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Abstract

We undertake the study of bivariate Horn systems for generic parameters. We prove that
these hypergeometric systems are holonomic, and we provide an explicit formula for their
holonomic rank as well as bases of their spaces of complex holomorphic solutions. We also
obtain analogous results for the generalized hypergeometric systems arising from lattices of any
rank.
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1. Introduction

Classically, there have been two main directions in the study of hypergeometric
functions. The first of these is to study the properties of a particular series, analyze
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its convergence, compute its values at some specific points providing combinatorial
identities, give integral representations, and find relations with other series of the same
kind. Here one could refer to well-known works of Gauss and Euler, for insf@nt#].

The other classical avenue of research is to find a differential equation that our
hypergeometric function satisfies, and to study all the solutions of that equation. This
approach was pioneered by Kummer, who showed that the Gauss hypergeometric func-
tion f(z) = Fla, b; c; z] defined as the power series:

1, @bz a@+Dbb+ D2 a@+D@+bb+Hb+2)
c 1 clc+1) 2! clc+1(c+ 2 3!

satisfies the differential equation

d’f df

Z(l_Z)TZZ—F(C—(l-Fa—Fb)Z)jZ —abf:O.

Kummer went on to find all of the solutions of this equation (EE%). He constructed
24 (Gauss) series that, wheneverb and ¢ are not integers, provide representations of
two linearly independent solutions to the Gauss equation, that are valid in any region
of the complex plane. Riemann also had a fundamental influence in thig2&gdFor
more historical details on hypergeometric functions, and a comprehensive treatment of
their classical theory, sej@6].

Both of these approaches have been tried for bivariate hypergeometric series. In his
article [8], Erdélyi gives a complete set of solutions for the following system of two
hypergeometric equations in two variables:

(x(0 + 0y + a)(O; +b) — O<(0 + 0, + c — 1))

f=0,
(y(Ox + 0y +a)(Oy +b) — 0,0 + 0y +c—1)f= 0

where 0, = x% andf, = yﬁ—ay. This is the system of equations for Appell’s function

F1, and for generic values of the parameter$, b’ andc, Erdélyi constructs more than
120 fully supported series solutions through contour integration. Bylla supported
series we mean a series such that the convex hull of the exponents of the monomials
appearing with nonzero coefficient contains a full-dimensional cone. The holonomic
rank of this system, that is, the dimension of its space of complex holomorphic solutions
around a nonsingular point, is 3.

Another interesting system of two second-order hypergeometric equations in two
variables is

(x(205 — 0y +a) (205 = 0y +d' + 1) = (=0 + 20y + a)0,) f = O,
(y(—0x + 20y +a) (=0 + 20, +a + 1) — (20, — O, +a)b,) f = 0.

This is the system of equations for Horn’s functi@rs, and its holonomic rank is
4. Erdélyi notes that, in a neighborhood of a given point, three linearly independent
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solutions of this system can be obtained through contour integral methods. He also finds
a fourth linearly independent solution: the Puiseux monomiaft+2:)/3y~(2a+a)/3

He remarks that the existence of this elementary solution is puzzling, especially since
it cannot be expressed using contour integration, and offers no explanation for its
occurrence.

One of the goals of this article is to give a formula for the rank of a system
of two hypergeometric equations in two variables when the parameters are generic
(cf. Theorem2.5). We will explain why the system for Appell'd; has rank 3 and
why the very similar system for Horn'63 has rank 4. We will also show that Puiseux
polynomial solutions are a commonplace phenomenon. Moreover, we will prove that
these systems of hypergeometric equations are holonomic for a generic choice of the
parameters.

Our starting point are the ideas of Gel'fand et [42] about thel’-series associated
with lattices, and how they relate to Horn series. Note thateries as defined if12]
are fully supported, and they do not account for the Puiseux polynomial solutions of
Horn systems.

Holomorphic series solutions to a Horn system are equivalent to solutions of corre-
sponding hypergeometric recursions (see Sed@ja@pecifically Eq. {3)), thus our study
of Puiseux polynomial solutions also characterizes the solutions to these recurrences
that have finite support.

Finally, since we will be dealing with lattices that are not necessarily saturated, we
also need to study the generalized hypergeometric systems associated with lattices (more
general than thet-hypergeometric systems of Gel'fand, Kapranov and Zelevinsky). We
show that, for generic parameters, these systems are also holonomic, without restriction
on the number of variables or rank of the corresponding lattice, and prove the expected
formula for their generic holonomic rank.

2. Multivariate hypergeometric systems

In order to accommodate two different sets of variables, we denotB,bthe Weyl
algebra with generatorsy, ..., x,, 0y, ..., 0y,, and by D, the Weyl algebra whose
generators areyu, ..., ym, Oy, ..., Oy,. We set@xj = Xjaxj for 1<j<n, and0y, =
yiOy,;, for 1<i <m. We also defind, = (0y,, ..., 0,,) and0y, = (0,,, ..., 0,,). When
the meaning is clear, we will drop many of the subindices to simplify the notation.

We fix a matrix A = (a;;) € Z"~™>*" of full rank n — m whose first row is the
vector (1,...,1), and a matrixB € Z"*" = (bj;) of full rank m such thatA - B = 0.
For 1< j<m, setb; = (bj1,...,bjm) € Z™ the jth row of B. The (positive) greatest
common divisor of the maximal minors of the matifkis denoted byg.

Fori=1,...,m, and a fixed parameter vector= (c1, ..., c;) € C", we let
|bjil—1
Pi=T] [ @i-0y+c;i—0n. @)

bji<0 1=0
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bji—1

Qi: l_[ l_[(bj~9y+6‘j—l), and (2)
bji>0 1=0

H; = Q; — yiPi, @)

whereb;-0, = Y }' 1 bji0,,. The operatorsd; are theHorn operatorscorresponding to
the latticeLg = {B-z : z € 7™} and the parameter vecter We calld; = Zb,-,>o bij =
—_},<0bij the order of the operatoH;. '
Definition 2.1. The Horn systemis the following left ideal ofD,,:

Horn(B,c) = (H1, ..., H,) C D,,.

Now denote byr® the columns of the matri8. Any vectoru € R" can be written as

u=uy—u_, where(uy); = max;,0), and (u_); = —min(u;,0). Fori =1,...,m,
we let:
(i) (i)
T =0 — o,

here we use multi-index notatiofl, = d}; - --d,". More generally, for any: € Lp, set
T, =0, —0,.

These are thdattice operatorsarising from L.
Definition 2.2. The lattice ideal arising from Lg is

Ip=(Ty:ueLp) S Cllx, ..., 0]
Recall that thetoric ideal corresponding tA is

Ip = (T, :u € kerz(A)) € Cl0xy, ..., Ox,1.

We will also denote

[ =(T1,...,Tp) € ClOy,,..., 0]

The ideal I is called alattice basis ideal Note that form = 2, I is a complete
intersection. This is not necessarily truenif> 2.

Lattice ideals and toric ideals have been extensively studied (see, for in§TaRcp.
Lattice basis ideals were introduced [it6].
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There is a natural system of differential equations arising from a toric ifleand
a parameter vector. This system, called thérypergeometric system with parameter
A - ¢, is defined as

n
HA(A-C)=IA+<Zaijxjaxj —(A-c)i:izl,...,n—m>§D,,.
j=1

From now on we will use the notatiofd-0—A-¢) to mean(ZA'/’.zla,-jxjaxj —(A-0)i:
i=1...,n—m).

A-hypergeometric systems were first defined by Gel'fand €tl8l, and their system-
atic analysis was started by Gel'fand, Kapranov and Zelevinsky (see, for indteiye
Saito, Sturmfels and Takayama have used Grdbner deformations in the Weyl algebra to
study A-hypergeometric systems (sg5]). In this article, we will extend this approach
to the case of Horn systems.

Gel'fand, Graev and Retakh have also consideredhimergeometric system associ-
ated with the latticeLg = {B -z : z € Z™}, which is defined to be the lefD,-ideal:

Ig+(A-0—A-¢)C D,.

We now introduce the leftD,-ideal Hg(c), that is very closely related to the Horn
system Horn(B3, ¢):

Hp(c) =T+ (A-0—A-c) C D,.

The results in SectioB imply that, for generice, there is a vector space isomorphism
between the solution spaces of Ho ¢) and Hg(c). Thus, we have two points of
view to study Horn hypergeometric functions. We also é&4(c) a Horn system, when
the context is clear.

Remark 2.3. We have defined the Horn operators using falling factorials because this
formulation will make clearer the relationship between H@nc) and Hi(c), but it

is just as legal to define Horn systems using rising factorials, as it is done in many
classical sources. For instance, the Horn and Appell systems from the previous section
naturally lend themselves to a rising factorial formulation. This is not really a difficulty,
since switching between rising and falling factorials in the definition of Horn systems
is a matter of shifting the parameters by integers.

It is a well known result of Adolphsorjl] that, for generic parametets - ¢, the
holonomic rank of theA-hypergeometric system equals the normalized volumeAipl
of the convex hull of the columns of, which is also the degree of the toric idefal.
Our goal is to obtain an explicit expression in this spirit for bivariate Horn systems.
Previous work in this direction required very strong assumptions [&&g.



A. Dickenstein et al./Advances in Mathematics 196 (2005) 78-123 83

Definition 2.4. In the case thatn = 2, we set

| min(b;1bj2l, |bj1bi2]) if b;, b; are in opposite open quadrants Bt,
Y710 otherwise

for 1<i, j<n. The number;; is called theindex associated té; andb;.

The following is the main result in this article, which follows from Corollady3
and Theorems.1, 9.10 and11.1

Theorem 2.5. Let B be ann x 2 integer matrix of full rank such that its rows, ..., b,
satisfyby +---+ b, = 0. If ¢ € C" is a generic parameter vectothen the ideals
Horn(B, ¢) and Hp(c) are holonomic. Moreover

rank(Hg(c)) = rank(Horn (B, ¢)) = dido — Z vij = g-vol(A)+ Z Vij,
bi.bj bi.bj
dependent independent

where the first summation runs over linearly dependent piirsh; of rows of 5 that
lie in opposite open quadrants &f?, and the second summation runs over linearly
independent such pairs.

We can also give an explicit basis for the solution space of KBra) (and of
Hp(c)) (Theorem10.3, and compute the exact dimension of the subspace of Puiseux
polynomial solutions (Theorerf.6).

3. Some observations about Horn systems

The Horn system Hor(B, ¢) is always compatible, even if is not generic, in the
sense that its solution space is always nonempty. First of all, the constant zero function
is always a solution of Hor(3, ¢), since this system is homogeneous. Moreover, as
we will see in Sectiorb, all the solutions of thed-hypergeometric systemil, (A - ¢)
are solutions ofHg(c), and these can be transformed into solutions of HBwr)

(see Corollary5.2), so that, under the assumptions thatis n x m of full rank m,

n > m, with all column sums equal to zero, Hai, c) always has nonzero solutions,
since H4 (A - ¢) always has nonzero solutions (its solution space has dimension at least
degl4) = vol (A), see[25, Theorem 3.5.}]

It is easy to understand how the Horn system H@éne) changes if we choose a
new parameter vectar, as long asA-¢’ = A -c. As a matter of fact, it =’ + B -z,
for somez € C™, then it is easy to see that(y) is a solution of HorB, ¢’) if and
only if y*f(y) is a solution of Hor{B3, ¢). Note also that the systeriz(c) depends
only on A - ¢, so thatHg(c) = Hg(c) if A-c=A-(.
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A change inA - ¢ can, instead, dramatically alter the solution space of KbBr@)
(and Hp(c)). For instance, it could become infinite dimensional, as the following ex-
ample shows.

Example 3.1. The Horn system defined by the operators
0y, + Oy, + )0y, — yi(Oy; + 0y, +c2) Oy, + 0y, +¢c3), i=12 4)

is not holonomic if(cy — ¢2)(c1 — ¢3) = 0. Indeed, a holonomic system of equations
can only have a finite-dimensional space of analytic solutions. However, since for
(c1 — c2)(c1 — ¢3) = 0 the operatoid),, + 0,, + c1 can be factored out of each of the
operators in 4), it follows that any function which is annihilated b, + 0y, +c1 is
a solution to 4). Thus for any smooth univariate functionthe producty, “u(y1/y2)
satisfies 4).

Note that for generic values of the parameterscy, c3 system 4) is holonomic.
One of its solutions is given by the Gauss functiBicy, c3; c1; y1 + y2]. Of course,
similar examples can be given in any dimension.

We could also ask what happens if we choose another métrsuch thatA- B’ = 0.
Even if g = ¢’ = 1, so thatB and B’ are two Gale duals ofi, the associated Horn
systems could have different holonomic rank, as we see in ExaBipl&he systematic
analysis of this question, in the case when= 2 is one of the main objectives of this
article.

Example 3.2. We choose

10 12
(1111 |2 1 , | -2-3
A—<0123>’ B=1 12" B=| 1 0
0 1 0 1

Then, ifc is a generic parameter vector, we have réf@&rn (B, ¢)) = 4, and rankHorn
(B, c)) = 6, as a consequence of Theor@m. This can be verified for specific values
of ¢ using the computer algebra systévtacaulay 2[15]. However, by Theorens.3,
these two hypergeometric systems share all fully supported solutions.

Note that the definition of Hor(, ¢) makes sense even If is a square matrix,
or if the rows of B do not add up to zero, or even B does not have full rank. As
a matter of fact, we will need to consider such Horn systems on our way to proving
results about the case whéhis n x m of full rank m, m < n, and the rows of3
add up to zero. Many of the examples will also concern Horn systems anvithm.
We remark that ifB is square and nonsingular, théfiz(c) is a system of differential
equations with constant coefficients, not depending:.on
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4. Preliminaries on codimension 2 binomial ideals

In this section we collect some results about lattice ideals and lattice basis ideals that
will be necessary to study Horn systems. Although this section is about commutative
algebra, our indeterminates will be callég, ..., ¢, for consistency with the notation
for differential equations.

Recall thatB = (bj;) is ann x m integer matrix of full rankm with all column
sums equal to zero. The following ideal is calledattice ideal

Ig=(0""—0":tu=ur—u_eLpg) CCl01,...,0,

whereLp = {B-z:z € 7™} is the rankm lattice spanned by the columns 8f For

the purpose of this section, we could use any field of characteristic O insteadhnft

later on, when we talk about complex holomorphic solutions of differential equations,
we will need our field to be the complex numbers. WeAebe any(n —m) x n integer
matrix such thatA - B = 0. Then the saturation of g is the lattice L = kerz(A).

Note that the order of the group/Lp is g, the positive greatest common divisor of
the maximal minors of5.

The ideal Iz is homogeneous with respect to the usdagrading and hence defines
a subschemeXi of P"~1. Moreover, the idealls is always radical and(g is the
equidimensional union of = |L/Lg| torus translates of the toric variety, defined
by the reduced scheme associatedltoas above. This is deduced frof@] since
(Ip : (01, ...,0,)°) = I, that is, no component ok is contained in a coordinate
hyperplane.

These torus translates can be described in terms of the gragoup G of all
partial characterg : L — C* which extend the trivial character:1Lg — C*, i.e., p
satisfyingp(¢ + ¢') = p(&)p(),V £,¢' € L andp(¥) =1,V £ € Lp.

Example 4.1. We illustrate the previous decomposition in an example before writing
it down in general. Let

1
2

)

In this caseg = 3. The schemeX, is the twisted cubic, that is, the closure of the
torus orbit of the pointpg=(1:1:1:1) ¢ P23 under the torus action:

1 2
0-3 11

5= 3 ol A=<01
2 1

A (01:02:03:04) = (W01 : 22021 1203 : 2304), e C*. (5)

The groupGp has order 3 and is isomorphic to the group of cubic roots of unity
(1, 0,02, wherew = ¢3 . Setpr=(1:1:w:1), pp=(1:1:w?: 1) and denote
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by X0, X1 and X2 the respective closure of the torus orbit under the act®rof po,
p1 and ps. In particular,Xo = X4. Then

Xp=XoUX1UX>

and X; is the image ofXg under the coordinatewise multiplication by, i = 1, 2.
Note that

X; ={(@1::04): 0103 — ' 05 = 05 — % 0204 = 0203 — 0/ 0104 = O}

so that the equations defining; are “translations” of the equations fofg = X 4.

This can be phrased in general as follows: Giyea G, let X, denote zero scheme
of the ideal:

I, =" —pw)d"” tu=uy —u_eL).

Then the ideald, are prime, their intersection giveg and X = Upcg 5 X . We refer
to [7] for a proof of these facts.

Consider now the case = 2 and recall that the lattice basis ideal associates to
is the ideal

[ = ("t — 0" :uis a column off3).

Its zero set consists of the union &fg with components that lie inside coordinate
hyperplanes. The following proposition, whose proof can be foungbjn gives the
precise primary decomposition of the idefal Denoteby, ..., b, € Z? the row vectors
of B. Let v;; be the index associated t§ andb; as in Definition2.4.

Proposition 4.2. The ideall has the following primary decomposition
I = (mpeGB Ip) n (mvij>0 Iij),
where ,/I;; = (0;, 0;), and the multiplicity of each;; is v;;, in the sense that

dimg (C[01, .. ., 5n]/1i,/)(81’_4.,5i’.._’(§/_’_._‘8’1> = Vij,

where K = C(01,...,0;,...,0,...,0n).
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We then have

Corollary 4.3. For d1, d» the degrees of the generators bf

di-do — Z VljngO|(A)+ Z Vij » (6)

b;,b; dependent b;,bj independent

where the first summation runs over linearly dependent piirsh; of rows of 3 that

lie in opposite open quadrants at?, and the second summation runs over linearly
independent such pairs.

Proof. The degree of the complete intersectidnis did>. By Proposition4.2, this
number equals

g-degla) + Y vij,

where the sum runs over all pairs of rows Bfin opposite open quadrants @-.
Now the result follows from the fact that the degree Igf is exactly the normalized
volume vol(A) of the polytope obtained by taking the convex hull of the columnd of
[27, Theorem 4.16] O

The following is another result related to the primary decompositioi. of

Proposition 4.4. Let B € 7"%? of rank 2, with rows b1, ..., b,, that add up to zerp
and Ig, I, the lattice and lattice basis ideals associated 8o For each1<i, j <n,
vij is as in Definition2.4. Set

o max; v;j if bi1 > 0,
A otherwise

Then

g C 1.

Proof. By Proposition4.2, it is enough to prove that” < Ny,;>0lij. Assume thav;; >
0. Thenb; andb; lie in the interior of opposite quadrants, so that eithgror b, is

positive, sayb;1 > 0, so thate; >v;;. We will be done if we show thaﬁf” €l;;. To
do this, let/;; be the localization of;; at (01, ..., 0i,...,0;,...,d,) SO thatl;; is an
artinian ideal of multiplicityv;; in K[0;, 0;1, whereK = C(01,...,0i,...,0j, ..., On).
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Note that since f, ¢;, ..., 6?”} = v;j+1, these monomials must be linearly dependent
modulo I~,~j, so we can findgo, ..., gv; €K such that

g0+ g10i + - + 8,0, € Ij.

But the radical offij is (i, 0j), so thatgo = 0. Letl = mim <k <y, {gx # 0}. Then,
clearing denominators, we can find polynomigls. .., f,,; notinvolving the variables
di,0j, fi #0, such that

Vij—

Al 1
0,‘(fl‘|‘""|‘fv,-ja,' )611]

Now, since/;; is primary to(d;, d;), and no power off; +--- + f,,; 6;""_1 belongs to
(0;, 05), then 6? must belong tol;;. Sincel/<v;;, we are done. [J

It is an interesting fact that the multiplicities of some of the components @d not
go down under Grébner deformation. Givene Z", and f = ) f,x* a homogeneous
polynomial inC[0d4, ..., d,], let

N, (f) = > fax”

w-o maximal over f, 70

and define

iny (1) = (iny(f): fel\{0}).

The ideal in, (1) is called theinitial ideal of I with respect to the weight vectaw.
It is a monomial ideal ifw is generic (se¢4] and[6, Chapter 15]for more on initial
ideals, especially how to compute them).

Lemma 4.5. Let by and b; be two linearly dependent rows @& lying in opposite
open quadrants ofZ2. If w is a generic weight vectprthen the multiplicity of the
ideal (0x, 0;) as an associated prime afi (/) is the indexvy;.

This proof was suggested to us by Ezra Miller, to whom we are very grateful.

Proof. Recall that the initial variety o¥’(1) is the flat limit of a family that is obtained
by a one parameter subgroup of the torus acting on the zerd (¢t The monomial
components ofY(I) are invariant under this action, so in the limit, the only way that
the multiplicity of (0;, ;) could go up is if this prime is associated to,itVz). Now,

if b andb; are linearly dependentgy, ;) is not associated to (1), this follows
from the same arguments that provi@®d, Lemma 2.3] O
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5. A-hypergeometric solutions of the Horn system

In this section we study the solutions of the Horn system HBtr) that arise
from the A-hypergeometric systerii, (A -¢). Here, we do not use the assumption that
m = 2. Recall thatB = (b;;) is an rankm integern x m matrix whose rows add up
to zero, and whose columns are denotél, ..., »"™ and letA = (a;;) be any rank
(n —m) integer (n —m) x n matrix such thatA - 5 = 0. Here we assume that> m.

Consider the surjective map

xB (CH" — (CH™,

n

n

b; b; @ (m)

X = l_[xj’l,...,l_[xj’m =P, X,
Jj=1

j=1
This map is open in the sense that it takes open sets to open sets. We use it to relate the
operatorsT; in n variables and the operator in m variables, defined in Sectioh

Lemma 5.1. Let U € (C*)" be a simply connected open set and let= xB).
We choose U small enough so that V is also simply connected. Given a holomorphic
functiony € O(V), call ¢ = xY(xB). Then

0] (Z;=laijj8xj)(¢) =(A-op, fork=1,....,n—m.
(i) Ti(p)=0fori=1,...,mif and only if H;(}y) =0 fori =1,...,m.
(iii) Moreover for anyu =5 -z € L, and

uj—l \ujl—l
Ho= ] [T@®i-0,+ci=0D—=y[] [] @i 0y+¢;=D.
u;j>0 1=0 uj<0 1=0

we haveT, (¢) = 0 if and only if H,() = 0.

Proof. The verifications of the three assertions are very similar. The main ingredients
are the following identities:

Hxixc = xc(ex,- +¢i) (In Dy), (7)
0, (W (B () = [ - 0,)9](xP), ®)

which are easily checked. Let us prov#).(Call T; = ]_[bji>0xj.7ﬁTi. We have

= T T1 oo [T T a2 ®

bji>0 bji>0 bji<0 bji<0
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Recall that(x®); = [}_ 1x . Using the identity

oca - 1_[ 1—[ (9)(/ - ’
j=11=0
Eq. Q) is transformed into
,bﬂ
=[] H O, =D =5 [T ] (ex, -
b;ji>0 =0 bji<0 [=0
Using (7),
Ti(@) = T,(x“Y(xP))
:xc( [T +ci—=0-c5i [T ] (exj+c,—l))(xp(x3)).
1=0 bji<0 =0
Now (8) implies that
bji—1
Ti(p) = xf( [1®- 0500 +¢; =D
=0
—bji—1
~«5 T T1 (b,--ey(w>+c,»—z>)(x8)
bji<0 1=0
= x“H;()((xP) .

This shows thatfl-(q)) is identically zero if and only iin(lﬁ)(xB) =0 forall x e U.
This is equivalent toH; () vanishing identically onV. Since7;¢ = 0 if and only if
T; = 0, we obtain the desired result]

Parts () and (i) of Lemmab.1 have the following consequence.

Corollary 5.2. The map

Holomorphic solutions of N Holomorphic solutions of
Hormn(B,c) on V Hp(c) on U

Yo xY B

is a vector space isomorphisrhat takes Puiseux polynomials to Puiseux polynomials.
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Finally, we can use the solutions &f4(A - ¢) to construct solutions ofiz(c) (and
thus of Horn(B, ¢)). We refer to[25, Section 3]for background on the canonical
series solutions of thei-hypergeometric systems introduced by Gel'fand, Kapranov
and Zelevinsky. In the case wheris generic, these canonical series solutions are fully
supported logarithm-free series.

Theorem 5.3. Given a generic parameter vectet and a canonical basig¢* : k =
1,...,vol(A)} for the space of solutions of th&-hypergeometric systerfis (A - ¢),
there exist linearly independerfully supported solutions with disjoint supports

Wrhk=1...,vol(A),1=1,...,¢g)

of Horn(B, ¢) such that

8
¢ =x Y Y B)  forall k=1,... vol(A).

=1

Moreover no (nontrivial) linear combination of the function&f‘ is ever a Puiseux
polynomial. This natural decomposition holds as well for canonical series solutions
with logarithms.

Proof. By [24, Proposition 5.2][25, Section 2.5] a canonical series solutio of
the A-hypergeometric systemii4 (A - ¢) is of the form

d) =x" Z ;Ltt,vxu IOg(xv)» (10)

with A- o= A-c, andv,u € L = kerz(A). We show that¢ can be decomposed as
a sum ofg solutionsy, ..., ¥, of Hg(c) such that, ify;, Y, are nonzero, then they
have disjoint supports. Observe thatuifv € L, then

((A 0);,— (A0 j)(x"“ Iog(x”)) -0, and (11)
0; (x”"'“ |Og(x”)> = (u+a); x"T* % log(xV) 4+ vx"tTee, (12)

Consider the latticd.g € 7" generated by the columns &, and its saturatiorl. =
kerz(A), generated by the columns of a Gale dualof A (that is, the columns of
B form a Z-basis for the integer kernel of). Let {u; : 1 =1,..., g} be a system of
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representatives foL/Lg. Define

W, = x* Z Jupx"log(x?).

u=u; mod L

Clearly, ¢ = 1 +--- + y,, and the summands have pairwise disjoint support. By
(11), eachy, is a solution of the system of homogeneitie$- 0 — A - ¢). Now we
need to check that eaal, is a solution of the binomial operatofd, ..., T, given

) )
by the columns ofB3. ConsiderT; = 6h+j — 6}’1 . Certainly Tj¢ = 0. We apply the
operator7; to ¢ = 1 +--- +,, and observe that terms coming frofy applied

() )
to Y, cannot cancel with terms coming fro@l* nor from o° applied toy,, if
)
I #1'. This is because the exponents of the monomials appearir(@bih)(w,), for

instance, ardaif)-translates of the exponents of the monomials frgmby (12), and
bﬁr’) —b¥ e L. The lack of cancellation now follows from the fact that the supports
of ¥, andy,, are not congruent modulf by construction.

Now, if we have a canonical bas{$>", k=1,...,vol(A)} for the space of solutions
of Ha(A - ¢) for genericc € C, they are of the form

d)k:xcxk Z ;Lu,vxu’

ueLNCy

for different exponentsy, with respect to a generic weight vector, andanging over all
lattice points in a full-dimensional pointed codg. Note that since is generic, no pair
of the exponents;, can differ by an integer vector. Decompose egéh= ¢3+: -+

as above. Note that albf‘ are nonzero; in fact, the convex hull of all the supports
is full dimensional. Moreover, the coIIectiod;f, k=1 ...,vol(Ad),l=1,...,¢gis
linearly independent since the supports are disjoint. By Lerﬁmaeachqﬁf is of the
form x“y¥ (xB), wherey/ is a solution of Horri3, ¢). Clearly, no (nontrivial) linear
combination of the functionﬂ/f is ever a Puiseux polynomial; in particular, they are
linearly independent. [J

6. Puiseux polynomial solutions of the Horn system and solutions to
hypergeometric recurrences with finite support

Throughout this section we assume that= 2. Denote by rank(J) the dimension
of the space of Puiseux polynomial solutions obaideal J.

The first step to compute the dimension of the space of Puiseux polynomial solutions
of Horn(B, ¢) is to observe that such a solution gives rise to a solution of a certain
system of difference equations. A monomial multiple of a Laurent s@rigs,» a(u)y",
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say y’ Y ,ezm a(u)y", is a solution of HorriB, ¢) if and only if its coefficientsa(u)
satisfy the recursions

au+e)Qiu+y+te)=awPiu+y, i=1....m (13)

By the support of a solution(u) to (13) we mean the s« : a(u) # 0}. The following
proposition is a consequence of Proposition J2a].

Proposition 6.1. Puiseux polynomial solutions ¢forn (5, ¢) are in one-to-one corre-
spondence with solutions {d3) with finite support.

Let B[i, j]1 be the square submatrix & whose rows aré; andb;, and letc[i, j]
be the vector inC2 whose coordinates awe and cj. We now reduce the computation
of the dimension of the space of Puiseux polynomial solutions to Héyrn) to the
case whenB is a 2x 2 matrix.

Lemma 6.2. For a generic parameter vector, ¢

rank,(Horn (B, ¢)) = Zrankp(Horn (Bli, j1, cli, j1)).

i<j

Proof. We call the supportS of a solution of Horn(13, ¢) irreducible if there exists
no other solution whose support is a proper nonempty subset. dfet f(y) be a
series solution to Hor(3, ¢) with irreducible supportS and letsg € S. It follows by
Theorem 1.3 in[23] that if the monomialy®® is not present in the serieg(y) then
for no s € § can y® be present inf(y). This implies that irreducible supports are
disjoint. Indeed, ifS1 and S, are irreducible andg € S1 NS> then there exist solutions
f1 (respectivelyf2) of Horn (B3, ¢) supported inSy (respectivelySz) such thatfs — f2
does not containy®. But then, sincey*® does not appear iffy — f2, no monomial in
S» can appear inf1 — f2, and henceS;\S> supports a solution of HontBB, ¢). This
contradicts the fact thaf; was irreducible.

Any Puiseux polynomial solution of Hori$, ¢) can be written as a linear combina-
tion of polynomial solutions with irreducible supports. Since Puiseux polynomials with
disjoint supports are linearly independent, it is sufficient to count irreducible supports
in order to determine rank(Horn(B, ¢)).

Remember that the equations of the Horn system translate into recurrence rela-
tions (L3) for the coefficients of any of its power series solutions. We refd28)} for
a detailed study of these recurrences. They imply that any coefficient in a solution of a
Horn system is given by a nonzero multiple of any of its adjacent coefficients, as long
as none of the polynomialB;, Q; vanish at the corresponding exponent. This yields
that the support of a solution must be “bounded” by the zeros of these polynomials
in the following sense. The exponent of a monomial in a solution must lie in the zero
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locus of at least one of the polynomials, Q;, provided that some of the adjacent
exponents are not present in the polynomial solution (28e Theorem 1.3]

Let S be the support of a Puiseux solution of HoB) ¢). If S is irreducible, then for
a generic vector the setS cannot meet more than two lines of the fobn0,+c; —1 =
0 corresponding to different parameters If it only meets one such line then by
Theorem 1.3 in[23] the setS cannot be finite (in fact, its convex hull is a half-plane
in this case). IfS meets two lines of the above form then all the other lines can be
removed from the picture without affecting the supports (but not the coefficients) of
the Puiseux polynomial solutions which are generated by this specific pair of lines.
This implies the desired result.]

Now our goal is to compute rankHorn(B[i, j1, c[i, j1)). The first step is to elim-
inate the cases when this rank is zero.

Lemma 6.3. The systenHorn (B[, j], c[i, j]) has nonzero Puiseux polynomial solu-
tions only ifb; and b; are linearly independent in opposite open quadranti%f or
for some special values of, c; whenb;, b; are linearly dependent and opposite. The
corresponding Puiseux polynomial solutions ig;; j1(cli, j1) are Taylor polynomials
that is polynomials with natural number exponents.

Proof. Corollary 5.2 gives a vector space isomorphism between the solution spaces of
the hypergeometric systems Hai(i, j], c[i, j]) and Hpgy; jj(cli, j]) that takes Puiseux
polynomials to Puiseux polynomials. Thus it is enough to investigate the Puiseux poly-
nomial solutions ofHpy; ;1(cli, j1). If b; andb; do not lie in the interior of opposite
open quadrants, one of the operatorsdp; ji(c[i, j]) is of the formd” — 1 for some
« € N2. It is clear that such an operator cannot have a Puiseux polynomial solution.
Now assume thab; and b; lie in the interior of opposite quadrants. Let us prove
the statement about Taylor polynomials. We may without loss of generality assume that
bi1 > 0. If bj2 < 0, then the change of variablés = y1, y» = 1/, transforms Horn
(Bli, j1, cli, j]1)) into a Horn system given by a 2 2 matrix whose first row lies in
the first open quadrant af?. Thus we may assume thati, b;» > 0, and consequently
bj1,bj2 <0, sinceb; andb; lie in opposite open quadrants.
In this case

Higgi,jy(cli j1) = (6 — ;7 a2 — 0777,

and this is an ideal in the Weyl algebra with generatqtsx;, 0;,0;.

Let us show that any Puiseux polynomial solutighof Hpgy; j1(c[i, j1) with ir-
reducible support is actually a Taylor polynomial. This will imply the statement of
the lemma. Choos€ug, vg) € supp(f) such that Rag = minfReu : (u,v) €
supp(f)\N?}. Then(@f"l - O;bjl)f contains the monomia&f“’bilx’fo with a nonzero
coefficient unlessg is a natural number strictly less thén. In this casepg ¢ N. Now,
since all the elements of supp) differ by integer vectors, and the real partf is
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minimal, we have thai € N for all (x, v) € supp(f)\N2. Now pick («1, v1) such that
the real part ofv1 is minimal, and conclude that, eitheg is a natural number strictly
less thanb;; or xl.“lx;l_b’l appears with nonzero coefficient i@’"* — 6;b"1)f = 0.
But now v € N for all (u, v) € supp(f)\N?. We conclude that supg’) c N.

Finally, let us show that ifs; and b; are linearly dependent, then the system
Horn(B[i, j1, c[i, j]) has only the identically zero solution, as long @ss generic.
Using the change of variableg = yi/b"l, &= yzl/b"z, we transform the operata; -0,
to the operatoi;, + 0:,. By Lemmall.4 (to be proved in Sectioil) there exists
a nonzero polynomial irv1, y2 which lies in the ideal HorB[i, j1, c[i, j]). Thus the
only holomorphic solution to the system is the zero functionl

Example 6.4. Let us construct the Puiseux polynomial solutions to the system of equa-
tions Horn(B, 0), where
4 5
s-(42)

The systemHp(0) is defined by the operators

A »®
- M (14)
ﬁxf 6x2 6xf 6x25

Note that we may use the parameter 0 without loss of generality. The solutions of
Hp(c) are exactly the same as those Bj(0), and in the case of HoriB, ¢), the
only effect is a translation of the supports of the solutions.

The supports of the polynomial solutions tb4) are displayed in Figl. Two ex-
ponents are connected if the corresponding monomials are contained in a polynomial
solution with irreducible support. Note that in order to obtain these supports, we just
connected the (empty) circles inside a certain rectangle to other integer points using
the moves given by the columns &%

The polynomial solutions told) are given by

1 xi. % x5 xa. xixa, xfxa. xixa, x5, xwxd, xixd, xixd,

xf 43, xfxa+ x5, 5xfad 4 26D + 25 + 40xx3.

Now let us unravel our isomorphism of solution spaces to obtain the corresponding
solutions of HornB, 0). As in the proof of the previous lemma, # = >y, »* is
a Puiseux polynomial solution of Hoti8, 0), and, # 0, then(}) = B-a € N2,
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Fig. 1. The supports of the 15 polynomial solutions fiaf)(

But then

a=B"1. (Z) = <_3/é _4/&:3L> ' (Z)

This implies thatos is a natural number, and, € (—1/5N. Moreover B - o>0.
Thus, in order to find the irreducible supports of the Puiseux polynomial solutions of
Horn(B, 0), we need to draw the regiof - « >0, plot the pointsx € N x (—1/5)N,

and connect those points with horizontal and vertical moves. This is done in2Fig.
The solid points belong to the supports of Puiseux polynomials, and the empty circles
and dotted lines correspond to fully supported solutions. Thus the polynomial solutions
to Horn(B3, 0) are as follows:

—3/5 —6/5 —9/5 —4/5 —7/5 -2 —13/5
1 yiy, 8/ . y2y, 1/1/5 ¥y, /14,5 iy, ! 1,7/5yfy2 / » Syfyg , {%ﬁz /5
yay, o0 3y T A S B SIS Ay S 43y 1S

—16, — 5 — _ _ _
Yoy, Ty YO BBy 25y S 4 2y5y o4 40y S,

We are now ready to compute rapiorn (B[i, j1, c[i, j1)).

Lemma 6.5. The dimension of the space of Puiseux polynomial solutions of the hyper-
geometric systerilorn (B[, j1, c[i, j1) equalsy;; if the vectorsh; and b; are linearly
independent and lie in opposite open quadrantsZéf

Proof. Suppose that; and b; are linearly independent and lie in opposite open
quadrants ofZ?. As in Lemma6.3 we may assume tha; lies in the interior of
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Fig. 2. The supports of the 15 Puiseux polynomial solutions to KBr®) in Example 6.4

the first quadrant (so that; lies in the interior of the third). By Corollarg.2, it is
sufficient to compute the number of Puiseux polynomial solutiongZgf; ;(cli, j1).
Introduce vectors:,  as follows:

y— { (bi1, bj1) ?f [bi1bj2] > |bi2bj1l,
(=bj1, =bj1) if |birbj2| < |bi2bj1l,

5o (=biz, =bj2) i bitbj2| > |bizbjal,
(bi2, bj2) if 1birbj2| < |bizbjil.

Furthermore, denote bR the set of points

— { (. v) € N2 1w < big, v < =bj1) if |bibjal > [bizbjal,
{,v) € N? 1w < bjn, v < —bja} if |biabjal < |bizbjal,

and call it thebase rectangleof Hpg; ;1(c[i, j1). By a path connecting two points
a,a € N° we mean a sequence, ...,a; € N? such thatay = a, ax = a and

the differencea;11 — a; is one of the vectors, —a, B, —f. We say that a path is
increasingif the differences are always one af 5, and that the path islecreasing

if the differences are always one efx, —f. We say that a point if\? is connected
with infinity if it can be connected with another point W2 which is arbitrarily far

removed from the origin.

Since the equations definingp; jj(cli, j1) can be transformed into recurrence re-
lations for the coefficients of a polynomial solution to this system, it follows that two
points can be connected by a path if and only if the monomials whose exponents are
these points appear simultaneously in a polynomial solutiolgf ; (c[i, j]) that has
irreducible support. Note that if a point iN? is connected with infinity, then the cor-
responding monomial cannot be present in any polynomial solutialgf ;;(c[i, j1).
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Our next observation is that there are no nonconstant increasing paths starting at
a point of the base rectangle. This can be verified by direct check of all possible
relations betweenb;1b;z|, |bi2||bj1l, bi1, bi2, bj1, bj2: choosing the signs of the
differences|b;1b;2| — |bi2llbj1l, bi1 — bi2, bj1 — bj2, we verify this claim in each of
the eight possible situations. It follows from this that no two different points in the
base rectangle can be connected by a path, and that no such point is connected with
infinity. Thus, any point inN? is either connected with a unique point in the base
rectangle, or it is connected with infinity. This shows that the number of polynomial
solutions of Hpy; ji(cli, j1) equals the number of lattice points iR, that is, v;; =
min(|b;1b;2|, |bizbj1]). O

Combining Lemma$.2 and 6.5, we obtain a formula for the dimension of the space
of Puiseux polynomial solutions of Ho(, c).

Theorem 6.6. For a generic parametet,

rank,(Horn(B, ¢)) = Z Vij

where the sum runs over pairs of rows and »; of B that are linearly independent
and lie in opposite open quadrants @f.

7. Solutions of hypergeometric systems arising from lattices

In this section we consider, fgf = A - ¢, the lattice hypergeometric systefg +
(A -0 — p). This D-ideal is holonomic for allf € C“, since its fake characteristic
ideal, that is, the ideal generated by the principal symbols of the generatafg of
and (A - 0 — B), has dimensiom. In order to compute the holonomic rank of these
systems, we need to look at the solutions of the hypergeometric systems arising from
the primary components afg.

Let p be a partial character af/L;, and letl, be as in Sectiod. Define H,(A-c) =
I,+(A-0—A-p). In particular, sincep is the trivial character, (A-c) = Ha(A-c).

Lemma 7.1. For p, p’ € Gp, the group of partial characters of/Lg, the D-modules
H,(p) and H, () are isomorphic.

Proof. It is enough to consider the case wheh= p,, so thatl, = I, = I4. Given
any partial charactep : L — C*, let p, be any point inX, all of whose coordinates
are nonzero. We define the map: D — D by setting

T (Z x“@ﬁ) = sz_ﬁx”'@ﬁ.
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It is straightforward to check that, defines an endomorphism @, which is clearly
an isomorphism. It is also easily checked thgt/,) = I,, and t1,((A - 0 — f)) =
(A-0—p), so thatt,(Hs(B)) = Hy(f) and the D-modulesD/H,(f) and D/H,(f)
are isomorphic. [

Corollary 7.2. If p € Gg, the D-module D/H,(A - ¢) is regular holonomic for all
ceC".

Proof. Hotta has shown (sefl7]) that D/H4(A - ¢) is regular holonomic for all
parametersc € C", since the condition that the sum of the rows Bfequals zero
implies that the vectox1,1,...,1) € 7" belongs to the row-span od. Now apply
Lemma7.1 O

We have shown that the hypergeometric systems arising from the primary components
of the lattice ideallz are regular holonomic for all parameters. This implies that the
solutions of these systems belong to the Nilsson das€hapter 6.4]We will show
that the solutions of the hypergeometric systém+ (A - 0 — ) satisfy the same
properties.

Recall that/z = NyeG1p, WhereGp is the orderg group of partial characters, with
corresponding idealg,. For any 7 € G, we denote byl 7 the intersectiom,c 7 1,.

We first need the following result.

Proposition 7.3. Let w € N"*\{0}. For generic 5, the map
D/(Ug+{A-0—f—A-w) — D)y +(A-0—P)),

given by right multiplication by"”, is an isomorphism of left D-modules.

Proof. It is sufficient to consider the case when = ¢;, so that our map is right
multiplication by ¢;. In order to use the exact argument of the proof28, Theorem
4.5.10] (the analogous result foA-hypergeometric systems), we need to show that
there exists a nonzero parametbidunction (se€25, Section 4.4 that is, we need to
prove that the following elimination ideal in the polynomial rifigjs1, ..., sq] = C[s]:

(DIs1 17+ (A-0—s)+ D[s] (0;)) N Cls]

is nonzero, wheré[s] is the parametric Weyl algebra. In order to do this, we first go
through an intermediate step:

(D[s] 17+ (A-0—s)+ D[s] (0;)) N C[0, 5]
2 (DIs1Up + (0:) + (A - 0 —s5)) N C[0, 5]
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= (DIs1(in _¢;(Ig + (0:))) + (A - 0 — 5)) N C[0, 5]
=N (ere;,0 (I8 + (A -0 —5)) N C[O, 5]

2 ([0, : 0" €in_,IB)) + (0i) + (A- 0 —s)

2 ([0g « : 0" €in_g,(1a) + (0:) + (A -0 —s).

Here [0], = [Ti-1 n;‘igl(ek —[). The first containment holds becauge < 7. The
next equality is true since

Ig + (0i) =in _¢, (Ip) + (0i).

The equality in the third line holds by the proof [#5, Theorem 3.1.3]which applies
here sincelz is homogeneous with respect to the multi-grading given by the columns
of A. The next inclusion is easy to check, given that, for a monoa@iiak“d" = [0],.

The last containment follows from the fact thatu € Lg for all u € kerz(A). Now if

we prove that

({101 = 0" €in ¢, (1)) + (0:) + (A - 0 —s5)) N Cls]

is nonzero, we will be done. But this is a commutative elimination, so all we need to do
is show that the projection of the zero set(ff], , : " €in —e; (TA))+(0i)+(A-0—5)
onto thes-variables is not surjective.

Observe that the projection dff], : 8" € in_,,(I4)) + (0;) + (A - 0 — s) onto the
s-variables is not surjective (bj25, Corollary 4.5.9). This projection is clearly the
union of affine spaces of different dimensions. But then the projection that we want is
not surjective, since it is obtained from this one by adding translates of some of the
affine spaces appearing in it. This concludes the proDf.

Theorem 7.4. For generic 5, any solution f of/7 + (A - 0 — ) can be written as a
linear combination

f=Y I

ped

where f,, is a solution of/, 4 (A -0 — f). In particular, the solutions offz + (A -0— )
are linear combinations of the solutions of the systdmsg- (A - 0 — ), for p € Gp.

Proof. We proceed by induction on the cardinality ¢f, the base case being trivial.
Assume that our conclusion is valid for subsets(§ of cardinality r — 1>1, pick
J C Gp of cardinalityr and fix p € J.
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Let P be an element of 7, such thatP ¢ I,. Since all of the ideald;, t € G,
are homogeneous with respect to the multi-grading giverdbywe may assume that
P is homogeneous, and write

@ (p=1)
P=010" 44yl +0",
where s, ..., p-1eCandA-u® =A.u@...=A.4P~D = A.w. Note that the
polynomial
(1) \ (p=1) — -
=10"" - 4 Ap1d” — ap@® —w) + -+ dp_1p? D _ e

is an element of the ideal,, since this ideal is generated by all binomials of the
form & — p(oc— 18", where A - o = A - 7. To simplify the notation, set-/ to be the
coefficient of 0" in P, that is,

J=l1p® —w)+ -+ /l,,_lp(u(p_l) —w).

Now let f be a solution of/7 + (A -0 — f5), and consider the functio® f. For any
Q € I7\(p), we have QP € I7. This implies thatQP f = 0. Furthermore, noting
that P is A-homogeneous of multi-degre¢ - w, we conclude thatP f is a solution
of Iy\(py +(A-0—p—A-w). Sincef is generic, so isf + A - w, and by the
inductive hypothesis we can writ f = ZTEJ\{[)} g:, Where eachg; is a solution of
+(A-0-B—A-w).
By Proposition7.3, ¢ induces an isomorphism between the solution spaces of
(A-0—pyand I, +{(A-0—p— A-w), so that we can find a solutiog, of
(A-0—p) such thato” g, = g.. Now

I +
I +
Pg. = 2/1 Vg — 20"
p_ .
= Z/l,-r(u(’) —w)— 2| g

The last equality holds becauge is a solution off;, and therefore"" —t(u® —w)d"
annihilates it, yleldlnga gT = ‘z:(u(z) —w)0" g = 1w — w)g:.

Note that the coefﬁuen[” 2it(u® —w) — 2 is nonzero, for otherwise we could
rewrite P using the sum mstead df, and conclude thaP € I,. But we knowP € I,

so P — P € I, a contradiction since this is a nonzero muItlpIe&ng and the ideall;
contains no monomials. (The fact th&t— P = 0 follows from P ¢ Ipand P & 1,.)
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, 1
Finally define f; = (Zf 11 2it(u® — w) —/1) g:, so that f; is a solution of

I. +(A-0—p) and )

P Z fr= Z grzﬁf.

e J\{p} e J\{p}

If h=f—.cr\p fo thenh is a solution of/7 + (A -0 — f) that satisfiesPh = 0.
Now considerPh. Since P € 17y, Ph is a solution ofl, +(A-0—f—A-w), and a
similar argument as before yields a solutign of 1, +(A-0— ) such thatPh = Pf,.
Leth=h— f,, sothatf =3 f:+ f, +h and Ph = 0. But Ph = Ph— Pf, =0
since P € I,.

Now Ph = Ph = 0 implies (P — P)h = 0, so thatd”h = 0, because? — P is a
nonzero multiple of”. But then/ is a solution ofl 7+ (A-0—f) that is mapped under
0" to the zero element in the solution spacelgf+ (A -0 — f— A -w), which, using
the genericity off and Propositior?.3, implies thatz = 0. Thus we have obtained an
expression forf as a linear combination of solutions of the systems- (A - 0 — f),

Tt € J, and the proof of the inductive step is finished]

Considering7 = G, we deduce that all solutions d/(Ig+ (A - 60— f3)) split as a
sum of solutions for eactf,, yielding a kind of converse to Theore3. We remark
that this result is not true without the genericity assumptionfprsince for certain
parameters (for instance fgt = 0, where the constant function 1 is a solution), the
solutions to the different ideal&, () are not linearly independent.

Corollary 7.5. Suppose tha3 has zero column sumand € C? is generic. Then
rank(Ig + (A - 0 — )) <g - vol (A).

Proof. Under these hypotheses, the solutiondgfare linear combinations of solutions
of the g systemsl, + (A - 0 — f8), by the previous theorem. Each of these systems has
rank vol(A). O

8. Holonomicity and solutions of the Horn systemHz(c)

In this section we assume that= 2. Our goal is to investigate both the holonomicity
of Hg(c) and to find out the form of its solutions. First let us show ti#&t(c) is
holonomic for generic.

Theorem 8.1. Let m = 2 and ¢ generic parameter vector. Thekg(c) is holonomic.

Proof. Write I = (8"*—¢"~, 8"* —0""), whereu andv are the columns oB. Consider
first the case whem8 has no linearly dependent rows in opposite open quadrants of
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72. Then the ring

Clx1, ..., xn, 22, -+, 2a]
(i — 2o, 2 =)+ (Y aixjzi i =1 on—m)

has dimensiom (see Lemmadl2.1). Since the polynomial ring modulo the characteristic
ideal of Hi(c) is a subring of this one, we conclude thdi(c) is holonomicfor all
ceCm.

Now assume thaB3 has linearly dependent rows, b; in opposite open quadrants
of 7% In this case, the ideak!+ — /-, z — z%-) + (X aijxjzj 1 j=1,....,n —m)
will have a lower-dimensional component corresponding to the vanishing afd z;,
by the results in Sectiod about primary decomposition of codimension 2 lattice basis
ideals.

To ensure holonomicity of(c), we will construct, for each paib;, b; of linearly
dependent rows oB in opposite open quadrants @f, an element of the ideatiz(c)
that contains na;, x;, 0;, 0;, and that, for generie, is nonzero. The principal symbol
of this element will therefore not depend enor z;.

To simplify the notation, assumk and b, are linearly dependent in opposite open
quadrants ofZ?. Then the complementary square submatrixdofias determinant zero,
so that, by performing row and column operations, we can find € Q, r € C, such
that p 01 + g 02 — r lies in Hg(c). The numbers andg are rational combinations of
some of the elements; of the matrix A, the number- is a linear combination of the
coordinates of the vectat.

Also, sinceb; andb, are linearly dependent, we can find a nonzero elemeatLp
such thatwi = wo = 0. Then we can find two monomiats;, mo in C[d] with disjoint
supports, that are not divisible by eithér or d, such that&liml(aw+ —0"") el for

somek > 0 and&lzmz(aw+ —0"") e I for somel > 0. This follows from the arguments
that proved Propositiod.4. Call u = m1(0"* — 0"") and i = m2(0"" — 0"~). Note
that i, 2 do not depend oid1, d2. Then, usingx’l‘ali =01(01—-1)---(01—k+1) = [01]k
we see thaf61],u € Hg(c). Similarly, [02];4 € Hg(c).

Consider the left ideal in the Weyl algebra generated by

p 01+ q 02 —r, [01]kp, [02]; 4.

This ideal is contained {5 (c). Now note that)y, 02, A and i are pairwise commuting
elements ofD,. This means that we can think &p 01 + g 02 — r, [01]k 1, [021;4) as
an ideal inC[01, 02, 03, ..., 0,], which is a commutative subring ab,. We will go
one step further and think of also as an indeterminate, which commutes viith 0,
03, ..., 0.

Finding the element of{z(c) that we want has now been reduced to eliminatiag
and 0, from

(pO1+q 02—, [011kp, [020;4) C C[01, 02, 03, ..., On, 1] (15)
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Since the geometric counterpart of elimination is projection, in order to check that the
elimination ideal

(p 01+ q 02 —r, [01]kp, [021:2) N CIA, p, 1]

is nonzero, we need to show that there exist complex numbegrs., d, andr such
that, for all values off1, 02 € C, the tuple(64, 02, 03, ..., 0,, r) is not a solution of
(15). If (03, ..., 0,) is generic, the polynomialg and A evaluated at that point will
be nonzero. Thus, in order f¢01]; 1 to vanish,01 must be an integer between 0 and
k. Analogously,f, must be an integer between 0 ahdBut then, for most values of
r, pO1+ q 02 — r is nonzero. Thus, the projection of the zero set Df)(onto the
ds, ..., Oy, r coordinates is not surjective. This implies tha6) contains an element
P that does not depend ofy or 6». Note thatP does depend (polynomially) on,
which is itself a linear combination of the coordinates «ofThus, for genericc, P
will be nonzero. NowP is also an element of the ide&z(c), that does not depend
on x1, x2, 01, d2, and is nonzero for generic O

Example 8.2. Consider the matrix

ORrNR
|
[N NN )

To prove thatHg(c) is holonomic for generie, we need to find an element éfz(c)
whose principal symbol does not vanish if we set= z> = 0. To find this element,

we follow the procedure outlined in the proof of the previous theorem. The first thing
we need is an element dfg with its first two coordinates equal to zero. The vector
(0,0, -1, 1) works. It is easy to check thaﬁag(ag — 04) and 63(83 — 04) are both
elements of the lattice basis idealWe can also assume th@, 1, 0, 0) is a row of the
matrix A. Now what remains is to eliminat&, and 0, from the C[01, 02, 03, 04, r]-
ideal:

(0101 — 1)05(03 — 04), 02(02 — 1)(02 — 2)(02 — 3)(33 — 04), 201 + 02 — ),

where r = 2¢1 + ¢2. We perform the elimination on a computer algebra system to
obtain the following element otg(c):

5
(H(zcl +e2— i)) 05(03 — 0a),

i=0
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whose principal symbol
5
. 2
(H(ch +co — z)) 253(23 — z4)
i=0
does not vanish along; = z> = 0 for genericc.

Our goal now is to characterize all the solutions of the Horn systégic) for
genericc. The first step is the following result.

Lemma 8.3. Let o be as in Propositiord.4. For generic ¢ the sequence

D -0 D n D
0 (I+{A-0—A-(c+n))) Hp(c) (I+(0")+(A-0—A-c)) — 0. (16)

where rt is the natural projectionis exact.

Proof. The only part of exactness that is not clear is that right multiplicationoby
is injective (it is well defined sincé”Iz < I). To see this, consider the following
commutative diagram:

0 D/(Is+(A-0—A-(c+a))) 2o DJ(Is+ (A-0— A-)) — 0

.aQ

D/Hg(c)

where the vertical arrow is the natural inclusion. The upper row of the diagram is
exact by TheorenY.3, sincec is generic. But then the commutativity implies that the
diagonal arrow is injective. [

Lemma 8.4. Letu, v € N" such that(d", ") is a complete intersection. If ¢ is generic
then

",y +(A-0—A-¢)

is a holonomic system of differential equations, whose solution space has a basis of
Puiseux monomials.
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Proof. It is enough to show that the system
(x“0", x""Y +(A-0—A-c)

satisfies the desired properties sinceand x? are units inC(x).
Now

(x“0", x0"Y+(A-0—A-¢) = ([0, [0],) +(A-0—A-c)=D-F,

where
n up—1
0. =T [T -0,
k=1 =0
and

F = (0], [0],) +(A-0—A-c) c C[O].

This means thaD - F is a Frobenius ideal (sg@5, Section 2.3] By [25, Proposition
2.3.6, Theorem 2.3.11Jf we can show thatF' is artinian and radical, it will follow
that D - F is holonomic, with solution space spanned {ay : p € V(F)}, whereV(F)
is the zero set of the ideal' € C[0], and we will be done.

To show thatF is artinian and radical, we proceed as [@b, Theorem 3.2.10]
Let p € V(F). Then there exist £&i < j<n such thatp; and p; are nonnegative
integers between zero and njax v;}, maxu;, v;}, respectively. This follows from
[01.(p) = [0lv(p) = 0 and the fact that: and v have disjoint supports, because
(0", 0"y is a complete intersection. Sineeis generic, the minor ofA complementary
to {i, j} must be nonzero (otherwise the equatidhs= p;, 0; = p; andA-0=A ¢
would be incompatible). Hence itdh and jth coordinates determing uniquely in
V(F). O

Remark 8.5. If all maximal minors of A are nonzero, the above lemma holds without
restriction onc.

AV—

Theorem 8.6. Write I = (6"* — ¢"~, 0"t — 0""), whereu and v are the columns of
B. Let 8" be a monomial satisfying

o >0=u; >0. a7)

Then for genericc, the D-ideal I + (6*)+ (A-0— A -¢) has only Puiseux polynomial
solutions.
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Proof. We proceed by induction ofx| = a1+- - - 40, the length ofx. If |o| < min{u; :
u; > 0}, in particular, if || = 1 (recall that|u| = 0), thend” divides 6"+, so that all
solutions of I + (0*) +(A-0 — A -¢) are solutions ofd*, 8“~) +(A-0 — A-¢). But the
latter ideal has only Puiseux polynomial solutions by Len®n sincec is generic.

Assume now that our result is true for lengthand let « be of lengths + 1
satisfying (7). Choosei such thaty; > 0 (and sou; > 0), and lety be a solution of
[+(3")+(A-0—A-c). The functiond; ¢ is a solution ofl + (6" “)+(A-0—A-c—A-e;).
But |o —e;| = s andc+e¢; is still generic, so the inductive hypothesis implies thap
is a Puiseux polynomial. Write

Zg(o)xz + Zg(b ptl Zg(t) yt+l,

where thEg(k) are Puiseux polynomials, constant with respectrxtpr is a natural

number, anduq, ..., 4, € C are nonintegers with noninteger pairwise differences. Then
No xH—l Ny xyl—&-l—&-l xu,+l+l
0) *i @ _4
= + — S+ _—
AP PL i s R DL ey B Eogl Wi+ 1 (18)

FG (X1 oy Xty ooy Xn).

If we prove thatG is a Puiseux polynomial, it will follow that so i®, and the proof
will be finished. We know thatp is a solution of(A - § — A - ¢). By construction, so
is ¢ — G. ThenG is a solution of(A-0 — A - ¢). Recall thatd;G = 0.

We also know that"* ¢ = 0"~ ¢. We want to compare the coefficients of the integer
powers ofx; in the expressions we obtain by applyidg™ and 6"~ to (18). Since we

are only looking at the integer powers gf, we need only look aEZ 0,g,o)(xfrl/(lJr
D)+G.

No
<Z g<°>l +1 G) =3 10D+ 2w @O (19)
=0

Note that there is n@ in the above expression, sinéeG = 0 andu; > 0. Also, the
highest power ofy; appearing in 19) is xN°+1 "

l+1
3“* (O) ’\”* (O) i u— ] 20
‘ (Zg i1 ) g( )l+1+(3 G (20)
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We equate the coefficients af * in (19) and @0) to obtain

u-_(0)
o = (42" TP forl=0,.... No—uj. (21)
If I =No+1—uj,..., No, thend" g (O) = 0. Also,

"G = — D —2)---2-1- 3O
Applying "~ to (21), we see that, fof = Ng+ 1 — 2u;, ..., No — u;:

@ =+ ur) - U+ 20+ 1" g0

l+u, =0.

ku_

u—

Applying ¢"~ enough times, we conclude that,kf; > No+ 1, thend ~ G = 0. But
now, G is a solution of(J;, 6]“") +(A-0—A-c), andc is generic. By LemmaB.4,
G is a Puiseux polynomial.

Proposition 8.7. Let « be as in Proposition4.4 (in particular, o satisfies(17)), let
¢ be generi¢c and let f be a solution of Hg(c). Then f = g + h, where g is a
solution of the lattice hypergeometric systdm+ (A -0 — A - ¢) and  is a solution
of I+ (0" )+ (A-0—A-c).

Proof. Lety = d”f. Theny is a solution of/z + (A-0— A (c+a)). This is because
the D-module map

D Lo D
Ip+(A-(c+a) Hp(c)

induces a vector space map between the solution spacék@f) and Ig + (A -0 —
A - (c+ a)).

Now by Lemma7.1, right multiplication byd” is an D-module isomorphism between
D/(Ig+{(A-0—A-(c+a)) and D/(Ig+ (A-0— A-c)), so there existy) € D
andP elg+(A-0—A-(c+0o)) such thatd”Q = 1+ P. Let g = Qy. Theng is a
solution of Iz + (A-0— A -¢), and

Feg=0"QY =1+ Py =y=0F (22)

where the next to last equality holds becaudes Iz + (A -0 — A - (¢ + )). Now
let h = f — g. All we need to finish this proof is to show that is a solution of
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I+ (") +(A-0—A-c). But, sincel C I, g is also a solution offz(c), and thus
so ish. Moreoverd®h =0 by (22). O

Corollary 8.8. For genericc, we have
rank(Hp(c)) <g - vol (A) + Y vij.

where the sum runs over pairs of linearly independent rows3adh opposite open
quadrants ofZ?.

Proof. By Proposition8.7, the solution space oHp(c) is contained in the sum of
the solution spaces ofg + (A-0 — A-¢) and I + (0") + (A-0 — A - ¢). The first
solution space has rank at mgstvol (A) by Corollary 7.5. The second solution space
contains only Puiseux polynomials and therefore has rank at most, (&% = > v;;
by Theorem6.6. [J

9. Initial ideals, indicial ideals and holonomic ranks

In this section we finish the proofs of our rank formulas for generic parameters, by
showing the reverse inequalities in Corollarié$ and 8.8 We will assumem = 2
when dealing with Horn systems, although the arguments will work for gemeras
long as! is a complete intersection ankiz(c) is holonomic for generie.

Our main tool will be the fact that holonomic rank is lower semicontinuous when we
pass to initial ideals with respect to weight vectors of the farrw, w); this is [25,
Theorem 2.2.1] For an introduction to initial ideals in the Weyl algebra, including
algorithms, sed25, Chapters 1 and 2]

Theorem 9.1 (Saito et al.[25, Theorem 2.2.3] If J is a holonomicD,-ideal, and w
is a generic weight vectorthen the initial D,-ideal in (_,. ,)(J) is also holonomigc
and

rank(in (—y,w) (J)) <rank(J).

Remark 9.2. If we assume that/ is regular holonomi¢ then equality will hold in the
above theorem.

Our goal is now to compute the holonomic ranks ofp, ., (Hg(c)) and in—y, )
(Ig) + (A -0 — A -c) for genericc. In order to do this, we introduce indicial ideals,
which are modifications of initial ideals, and have the advantage of belonging to the
(commutative) polynomial ring_[0].
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Definition 9.3. If J is a holonomic leftD,-ideal, andw is a generic weight vector,
the indicial ideal of J is

ind ,, (J) = R -iN (_y.u)(J) N ClO1, ..., 0,1,

where R is the ring of linear partial differential equations with rational function coef-
ficients.

A D,-ideal whose generators belong @0] = C[04, ..., 0,] is called aFrobenius
ideal. The commutative ideal ifC[0] given by the generators of a Frobenius ideal is
called theunderlying commutative ideallThe following theorem justifies our interest
in indicial ideals.

Theorem 9.4 (Saito et al.[25, Theorem 2.3.9] Let J be a holonomid),-ideal and
w a generic weight vector. Theb,, - ind,,(J) is a holonomic Frobenius ideal whose
rank equalsrank(in (—y,w)(J)).

Finally, computing the rank of a holonomic Frobenius ideal (such as, (gl for
holonomic J) is a commutative operation.

Proposition 9.5 (Saito et al.[25, Proposition 2.3.6). Let D, F be a Frobenius ideal

where F c C[0] is the underlying commutative ideal. Thén, F is holonomic if and
only if F is zero dimensionain which case

rank(D, F) = deq F).

Although indicial ideals are extremely useful, they are hard to get a hold of in
general. However, for generic parameters, we know explicitly what the indicial ideal
of an A-hypergeometric system {25, Corollary 3.1.6] and the same ideas work for
the case of Horn systems and hypergeometric systems arising from lattices.

Theorem 9.6. For generic parameters,ove have
ind , (Hg(c)) = ((R-in (1) NCIO]) +(A-0—A-c),
and
ind,(Ig+(A-0—A-c))=((R-iny,(Ip)NC[O]) +(A-0—A-c).
Proof. The proof of the analogous fact fot-hypergeometric systems follows from

[25, Theorem 3.1.3 and Proposition 3.1.8jut [25, Proposition 3.1.5tarries over to
the cases that interest us without any modification in its proof. Moreover the proof
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of [25, Theorem 3.1.3pbnly uses the fact thats is homogeneous with respect to the
multi-grading given by the columns of, a property that bothl and Iy satisfy. O

Our next goal is to compute the primary decomposition of the indicial ideals of
Hp(c) andIg+(A-0— A-c) whenc is generic. The first step is to recall the definition
of certain combinatorial objects that correspond to the irreducible components of a
monomial ideal in a polynomial ring.

Definition 9.7. Let M be a monomial ideal ifC[d1, ..., d,]. A standard pairof M
is a pair(&”, a), whereg is a possibly empty subset ¢1, ..., n}, that satisfies

(i) n;, =0 for all i € g
(i) for any choice of integerg:; >0, j € o, the monomial@”]‘[ieg 65” is not in M;

(iii) 1‘|9r all 1 ¢ o, there exist integerg, >0 andy; >0, j € g, such that)" ;" [T ¢, (’)?’
ies in M.

We denote the set of standard pairs of a monomial idéaby S(M). By [28, Eq.
(3.2)],

M= () @"tiga).

@",0)eS(M)

The prime ideal(d; : i ¢ o) is associated ta/ if and only if there exists a standard
pair of the form(-, o) in S(M). A standard pair@’, o) is calledtop dimensionalf
(0; 1 i ¢ g) is a minimal associated prime af, it is calledembeddedtherwise. It is
clear from the above formula that the degreeMfis equal to the cardinality of the
set of top dimensional standard pairs Mf.

Now, since the ideald and Iz are unmixed [ is a complete intersection, and the
associated primes dfg are all isomorphic tdl4), all of the minimal primes of all the
initial ideals of I have the same dimensiod, (see[18, Corollary 1), and the same
holds for Iz. This means that a standard p&i’, o) of either in, (1) or in,(Ig) is
top dimensional if and only if #=d.

Let T(in (1)) be the set of top dimensional standard paﬂ'é, o) of in, (/) such
that the rows of3 indexed byi ¢ ¢ are linearly independent.

Note that if (0", ) is a top-dimensional standard pair of,j0/z), then the rows of
B indexed byi ¢ ¢ are linearly independent (the proof (0, Lemma 2.3}works for
lattice ideals too). Therf'(in,,(Ig)) equals the set of top-dimensional standard pairs
of iny,(Ip).

Given a standard pair in eith@t(in (1)) or T (in ,(Ig)), and an arbitrary parameter
vector ¢, there exists a unique vectorsuch thatA -v = A -c, andvg = ny, v =1;.

Suppose thatd", o) is a standard pair of ip(I) that does not belong to the set
T(iny(I)). Then either # < m or #¢ = n — 2 and the columns off corresponding
to the indices not inc are linearly dependent. In both of these cases, for a generic
choice ofc, the systemA -v = A - ¢, v; = y; for i ¢ o, has no solutions. The same
holds for standard pairs not ifi(in ., (Ig)).
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We can now describe the primary decomposition of the indicial idealdgi) and
Ip+ (A-0— A-c) with respect tow, in analogy to[25, Theorem 3.2.10]

Proposition 9.8. For a generic parameter ,cthe indicial ideal of Hz(c) with respect
to w equals the following intersection of maximal ideals

N ((0; —n; i ga)+(A-0—A-c)), (23)

(@",0)eT (in (1))

and the indicial ideal ofiz + (A -6 — A - ¢) equals

N (0 —m; i o)+ (A-0—A-c)). (24)

(6’1,J)ET(in w(IB))

Proof. We prove the statement for the indicial ideal Bf(c). The other indicial ideal
is computed in exactly in the same manner.
By [25, Corollary 3.2.3] the indicial ideal is

J=(A0-A-a+ () (i-n:igo).
@",0)eS(in (1))

It is clear that the ideal2) is radical. If we show that it has the same zero set/ as
and thatJ has no multiple roots, we will be done.

Let v be a zero of/. ThenA-v = A - ¢, and for some(d”, o) € S(in, (1)), we
have thaty; = n; for all i ¢ ¢. Since our parametar is generic, we must have that
(@", 0) belongs toT(in,(I)). These are exactly the roots of the ide@B)( It also
follows from the genericity ofc that all the zeros of/ are distinct, and the proof is
finished. O

Note that the degree of if(/) is dj - d2, since it coincides with the degree of the
complete intersectiorf. Then the cardinality of the set of top-dimensional standard
pairs is exactlyd; - do. This and the previous proposition imply the following result.

Corollary 9.9. Let v be the sum of the multiplicities of the minimal primesirof, (1)

corresponding to linearly dependent sets of two rows3ofFor a generic parameter
vector ¢, the degree of the fake indicial ideal is exactly- d> — v. Therefore

rank(Hg(c)) = rank(Horn (B, ¢)) = d1 - do — v = #T (in ,(1)).

Our desired formula for the generic rank of a bivariate Horn system now follows
from Proposition4.2.
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Theorem 9.10. For genericc and m = 2,
rank(Hp(c)) = rank(Hor(B, ¢)) =d1 - da — Y _ vij.

where the sum runs over linearly dependent rowsBofthat lie in opposite open
quadrants ofZ2.

Proof. By Proposition4.2, the sum of the multiplicities of the minimal primes &éf
corresponding to linearly dependent rows®fs the sum of the corresponding indices
> vij. This implies that

degind , (Hp(c)) = d1-d2 — Y _ vij.

where the sum runs over linearly independent row43d§ing in opposite open quad-
rants of Z2. But then, since

degind , (Hg(c))) = rank(in () (Hp(c)) <rank(Hp(c))
we conclude that
rank(Hp(c)) = rank(Hom (B, ¢)) >d1 - dz — Y _ vij.

The reverse inequality follows from Corollag.8 [

The same method that exactly proved Theor8rfiO will compute the rank of
the hypergeometric system arising from a lattice (actually, this proof is easier, since
#T (in,(Ig)) = degIp) = g-vol (A) is easier to compute thari#in ,,(1))). Note that
here we do not need to require that= 2, since we know what the solutions of these
systems look like without restriction on the codimension/gf

Theorem 9.11. For genericec,

rank(Ip+ (A -0 — A -c)) = #T(in ,(Ig)) = deqgIg) = g - vol (A).

10. Explicit construction of fully supported hypergeometric functions

We already know how to explicitly write down Puiseux polynomial solutions of
a bivariate Horn system with generic parameters. This is done by taking pairs of
rows of the matrix55 that are linearly independent and lie in opposite open quadrants
of 72, obtaining a cone from these vectors, and joining together lattice points in
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the cone using horizontal and vertical moves to obtain the finite supports of Puiseux
polynomial solutions. We have not described the coefficients appearing in these Puiseux
polynomials, although they are easily computed on a case by case basis.

The goal of this section is to be even more explicitly describe the fully supported
solutions of Hz(c), and thus of Hor3, ¢). In particular, we will show that the fully
supported solutions of Hori, ¢) are hypergeometric in the following classical sense.

Definition 10.1. A formal power seriei(s Nez? (s, t)y]y5 is hypergeometridf there
exist rational functions®; and R2 such that

As+1,1) = Ri(s,)A(s, 1) and A(s,t + 1) = Ro(s, 1)A(s, 1).

In this paper we restrict our attention to the case when the numerator and the
denominator of the rational functionB1, R, are products of affine linear functions
with integer coefficients by, + and arbitrary constant terms.

A formal power series such as in Definitid@.1 satisfies a Horn system of differential
equations. We will now show that the other fully supported solutions of this system
are spanned by monomial multiples of series of this form. We know that the fully
supported solutions ofiz(c) are simply the solutions of the lattice hypergeometric
systemip + (A-0— A -c). The following result is proved using the methods fr{ips,
Section 3.4] We start by setting up some notation. Recall that is the lattice inZ"
spanned by the columns &.

Givenv € C" we let

Ny={uelp:vieZos u+tv)ieZoandv, € Z>0< (u+v); € Z>o},

and define a formal power series

¢, =x" Z [U]#x“, (25)

v u
uENU[ + ]M+

where

—u;

W = [] [[oi-i+D and w+ul-= [] ﬂ(vi+j>.

iuj<0j=1 iu;>0j=1

Theorem 10.2. Let ¢ be generic ad w a generic weight vector. Denote hyV, ...,
p(&Vol(4) pe the zeros of the indicial ideahd ,,(Ig+ (A-0— A -¢)). Then the formal
power series{¢,i» : i = 1,...,g-Vvol(A)} are linearly independent holomorphic
solutions ofiz + (A- 0 — A - ¢).
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Proof. For sufficiently generia, the vectorss have no negative integer coordinates.
Now use the arguments frof25, Theorem 3.4.2]In particular, the support of each of
these series is contained in a strongly convex come.

We now have an explicit description of a basis of the solution space of the system
Horn(B, ¢) (and Hp(c)).

Theorem 10.3.If ¢ is generig the fully supported series obtained by applying the iso-
morphism from Corollarys.2 to the fully supported series constructed in TheotEh?
and the Puiseux polynomials constructed in Theoffform a basis for the solution
space ofHorn(B, c).

Proof. Theorem10.2and Corollary5.2 give usg-vol (A)+}_ v;; linearly independent
solutions of Hgp(c) (here the sum runs over linearly independent rows3)f By
Theorem9.10 these must span the solution spaceHy(c). [

Note that applying the change of variables from Corollarf to the functionseg,
from Theorem10.2is particularly easy.

Corollary 10.4. For ¢ generic andv) as in Theorem10.2 let o be the unique
vector that satisfies® — ¢ = B- «"). Then the space of fully supported solutions of
Horn (B, c¢) is spanned by the functions

(i) (i)
)

@)
oy [V B2 71,22
Y1 Y2 Z 0] - Yi Yz
B W+ B-zlB.2),

In particular, all the fully supported solutions dflorn(3, ¢) are spanned by monomial
multiples of hypergeometric series in the sense of Definitid.

11. Holonomicity of Horn (B, c)

Throughout this section we assume that= 2. Since we do not have &-module
isomorphism betweerfHz(c) and Horn(B, ¢), the holonomicity of Hg(c) does not
directly prove that Horni3, ¢) is holonomic. In this section we prove that the bivariate
hypergeometric system Ho(#, ¢) is holonomic.

Recall that a system of differential equations is said tdvbl®nomicif the dimension
of its characteristic variety is the same as the dimension of the variable space.

We recall that we are dealing with the system of equations defined by the hyper-
geometric operators

Hi = Qq(0) — y1P1(0),

(26)
Hy = Qy(0) — y2P2(0).
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By the definition of the Horn system (see Sect®@nthe bivariate polynomial®;, Q;
satisfy the compatibility condition

R1(s + e2)R2(s) = Ro(s + e1) R1(s), (27)

where R; (s) = Pi(s)/Q; (s + ¢;) and {e1, ez} is the standard basis aof2.
Theorem 11.1. A bivariate Horn system with generic parameters is holonomic.

To prove this theorem we need some intermediate results and notation. Denote by
(H1, H2) C D3 the ideal generated by the hypergeometric operators defining the Horn
system. Bya(P) we denote the principal symbol of a differential operaforThis is an
element of the polynomial rin@[y1, y2, z1, z2]. The only case when a bivariate Horn
system is not holonomic is when the principal symbols of all the operatof&/inH>)
have a nontrivial greatest common divisor (for otherwise we have two independent
algebraic equations and hence the dimension of the characteristic variety of the Horn
system is 2). Thus to prove holonomicity d26) it suffices to construct a family of
operators in(Hy, H2) such that the greatest common divisor of their principal symbols
is 1.

By the construction of the operators in the Horn system (see Sezlitime greatest
common divisor of the principal symbols éf; and H> is given by a product of powers
of linear formsay1z1 + by2z2, wherea, b € Z. Thus to prove Theorerhl.1it suffices
to show that for anya,b € Z such thatayizi + byszo divides gcdo(H1), 6(H>))
there exists an operatdf, , € (Hi, H2) whose principal symbol is not divisible by
ayiz1 + byazo.

Remark 11.2. For generic parameters the compatibility conditi@T)(is equivalent to
the relations

[y1P1(0), y2P2(0)] = O, (E2Q2)(0)(E1E2Q)(0) = (E1Qp) (0)(E1E2Q,)(0), (28)

where[, ] denotes the commutator of two operatc(rEfP)(s) = P(s+/e;)) and E; =

E,l Indeed, equalities28) mean that the numerators (respectively the denominators)
of the rational functions in27) are equal. The generic parameters assumption implies
that no cancellations can occur and hence this is indeed the case.

Lemma 11.3.For any «, f5,7,0 € C and P1(0), P2(0), Q1(0), Q2(0) satisfying the
relations

[y1P1(0), y2P2(0)] =0, (E202)(0)(E1E201)(0) = (E1Q1)(0)(E1E202)(0), (29)
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it holds that
(oc(Ez_lQl)(G) — By1P1(0))(yQ2(0) — dy2P2(0))

—(UE702)(0) — By2P2(0))(701(0) — dy1 P1(0)) = ‘ O; g ‘ P, (30)

where¥ = y102(0) P1(0) — y201(0) P2(0).

The proof of Lemmall.3 is a direct computation which uses the compatibility
conditions 29) and the Weyl algebra identityEi‘le)(G)y,- =y;0;(0).

Let us now consider a special case to which we will later reduce the case of an arbi-
trary bivariate Horn system with generic parameters. Namely, let us find a holonomicity
condition for the system defined by the operators

Ur = f(1)Q1(0) — y18(t) P1(0),
Uz = f(1)Q2(0) — y28(1) P2(0),

where f, g are arbitrary nonzero univariate polynomiais= 0, + 02 and P;, Q; are
arbitrary bivariate polynomials such that dggr- degQ; = degg + degP; and that
P;, Q; satisfy @9). Note that these relations are satisfiedgift) P;, g(¢)Q; satisfy
the equivalent relations. We assume also thas not present inP;(0), Q;(0), i.e
that none of the principal symbols of these operators vanish along the hypersurface
y1z1 + y2z2 = 0.

Our goal is to “eliminater” from (31), i.e., to construct an operator in the ideal
(U1, Up) whose principal symbol is not divisible by(r) = y1z1 + y222. We do it as
follows.

(31)

Lemma 11.4.Let ¥ be as in Lemmall.3 Then R(f(¢), g(¢))¥ € (U1, Uz), where
R(f (@), g(t)) is the resultant off, g.

Proof. Let us write the polynomialsf, g in the form f(:) = Zfzof,-t", gt =
Zfl:o git'. Note that f, g do not have to be of the same degree since somg af;

may be zero. Using30), and the fact that the subring of the Weyl algebra generated
by 01 and 0, is commutative, we conclude that for any=0, ..., d

Z

=0

fj 8j
fi &

d d
=Y O1;(fit' Q2(0) — yagit' P2(0)) — > Oa;(fit' Q1(0) — y1g:t' P1(0))

i=0 i=0
= 01Uz + O2;U1 € (U1, U2),

where ®1; = f;(E;101)(0) — gjy1P1(0) and Oy = f,(ET*02)(0) — g;y2P2(0).
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Now clearly,
io 7l =¥ % e
so that
’f(t) g(n)| €U0 U2

In the trivial case when the polynomialg and g are proportional we have that
R(f (1), g(t)) = 0 and the conclusion of the lemma is obviously true.flIfis not
proportional tog then the rank of the 2 (m + 1)-matrix (§g§m> equals 2 and hence
Yr£ (), Vg(t) € (U, Ug). Since(r — L)Y = WPy, it follows that Wh(r) € (U1, U2), for
anyh(t) € (f(t), g(t)), where(f(z), g(¢)) denotes the ideal in the ring of (commuting)
univariate polynomials generated by ¢. It is known that the resultant of two poly-
nomials lies in the ideal generated by these polynomials and hRagér), g(¢))W €
(U1, Up). The proof is complete. (]

Corollary 11.5. Suppose thagcd(a(Uy), a(Uz)) is a power ofxiz1 + x2z2. Then the
hypergeometric systeif®1) is holonomic if and only ifR(f(¢), g(¢)) is nonzero.

Proof. Suppose thatR(f(¢), g(t)) = 0 and let{ € C be a common root of the
polynomials f, g. Since for any smooth univariate functignthe producty h(y1/y2)
is annihilated by the operater— { = 01 + 02 — {, it follows that the space of analytic
solutions to 81) has infinite dimension. It is known that a holonomic system can only
have finitely many linearly independent solutions and herd# i not holonomic in
this case.

On the other hand, iR(f(¢), g(t)) # 0, then by Lemmall.4 the operatot¥ is an
element of the idealU;, U2). By the assumption of the corollary the principal symbols
of U1, Uy and ¥ are relatively prime and hence systeB1)(is holonomic. [

Example 11.6. Consider the system quoted in the introduction, given by the two hy-
pergeometric operators

Hy = x(0, + 0y, +a)(0x + D) — 0,(0x + 0y, +c— 1),
Ho = y(0x + 0y +a)(0y +b') — 0,(0; + 0y +c— 1),
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for Appell’s function F;. The operato®t in Lemmall.3 equals in this case

Y=xy) ¥, where ¥ = (x—y)d:dy — b0y + bd.

Whena — ¢ +1 # 0, we deduce from Lemmdl.4 that (x y) ¥’ lies in the D-
ideal (Hy, H2). In particular, all holomorphic solutions of the Appell system will
also satisfy¥’(p) = 0. We point out that some authors add this third equation to the
system (cf. for instanc5, p. 48). In fact, having this operator, the holonomicity of
the system follows immediately.

We are now in a position to complete the proof of Theorginl

Proof of Theorem 11.1. Suppose that g&d(H1), a(H2)) vanishes along the hyper-
surfaceayizi + by2z2=0. We aim to construct an operator in the idéah, H>) whose
principal symbol is not divisible byiy1z1 + by»z2. The change of variable$ = yll/“,

_52 = yzl/b transforms the operata,, +50y, into the operatof:, +0;, and systemZ6)
into the system generated by the operators

01(0¢,. 0z,) — & P1(0¢,. 0¢,),

N . (32)
02(0:,, 0z,) — & Pa(0¢,, 0:,),

where P; (u, v) = P;(u/a, v/b), O;i(u,v) = Q;(u/a,v/b).
Let us introduce operator)iafa, ,uf.‘a acting on a bivariate polynomiaP as follows:

k k-1
Py =TTE P, dypy=T]EP). (33)
j=1 j=0

(Note that the upper index here it a power.) The next Weyl algebra identities
follow directly from the definition of}vffa, Mfa (the arguments of all of the involved
polynomials beingfe, , 0,):

2 (0D = & 01751 (00,

25, (020 = & 0275, (02), (34)
W, (PE P = & ™ (Py),
1y (P& Po = & 155 (o).

Using 34) we arrive at the equalities
b—1
(Z é‘l’“ﬂf{alV(él)(og)umﬁl)(%)) (01(02) — & Pr(02))
v=0

= 010057100 (0:) — &P s, (P (0y), (35)
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a—1
(Z éﬁbig,;l“’@z)(ec;)u;h(ﬁz)(@g)) (Q2(0:) — E3P2(0:))
v=0
= 02(0:)75,1(02)(0:) — &8P 1%, (P2)(0). (36)

The differential operators3g) and @6) are Horn-type hypergeometric operators in the
variablesy, = ‘1”’ andn, = &j‘z’b. Let us write these operators in the form

U1 = f(1)01(0y) — n18() Pr(0y),
Uz = f(1)Q2(0y) — 128(x) P2(0y),

where f, ¢ are univariate polynomialg, = 0,, +0,, and none of the principal symbols
of the operators?; (0,), Q;:(0,) vanish along the hypersurfasgzi + 1,22 = 0. The
existence of such polynomialg, ¢ follows from the compatibility condition which is
satisfied by 85), (36). y

By Lemmall.4the operatot = 1102(0,) P1(0,)—1,01(0y) P2(0,) lies in the ideal
(U1, Uo) as long as the parameters of the original Horn syst26) gre generic. Note
that by construction the principal symbol 8f does not vanish along the hypersurface
n1z1 + yoz2 = 0. Going back to the variableg, y», we conclude that there exists an
operator in(H1, Hz) whose principal symbol is not divisible byyiz1 + by2z2. This
completes the proof of Theoredll.l [I

12. The Cohen—Macaulay property as a tool to compute rank, and further
research directions

Since the lattice basis ideal is a complete intersection and therefore Cohen—
Macaulay, it is natural to try to apply the methods that proved that the holonomic
rank H4(A - ¢) is always volA) = degl4) when the underlying toric ideal, is
Cohen—Macaulay.

The first evidence that these methods will not work is that the generic rank of the
Horn systemHz(c) is not deq ) = di - d2, unless we make the assumption tifahas
no linearly dependent rows in opposite open quadrant€Zof

If we follow the arguments that provefR5, Lemma 4.3.7] which is the main
ingredient needed to prove that, whenis Cohen—Macaulay, rarnf4(A-c)) = vol (A)
for all ¢, we see that the crucial point is whether the- m polynomials

n

Zaijszj eClx1, ..., Xn, 21, ---»2ul, =1 ....,n—m, (37)
j=1



A. Dickenstein et al./Advances in Mathematics 196 (2005) 78-123 121

form a regular sequence @ (x1, ..., x;)[z1, ..., 2,1/, Where here we think of as
an ideal in the variabless, ..., z,. But if B has linearly dependent rows in opposite
open quadrants, the ring

Clxr, .. xlze, vy 2l
I—l—(z_'}:laijszj eClxy, ..., %0, 21, ...z, i=1,....,n—m)

is not artinian!

Lemma 12.1.Letm = 2. If (A - xz) is ideal generated by the polynomigl87), then
the ideal I + (A - xz) is artinian in C(x1, ..., x,)[z1, ..., 2,]/I, if and only if 5 has
no linearly dependent rows in opposite open quadrantZof

Proof. We need to investigate the intersection of the zero locugdofxz) over C(x)
with the zero locus of over C(x). Specifically, we want to show that this intersection
is a finite set if and only if5 contains no linearly dependent rows in opposite open
quadrants ofZ?. We can perform this intersection irreducible component by irreducible
component off, recalling the primary decomposition @ffrom Proposition4.2.

The toric irreducible components df we can deal with all at the same time: we
know that C(x)[z]/(Ig + (A - xz)) is zero dimensional. That just leaves the primary
components ofl corresponding to associated primgs, z;), whereb; and b; lie in
the interior of open quadrants &2. But now it is clear that such a component will
meet the zero locus ofA - xz) in an infinite set if and only ifb; andb; are linearly
dependent. [

As a consequence of Lemni2.1 and the arguments if25, Section 4.3] we have
one case when the fact thétis a complete intersection will imply that the rank of
Hp(c) does not depend oo

Theorem 12.2.1f B has no linearly dependent rows in opposite quadrant@dthen
rank(Hg(c)) =d1-dp» for all c € C".

Note that this result holds even when the rowsBotlo not add up to zero.

Remark that the case in which no pair of (linearly dependent or not) rows lie in
the interior of opposite quadrants corresponds precisely to the case in which the lattice
ideal Iz is a complete intersection. This agrees with the characterizati¢hOijn

There is another situation when we can apply the arguments fgdmSection 4.3]
to prove that a certain holonomic rank does not dependc.ohet J be the ideal
in C[0y, ..., 0,] obtained by saturating frond the componentd;; corresponding to
linearly dependent rows df. Then

deg/) =di-dp— Y vij.
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where the sum runs over the linearly dependent rowd$3 dhat lie in opposite open
quadrants ofZ2. As before, the methods {25, Section 4.3prove the following result.

Lemma 12.3.If J is Cohen—Macaulay
rank(J + (A-0— A -c)) =deqJ).

The previous lemma and our rank formula for Horn systems have the following
consequence.

Corollary 12.4. If J is Cohen—Macaulay and c is generibe solution spaces dz(c)
andJ + (A-0— A c) coincide.

We believe that Corollaryl2.4 holds even whery is not Cohen—Macaulay. It would
be desirable to obtain an independent proof of this, since in that case we would have
a proof of our rank formula in the case thatis Cohen—Macaulay that does not rely
on a precise description of the solution space.

The natural question at this point is whether we can extend arguments in S@ction
to give an algebraic formula for the rank of a Horn system for anyHowever, in
order to use those methods, several ingredients are missing. First, we need to assume
that the lattice basis idedl is a complete intersection, since this is not necessarily true
if m > 2. Moreover, it is not true in general that given a toric idég one can find
a lattice basis ideal contained iy that is a complete intersectid]. Moreover, our
techniques for finding the form of the solutions Hiz(c¢) for m = 2 do not directly
generalize to highem. In any case, in order to obtain an explicit rank formula in the
case thain > 2, combinatorial expressions for the multiplicities of the minimal primes
of any lattice basis ideal are needed.
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