation 
of bootstrap samples. A bootstrap sample is obtained by sampling with replacement from the 
empirical distribution for the training set. Several bootstrap samples are generated (in our 
simulations we generate 200 bootstrap samples for each of 200 simulation trials). 

The bias of the apparent error rate is estimated by the bootstrap sample analog to equation (2.10) 
of Efron [3, p. 317]. This estimate of bias is added to the apparent error rate to obtain the bootstrap 
estimate of misclassification probability. We call this procedure the "standard bootstrap" to 
distinguish it from other variants of the bootstrap. 

Chernick and Murthy [18] investigated properties of bootstrap samples based on a connection 
between bootstrap sampling and the classical occupancy problem. In a bootstrap sample the 
probability is approx. 0.368 that an observation vector will n o t  be included in a bootstrap sample. 
The exact probability is a function of sample size. In small samples this probability is < 0.368 (e.g. 
for n = 14, p = 0.354 and for n = 2, p = 0.250). 

The MC estimator works exactly like the bootstrap except that individual "bootstrap" samples 
are controlled to leave out a fixed proportion of the training set and to include fixed proportions 
once, twice and three times. These proportions are based on the asymptotic repetition frequencies 
for bootstrap samples as given in Chernick and Murthy [18]. 

When the feature vectors come from an absolutely continuous distribution such as the multi- 
variate Gaussian or the multivariate exponential, uniform and Cauchy distributions considered in 
this paper a problem arises with the standard bootstrap in small samples, namely that the empirical 
distribution is discrete and thus is only a rough approximation to the population distribution. The 
convex bootstrap overcomes this problem by taking a convex combination of two independent 
bootstrap training vectors. This allows for observations to be chosen in between training samples. 
The choice of independent bootstrap training vectors was done for simplicity but it does lead to 
inconsistent estimates. 

The e0 estimate, was first defined by Efron [3] and used by him in the calculation of the 0.632 
estimator. However, Efron did not compare e0 with the other estimates in his simulations, but 
Chernick et  al. [4] did. Chatterjee and Chatterjee [19] proposed the use of e0 as a "modified 
bootstrap" approach but did not explicitly refer to their estimate as e0. 

3. SIMULATION RESULTS 

Tables 1-3 summarize the simulation results for the Cauchy, uniform and exponential cases, 
respectively. Listed is the number of cases for which the various estimators ranked first, second 
and third based on unconditional mean square error. A case is defined by a particular number of 
dimensions, classes, training samples and true error rate. Each case is based on 200 simulation 
trials. We use the notation (2,2,14) to denote a two-class 2-D problem with 14 training vectors. 
The estimators 0.632, MC, e0, standard bootstrap, convex bootstrap, cross-validation and apparent 
error rates are denoted by 632, MC, E0, BOOT, CONV, U and APP, respectively. So, for example, 

Table I. Performance summary---Cauchy case 

632 E0 MC BOOT CONV U APP TOTAL 

I st 29 47 9 26 36 0 5 152 
2nd 45 12 26 46 21 I 1 152 
3rd 18 3 46 22 50 7 6 152 

Total 92 62 81 94 107 8 12 456 
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Table 2. Performance summary--uniform case 

632 E0 MC BOOT CONV U APP TOTAL 

Ist 54 18 l I 1 0 7 82 
2nd 17 33 9 I 1 4 2 6 82 
3rd 6 4 14 28 20 4 6 82 

Total 77 55 24 40 25 6 19 246 

Table 3. Performance summary--exponential  case 

632 E0 MC BOOT CONV U APP TOTAL 

1 st 24 5 7 4 0 0 8 48 
2rid 6 4 16 17 3 0 2 48 
3rd 13 1 8 15 7 0 4 48 

Total 43 10 31 36 10 0 14 144 

with the exponential distribution there are 48 cases corresponding to the various true error rates, 
dimensions, classes and training sample sizes. 

The results indicate that the 0.632 estimator is superior in the exponential and uniform cases. 
However, in the Cauchy case the e0, bootstrap and convex bootstrap rank first more often than 
0.632, and the bootstrap and convex bootstrap rank among the top three more often than 0.632. 

Results for the individual cases are shown in Figs 1-8. Each figure contains four graphs. The 
unconditional root mean square error (r.m.s.) for the 0.632, e0, MC and bootstrap estimates are 
plotted on one graph and for the U method, convex bootstrap and apparent error rate on another. 
Similarly, the bias is plotted on the other two graphs. Other cases included in the summary table 
were deleted from the plots for simplicity since results for those cases were similar to Figs 1-8. 

General trends to be noticed are that for true error rates between 0.1 and 0.4 the 0,632 estimator 
has the lowest mean square error for two-class problems. For  three-class problems the 0.632 
estimator is best when the error rate is between 0.1 and 0.5. When the error rate is >0.4  for 
two-class problems and > 0.5 for three-class problems the e0 estimate is best. For  error rates < 0.1 
all estimates are equally good and even the apparent error rate sometimes has the lowest mean 
square error. These results are similar to our results for the Gaussian case [20]. 
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Also, similar to the Gaussian results are the trends in the bias for the apparent error rate and 
the e0 estimate. The apparent error rate has a negative bias which decreases in a nearly linear 
fashion with increasing true error rate. The e0 estimate has a positive and decreasing bias with 
increasing error rate. 

These trends in the bias of  the apparent error rate and e0 estimate partially explain the general 
success of  the 0.632 estimator. The 0.632 estimator appropriately weights two estimates with small 
variance and opposite biases. However, a scheme which adaptively weights the two estimates 
depending on an unbiased estimate of  the true error rate such as the U estimator might do better 
at the high error rates since more weight should be given to e0 there. Also, at the low error rates 
more weight given to the apparent error rate might lead to improvement. 

There is one exception to these trends in bias. For  the Cauchy case when the sample sizes are 
20 or 29 the e0 estimator does not have the usual positive bias. Thus, the near cancellation of  biases 
does not occur and the 0.632 estimator is no longer superior to the others. Apparently, the 
heavy-tailed behaviour of  the Cauchy samples has an effect on the bias of  e0. This effect does not 
show up when n = 14. This result is not peculiar to this particular multivariate Cauchy distribution. 
The authors in a forthcoming paper have obtained similar results for heavy-tailed Pearson VII 
bivariate distributions including a bivariate Cauchy distribution. 

4. S U M M A R Y  AND C O N C L U S I O N S  

The MC estimator, which was expected to be an improvement on the bootstrap, appears to 
perform similarly to the standard bootstrap. For  the non-Gaussian cases studied here, performance 
results are very similar to previous results for Gaussian cases with the exception of  the heavy-tailed 
Cauchy distribution. 

Consequently, we conclude that relative performance may not depend much on skewness but 
may change for heavy-tailed distributions. If  the expected error rate is < 10% all estimators 
perform well including the apparent error rate. The 0.632 estimator is generally best when the error 
rate is between 0.10 and 0.40 for two-class problems and between 0.10 and 0.50 for three-class 
problems. The e0 estimate is best when the error rate is > 0.40 for two-class problems and > 0.50 
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for three-class problems. For the Cauchy case when the training sample size is 20 or 29 the convex 
bootstrap often performs the best at the low error rates and the e0 at the high error rates. 

A complication that overcomes the consistency problem for the convex bootstrap would be to 
take convex combinations of neighboring training vectors or to choose observations in an appro- 
priately chosen small neighborhood of a bootstrap observation. This does however increase the 
computational complexity of an already computer-intensive estimation procedure. Nevertheless, 
such a modification may be worth considering in the future. 

Smoothing of the empirical distribution should help in small sample size problems and our 
proposed modification to the convex bootstrap may be promising particularly in heavy-tailed 
situations such as the Cauchy. Another approach to smoothing the estimates is provided by 
the NS estimator of Snapinn and Knoke [8]. Snapinn and Knoke [9] suggest a bootstrap-type 
adjustment to the NS estimator that looks promising. The most promising of these estimators 
should be compared with our proposed modifications to 0.632 and the convex bootstrap over a 
variety of populations, particularly populations with heavy tails. In addition an alternative 
approach would be to estimate the tails of a multivariate distribution as for example by the 
maximum-entropy histogram estimation procedure. 
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