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Carbohydrates are an extremely complex group of isomeric molecules that have been difficult
to analyze in the gas phase by mass spectrometry because (1) precursor ions and product ions
to successive stages of MS™ are frequently mixtures of isomers, and (2) detailed information
about the anomeric configuration and location of specific stereochemical variants of monosac-
charides within larger molecules has not been possible to obtain in a general way. Herein, it
is demonstrated that gas-phase analyses by direct combination of electrospray ionization,
ambient pressure ion mobility spectrometry, and time-of-flight mass spectrometry (ESI-
APIMS-TOEMS) provides sufficient resolution to separate different anomeric methyl glyco-
sides and to separate different stereoisomeric methyl glycosides having the same anomeric
configuration. Reducing sugars were typically resolved into more than one peak, which might
represent separation of cyclic species having different anomeric configurations and/or ring
forms. The extent of separation, both with methyl glycosides and reducing sugars, was
significantly affected by the nature of the drift gas and by the nature of an adducting metal ion
or ion complex. The study demonstrated that ESI-APIMS-TOFMS is a rapid and effective
analytical technique for the separation of isomeric methyl glycosides and simple sugars, and

can be used to differentiate glycosides having different anomeric configurations.

(J Am Soc

Mass Spectrom 2007, 18, 1163-1175) © 2007 American Society for Mass Spectrometry

ligosaccharides, either alone or as glycoconju-

gates are actively involved in numerous biolog-

ical phenomena such as cell-cell recognition,
embryonic development, and differentiation [1-5]. Un-
derstanding their functional roles requires a detailed
knowledge of their structures. Mass spectrometry has
long been an important tool for analysis of oligosaccha-
rides [6—8] but two crucial issues remain a challenge for
enabling its use in structural elucidation of unknowns.
First, the inability to rapidly and unambiguously
discriminate isomeric monosaccharides is a major im-
pediment in the structural characterization of glycans.
There are 16 D- and L-aldohexoses, for example, and 8
D- and L-ketoses. They can exist in two anomeric
configurations and two ring forms within an oligosac-
charide in nature, yielding a total of 96 configurations,
all having an identical m/z. When mass spectrometry is
applied as a rapid gas-phase analytical tool stereochem-
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ical variants often dissociate to yield essentially identi-
cal mass spectra. Mass spectrometric discrimination of
such isomers is thus often aided by one or more
pre-mass analysis separation steps and the rapid nature
of the technique is compromised. For example, individ-
ual monosaccharides obtained as hydrolysis products
of oligosaccharides are best analyzed as linear deriv-
atives such as aldononitrile acetates, 1-deoxy-1-
hydrazino-alditol acetates, or partially methylated aldi-
tol acetates [9-11]. Since the fragmentation patterns of
different stereoisomers of the derivatives are often
similar, unambiguous identification of stereochemical
variants is achieved through one or more pre-mass
analysis chromatographic separation steps in tandem to
the MS analysis, such as GC-MS. However, following
hydrolysis, no information can be gleaned about the
anomeric configuration of the sugar or about its location
within the original oligosaccharide molecule. This re-
quires that oligosaccharides be manipulated in a con-
trolled disassembly through multiple isolation/dissoci-
ation steps in the gas phase, whereupon at some later
dissociation step a monosaccharide product ion at any
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stage of MS™ might be isolated to identify its stereo-
chemistry. This, however, is entirely a different feat
than an up-front chromatographic separation. While
some modern mass spectrometers such as ion traps and
Fourier transform ion cyclotron resonance (FTICR) in-
struments are ideally suited to multiple isolation/dis-
sociation steps, one ultimately faces the inevitable ques-
tion: “If selection of ions is based solely on m/z, how can
two isomers that produce essentially identical dissoci-
ation patterns be discriminated, as occurs with ano-
meric (e and B) monosaccharide product ions?” One
answer to this may be ion mobility spectrometry (IMS),
which separates gas-phase ions based on their size to
charge ratio [12, 13]. When coupled to the back end of a
mass spectrometer, IMS might be utilized to separate
isolated monosaccharide product ions or potentially
other small ions generated by disaccharide dissociation
immediately preceding an IMS step. However, before
this becomes feasible, another fundamental question
must be addressed. “Can gas-phase separation based on
size to charge ratio (IMS) be exploited to differentiate
gas-phase monosaccharide anomers or even small ano-
meric glycosides such as methyl glycosides?” It is also
worth noting that other product ions larger than
monosaccharides may be generated during multiple
isolation/dissociation steps and they may be isomeric
in nature. This is particularly true of many branched
oligosaccharides where relatively large isomeric prod-
uct ions can arise from different branches.

A second nettlesome problem in oligosaccharide
analysis is that many samples from unknown sources
are mixtures of isomeric oligosaccharides [14-17].
While chromatographic separations (i.e., HPLC) have
been utilized for some time to isolate oligosaccharides,
isomeric molecules usually prove to be the most diffi-
cult to separate and require some sort of evaluation of
isomeric heterogeneity for which NMR has been well-
suited in the past. However, well below NMR levels
(currently about 500 pmol is the minimum for 1D NMR
spectra), how can one be certain that a chromatographic
peak is ever one isomer? Failure to evaluate isomeric
heterogeneity risks deduction of a single (assumed)
structure from data derived from a mixture of mole-
cules. Recently, this issue has been addressed [18, 19]
using mixtures of isomeric permethylated oligosaccha-
rides and MS". These investigators demonstrated that
isomers having different linkages may be predictably
identified in mixtures because at some stage during
MS" disassembly, different dissociation patterns are
anticipated from substructures. This will no doubt be a
valuable approach, even with underivatized oligosac-
charides [20, 21]. However, replacement of a single
sugar in an oligosaccharide with its anomer or epimer
(for example, an a-Glc with a B-Glc, or a GIcNAc with
a GalNAc), would in many cases render them impossi-
ble to evaluate as a mixture with their anomeric or
epimeric counterparts using typical gas-phase dissoci-
ation methods. This remains a serious problem because
they yield sets of substructures after every round of
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dissociation where subsequent fragmentation of any
given isolated ion m/z furnishes identical product ion
m/z values. There are many examples of such isomeric
mixtures [14-17] and IMS coupled to mass spectrome-
ters (in this case at the front end) [22-24] may provide a
route for evaluation of their heterogeneity that is com-
plementary to fragmentation. Again, this assumes that
IMS of high enough resolution is available and is
flexible enough to resolve many such isomers.

Since its inception in 1970 under the name plasma
chromatography [25], IMS has evolved as a rapid gas-
phase separation technique. It surpasses the resolving
power of liquid chromatography and is similar to that
of gas chromatography. Being a gas-phase separation
technique, the time required for an IMS experiment is in
the millisecond (ms) time range, which markedly re-
duces analysis time and increases sample throughput.
Only a few studies involving the application of IMS to
carbohydrates have been reported [26-31]. None of
these studies has demonstrated the separation of ano-
meric glycosides such as simple methyl glycosides or
separation of isomers of reducing monosaccharides
themselves potentially representing different anomers
or ring forms of the ions. Some di- and trisaccharides
have been resolved, both by high-field asymmetric
waveform ion mobility spectrometry (FAIMS) using
decanoic acid derivatives [26] or recently using ambient
pressure IMS [31].

It is demonstrated here for the first time that high-
resolution IMS at ambient pressure can resolve ano-
meric methyl glycosides, and that the extent of separa-
tion varies with the nature of a complexing ion and the
IMS drift gas. It is also reported that free reducing
sugars as metal ion adducts can resolve into more than
one peak. Additional peaks may represent different
anomeric configurations or ring forms of the reducing
sugars.

Experimental
Instrument

The instrument used in this study was an electrospray
ionization ambient pressure ion mobility spectrometer
coupled to an orthogonal time-of-flight mass spectrom-
eter (ESI-APIMS-TOFMS). The details of APIMS and
TOFMS along with the data acquisition system are
reported in a previous publication [32].

The ion mobility spectrometer with basic stacked-
ring design [33, 34] was used in this study and con-
structed at Washington State University. The APIMS
tube consisted of alternating alumina spacers and stain-
less steel rings with high-temperature resistors connect-
ing the stainless steel rings (500 k() resisters for the
desolvation region, 1 M() resisters for the drift region).
Ions were gated into the drift region of the IMS tube by
a Bradbury-Nielsen type ion gate which also divided
the IMS tube into a desolvation region and a drift
region. The drift gas (nitrogen, unless otherwise noted)
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was introduced at a flow rate of ~1300 mL/min at the
end of the drift tube thus flowing against the electric
field gradient created by the resistors. The temperature
of the IMS tube was maintained at 200 °C during all
experiments.

ESI solvent (methanol/water/acetic acid, 49.5/
49.5/1) was introduced by a KD Scientific 210 syringe
pump (New Hope, PA) at a flow rate of 3 uL/min into
a 25 cm long, 50 wm i.d. silica capillary. This capillary
was then connected to a 10 cm long, 50 um i.d. silica
capillary through a zero dead volume stainless steel
internal fitting (Valco Instruments Co. Inc., Houston,
TX). The other end of the 10 cm capillary was centered
~0.5 cm from the target screen of the APIMS. To
generate electrospray, a positive high voltage of 3.00 kV
greater than that on the IMS target screen was applied
at the internal fitting.

The time-of-flight mass spectrometer and supporting
electronics were designed and constructed at lonwerks
Inc., Houston, TX. The APIMS was interfaced to the
TOFMS through a 250 um aperture. A series of ion
lenses guided the ions from the aperture to the extrac-
tion region of the time-of-flight analyzer. The ions were
then extracted orthogonally, accelerated into the TOF
drift tube, and detected by a microchannel plate detec-
tor (Burle Electro-Optics Inc., Sturbridge, MA) The
detector signal, acquired by a time-to-digital converter
(Ionwerks), was then processed by IDL Virtual machine
based software. The mass spectrometer was calibrated
in positive ion mode with different alkylamines and
amino acids and optimized to a full width at half height
resolution of ~1000 at an m/z value of 108.09 for
2,4-lutidine.

Chemicals and Solvents

All carbohydrate standards [methyl-a-D-galactopyranoside
(a-MeGal), methyl-B-D-galactopyranoside (B8-MeGal),
methyl-a-D-glucopyranoside (a-MeGlc), methyl-B-D-
glucopyranoside (B-MeGlc), methyl-a-D-mannopyr-
anoside (a-MeMan), and methyl-g-D-mannopyrano-
side (B-MeMan), ribose, xylose, glucose, fructose,
isomaltose, maltose, and sucrose] used in this study
were purchased from Sigma-Aldrich, St. Louis, MO.
The salts used in the experiments were also purchased
from Sigma-Aldrich. High-performance liquid chroma-
tography grade solvents (methanol, water, and acetic
acid) were purchased from J. T. Baker (Phillipsburgh,
NJ). ESI solvent was used to prepare 50 and 100 uM
solutions of sugar and salt, respectively, which were
mixed in equal volumes when analyzed.

IMS Theory

IMS separates ions on the basis of the differences in
their mobility K (cm*V ™' s™") while the ions are drifting
through a drift gas in a weak homogenous electric field
gradient. The mobility of an ion through the drift region
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of the IMS is given as the ratio of the average ion
velocity (v, = L/t;) to the applied electric field (E = V/L)

Uy L2
K=—t=—" M)
E t,V

where, L is the length of the drift region in c¢m, £, is the
drift time in seconds (defined as the time an ion takes to
travel through the drift region), and V is the voltage
applied to the ion gate in volts. Under different exper-
imental conditions such as temperature, pressure, and
electric field, variations in ion mobility values are
observed and thus for comparative purposes “the re-
duced mobility value, K,” of an ion is calculated using
eq 2. Under different experimental conditions the K,
value of an ion remains constant with a standard
deviation of =0.02 cm® V' s7! and is defined as
follows:

il = )
Ko= |15 | 5 @
Vit || T |[760

The mode and type of interactions between the ion
and the drift gas depend on the configurational and
conformational structure of both the ion and the drift
gas and along with the collision dynamics defines the
collision cross section of an ion. The average ion-neutral
collision cross section ({)) is measured by using the
equation [12]:

e [
Q= — | = (3)
16N, || ukT | | K
where N, is the number density of the drift gas in
molecules per cm®, u = [mM/(m + M)] is the reduced
mass in kilograms of an ion of mass m g/mol and the
neutral drift gas of M g/mol, k is Boltzmann’s constant
in J/K, z is the number of the charge(s) on the ion, ¢ is
the charge of one proton in Coulombs, and K is the
mobility of the ion in cm® V™' s™'. Number density N,
is calculated as N, = (P/kT) where P is the ambient
pressure in atmospheres, k is the Boltzmann’s constant
in L*atm./K, and T is the temperature in Kelvin.
Resolving power in IMS is defined by the ratio of the
drift time to the peak width (in time) at half height
(R, = tq/wy). Resolution in IMS is defined analogously
to that in chromatography, which is the difference in the
drift time of two ion mobility peaks divided by their
average peak width. [Ry = 2(tg, — tg)/(w; + wy)l.
Resolving power gives no information on the ability of
two isomers to separate at all. For example, a TOFMS
instrument could be described as having a high “resolv-
ing power”, yet no “resolution” of isomers because they

have the exact same m/z value and thus cannot be
differentiated by TOFMS.
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Table 1. Separation factors of monosaccharide methyl glycosides as metal ion complexes using ion mobility/mass spectrometry®

Name of glycoside and a-MeGal B-MeGal a-MeGlc B-MeGlc a-MeMan B-MeMan
drift time (ty)° 16.43 15.96 16.45 16.20 15.70 15.55
Sodium adducts
a-MeGal (16.43) 1.00 1.03 1.00° 1.02 1.05 1.06
B-MeGal (15.96) 1.00 1.03 1.02 1.02 1.03
a-MeGlc (16.45) 1.00 1.02 1.05 1.06
B-MeGlc (16.20) 1.00 1.03 1.04
a-MeMan (15.70) 1.00 1.01°¢
B-MeMan (15.55) 1.00
Name of glycoside and a-MeGal B-MeGal a-MeGlc B-MeGlc a-MeMan B-MeMan
drift time (tc,)b 18.36 17.89 18.73 17.75 17.95 17.64
Cobalt acetate adducts
a-MeGal (18.36) 1.00 1.03 1.02 1.03 1.02 1.04
B-MeGal (17.89) 1.00 1.05 1.01° 1.00° 1.02
a-MeGlc (18.73) 1.00 1.06 1.04 1.06
B-MeGlc (17.75) 1.00 1.02 1.01¢
a-MeMan (17.95) 1.00 1.02
B-MeMan (17.64) 1.00

2Separation factors are defined as the ratio of the slow drift compound/fast drift compound for any given pair of methyl glycosides, abbreviated as
described in the text.

PDrift times (ms) were recorded using N, gas at 702 mm Hg pressure, 425 V/cm, and were reproducible to +0.04 ms.

°Underlined separation factors were of combined pairs where the difference in drift times of individual glycopyranosides was less than 0.2 ms,
wherefore peaks seen in separations of mixtures will probably appear as broad unresolved peaks. Separation factors of 1.02 or greater will resolve
two compounds, which will be observed as two discernable peaks.

Results and Discussion

Resolution of Anomeric Isomers of Monosaccharide
Methyl Glycosides

To investigate whether APIMS could separate anomeric
isomers of monosaccharides, methyl hexopyranosides
were examined. Glycosides were used to avoid any
potential interconversions between anomeric (a- and
B-) or ring (pyranose and furanose) configurations.
Their analysis by ESI-APIMS-TOFMS showed that so-

even when no sodium was added to the sugar solution.
Less abundant ions identified as [M + H;0]™", m/z 213,
[M + H]", m/z 195, [M — (CH;0)]", m/z 163, [M + K],
m/z 233 and [M + K + H,Ol%, m/z 251 were also
detected. Ions at m/z 195 and 163 were the fragments of
the protonated glycoside at m/z 213 generated at
APIMS-TOFMS interface since they all had the same
drift time. The average standard deviation in the drift
times of ions for three runs was 0.04 ms.

Solutions of methyl pyranosides with cobalt acetate

dium adducts (m/z 217) were the most abundant ion  showed that cobalt always adducted to the glycosides as a

Table 2. Effect of the nature of the metal ion on separation of anomeric pairs of methyl galactosides as metal ion complexes using
ion mobility /mass spectrometry®

Collision cross section

Drift time (ms) _ (A2)9
Separation
Metal ion® Complex m/z° a-MeGal B-MeGal factor® a-MeGal B-MeGal
Na™ [Na + MeGall* 217 12.06 11.58 1.04 124 118
Ag” [Ag + MeGall* 301f 12.95 12.31 1.05 131 124
Co*? [Co(CH5COO0) + MeGall™" 312 13.51 13.25 1.02 136 134
Co™2 [Co(CgH,0,) + MeGal]™ 352¢ 14.31 14.08 1.02 144 141
Cu*? [Cu(CH,COO0) + MeGal]™* 316f 13.40 13.10 1.03 135 132
Ca*2 [Ca(CH,CO0) + MeGall* 293f 14.62 14.44 1.01 148 146
Hg™2 [Hg(CH;COO0) + MeGal]™" 455" 13.70 13.50 1.01 136 134
Pb*2 [Pb(CH;COO0) + MeGal]* 461° 13.28 12.44 1.07 133 124
Pb*2 [Pb(C5H,0,)¢ + MeGal]* 501 14.43 14.20 1.02 143 141

2Drift times were recorded using N, gas at 700 mm Hg pressure, 562 V/cm, and were reproducible to =0.04 ms.

PSalts were present with acetate counterions unless otherwise noted.

°Separation factors are defined as the ratio of the slow drift compound/fast drift compound for anomeric pairs of methyl galactosides.
9Salt contained the acetylacetonate counterion.

°m/z of most abundant ion.

"Multiple peaks corresponding to isotopic distribution observed in m/z domain.

9Collision cross section calculated using eq 3.
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178, [Co(CH5COO0),H;0] ", m/z 196, [Co,(CH,COO);] ¥, _ g
m/z 295, and [Co,(CH,COO),H,0]", m/z 373. Anomeric Wl e 8- 83 9|3
methyl galactopyranosides were also examined in the © Bl = == <%
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presented in Table 1. It is worth noting in a comparison S g2 8 8 ) 2
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Figure 1. Two-dimensional IMS-MS spectra of a mixture of methyl-a-and B-D- galactopyranosides
showing the separation (N, drift gas) of the sodium adducts at m/z 217 (a) and the cobalt acetate
adducts at m/z 312 (b). Drift times of methyl-a and B-D-galactopyranosides run individually under

these conditions are presented in Table 1.

Resolution of Isomeric Monosaccharide Methyl
Glycosides Differing in the Stereochemistry at
Positions Other Than the Anomeric Carbon

Figure 3 shows separations of two sets of methyl
glycosides varying in the stereochemistry of a single
asymmetric carbon other than at the anomeric position.

For example, a-MeGlc and a-MeMan, two epimers that
vary only in the asymmetry at the C2-position, were
baseline resolved as sodium adducts using N, as the
drift gas (Figure 3a). Similarly, B-MeGal and B-MeGlc,
epimeric at the C4-position, were resolved (Figure 3b).
The drift times of the individual monosaccharides and
the experimental conditions are reported in Table 1.
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Figure 2. Two-dimensional IMS-MS plot of a mixture of methyl-a- and B-D-glucopyranosides (N,
drift gas). Sodium adducts of the anomers at m/z 217 were partially separated in the mobility
dimension and baseline separated as cobalt acetate adducts at m/z 312. Drift times of sodium and
cobalt acetate adducts of methyl-a- and B-D-glucopyranosides run individually are presented in

Table 1.

Note that conditions for the separations shown in
Figure 3 were different than reported in Table 1 hence
different drift times were observed.

Further analysis of the data listed in Table 1
revealed the following: (1) adducts of a-methyl gly-
cosides with either sodium or cobalt acetate, without
exception, drifted longer times than the B-anomers.
(2) Cobalt acetate adducts invariably had longer drift
times than the sodium adducts, and (3) drift time
differences between anomers were dependent on
both the stereochemistry of the sugars and the nature
of adducts.

Based on drift times of the cobalt acetate adducts
(Table 1) and the inverse relationship between ion
mobility and collision cross section (eq 3), the colli-
sion cross sections (CCS) of the anomer-cobalt acetate
adducts followed the trend of a-MeGlc > a-MeGal >
a-MeMan > B-MeGal > B-MeGlc > B-MeMan. The
CCS of the sodium adducts, based on their drift times
as listed in Table 1, followed the trend of a-MeGlc >
a-MeGal > B-MeGlc > B-MeGal > a-MeMan >

B-MeMan. The measured CCS must reflect differ-
ences in the overall structures of the methyl glyco-
sides as coordinated ion complexes; detailed calcula-
tions of these structures are currently under
investigation.

Separation factors between all possible combinations
of the glycopyranosides were generated from mea-
sured drift times of the sodium adducts of anomers of
all methyl glycosides studied (Table 1). Based on the
experimentally determined criterion under the exper-
imental conditions to define “separation” (0.2 ms
drift time difference), underlined glycoside combina-
tions in Table 1 indicate pairs of glycopyranosides
that could not be resolved with a resolution greater
than 0.5, or two peaks were not discernable but
appeared as one broad coalesced peak. Excluding the
same pyranoside combinations it was concluded that
out of 15 different pairs of the pyranosides (Table 1),
13 can be separated as sodium adducts. Similarly, 12
of the 15 pairs can be separated as cobalt acetate
adducts. Notably the pairs not separated as sodium
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Figure 3. Two-dimensional IMS-MS plots illustrating the separation of epimers as sodium adducts
at m/z 217 (N, drift gas). (a) aMeGlc and a-MeMan; (b) B-MeGlc and B-MeGal. Measurements were
performed at an electric field of 514 V/cm and 699 mm Hg pressure and drift times of the glycosides
run separately under different conditions are listed in Table 1.

adducts were separated as their [M + Co(CH,COO)]*
counterparts, thus all 15 pairs can be separated as
either of the two adducts. Resolution was limited in
part to the use of a 0.2 ms pulse width for these
particular experiments. Higher resolution could be
achieved by operation at more narrow IMS pulse
widths (0.1 ms), at the practical expense of loss of
sensitivity.

Given the results using different metal ions above, and
owing to the tremendous number of potential isomeric
variants in the analysis of complex carbohydrates that
might require greater experimental flexibility to obtain
physical resolution, experiments were conducted to inves-
tigate the effects of additional cations and cation com-
plexes and different drift gases on the separation of
carbohydrate isomers, detailed in the following sections.
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Figure 4. IMS spectra of a- and - MeGal illustrating the effect of
various cations on separation factor. Ion identity and mobility
values are listed in Table 2.

Effects of Additional Cations on Separation
of One Selected Anomeric Pair of Glycosides,
a- and B-Methylgalactopyranosides

Figure 4 illustrates the gas-phase separation of a-MeGal
and B-MeGal when complexed with three different
cations or cation complexes, [M + Co(CH,COO)]*, [M
+ Agl]*, or [M + Pb(CH;COO)]*. As indicated, the
nature of the cation has marked affects on separation of
anomeric pairs, varying from separation factors of 1.01
to 1.07 (Table 2). Some of these differences may result
from fundamental differences in coordination of coun-
terion species. Singly-charged metals, for example,
(Na™, Ag™") invariably adducted with methyl glycosides
as naked ions but doubly-charged ions yielded singly
charged adducts that also included an acetate or acety-
lacetonate anion. While we have not explored a wide
variety of counterions as yet, it was evident that chang-
ing the acid counterion can also endow the ion com-
plexes with unique properties that alter their separa-
tion. This was observed, for instance, in the comparison
of [M + Pb(CH,COO)]" and [M + Pb(C,H;0,)]" ad-
ducts having separation factors of 1.07 and 1.02, respec-
tively (Table 2).

Different Drift Gases Markedly Affect
the Separation of Isomeric Methyl Glycosides

While nitrogen is one of the most common drift gases
used in IMS, the variation of drift times with polariz-
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ability of the drift gas has been reported for a number of
analytes using different gases or mixtures including air,
nitrogen, helium, argon, CO, and SF; [35-38]. General
conclusions drawn from these reports are that the
polarizability of the drift gas can dramatically affect not
only overall drift times but also the order of arrival
times for various molecules [35].

As mentioned earlier, a-MeMan and B-MeMan as
sodium adducts were not resolved using N, gas and a
pulse width of 0.2 ms (Table 1). Studies were therefore
performed with drift gases of varying polarizability
which included N,, CO,, Ar, and He. In these experi-
ments the flow rate of the drift gases was maintained
identically for all gases by adjusting the flow rate meter
to the flowrate of different gases going through it.
Two-dimensional IMS-MS spectra of a-MeMan and
B-MeMan as sodium adducts at m/z 217 are shown in
Figure 5, at an IMS pulse width of 0.2ms using CO,
(Figure 5a) and N, (Figure 5b) as drift gases. Baseline
separation was achieved when CO, was used. As
shown in Table 3, the separation of two isomers using
the different drift gases He, Ar, N, or CO, was often
dramatically affected in unpredictable ways. For exam-
ple, the separation factors of the methyl-galactopyrano-
sides ranged from 1.01 (Ar) to 1.05 (He). From the
purely practical analytical perspective, however, the
use of different drift gases imparts another level of
flexibility in separation of carbohydrate isomers. Figure 6
shows the linear relationship between the measured
collision cross sections of adducts and polarizability of
drift gases for a- and B- MeMan, MeGal, and MeGlc.
Extrapolation of this linear relationship provides the
zero polarizability collision cross section that can be
used in an ab initio calculations for modeling purposes.

Separation of Isomers of Reducing Sugars

In Figure 7 the IMS profile is shown of reducing glucose
as a sodium adduct using either N, or CO, as drift gas.
It is clearly evident from all three traces that glucose has
at least three observable isomeric forms that resolve in
the gas phase as sodium adducts. Increased resolution
with lowered pulse width is also clearly evident in the
figure. Other reducing sugars also typically separated
into more than one gas-phase form (Table 4) except
ribose, which was virtually entirely one IMS peak. Both
the nature of the drift gas and the ion mobility pulse
width time affected the resolution of isomers (Figure 7).
One caveat with reducing sugars as mentioned previ-
ously is that they can exist in multiple anomeric and
cyclic forms in solution. During the process of electro-
spray ionization these isomeric forms might produce
adduct ions in an unpredictable fashion, or potentially
might adduct at more than one site with a given ion. In
addition, considering the complexity of the electrospray
process, the sugars themselves might interconvert to
yield ratios of the different configurations that are not
observed, for instance, by NMR in solution. Further-
more, the observation of one peak as in the case of
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Figure 5. 2D IMS-MS spectra illustrating the baseline separation of a- and B-anomers of methyl-
mannopyranoside as sodium adducts at /z 217 when carbon dioxide was used as the drift gas (a). The
same anomers were barely resolved as sodium adducts with nitrogen as the drift gas (b). The above
measurements were performed at 514 V/cm and 699 mm Hg pressure.

ribose could be due to coincidental co-migration of two
or more anomeric/cyclic/adduct variants.

The data illustrate the capability of APIMS to sepa-
rate different forms of reducing monosaccharides hav-
ing different anomeric configurations and possibly dif-
ferent ring forms. Moreover, the IMS profiles observed
for individual sugars are unique at a given m/z and can
rapidly provide additional information orthogonal to
MS for identification of a monosaccharide, because

monosaccharide dissociation patterns are often very
similar. However, interpretation of the actual molecular
complexes involved will require much more detailed
studies involving calculations and potentially studies
with other model sugar glycosides that could give rise
to single gas-phase species through dissociation. It is
worth noting that for all the methyl glycosides exam-
ined as adducts with several different metal ions (Ta-
bles 1, 2, and 3), only single peaks were observed
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and collision cross section was observed for all the anomers. Collision cross sections for pyranosides

in different drift gases are listed in Table 3.

whereas for reducing sugars, multiple peaks were the
typical scenario. This argues that in most cases, for
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Figure 7. IMS-MS spectra of glucose as a sodium adduct at m/z

203. (a) Glucose with nitrogen as drift gas and 0.2 ms IMS pulse
width, (b) glucose with nitrogen as drift gas and 0.1 ms IMS pulse
width, and (c) glucose with carbon dioxide as drift gas and 0.1 ms
IMS pulse width. Separation between isomeric forms of glucose
increased with decreased pulse width and increased drift gas polar-
izability.

reducing monosaccharides, the different forms are
probably anomeric/cyclic variants rather than adducts
at multiple locations for one given cyclic form/anomer,
although the latter certainly cannot be ruled out.

Separation of Disaccharides and Effects
of the Reducing Sugar

We previously demonstrated that small disaccharide-
alditols derived from glycoproteins and some trisaccha-
rides (two of them nonreducing) could be separated by
APIMS-MS [31]. The compounds were in part selected
because they resulted in single peaks, and borohydride
reduction of reducing sugars to alditols prevented the
effects of alternative anomers/cyclization on ion mobil-
ity that thereby simplifies the analyses. In Figure 8 the
ion mobility spectra of sucrose (a nonreducing disac-
charide) and maltose (a-D-Glcp-(1-4)-D-Glc, a reducing
disaccharide) are shown. Sucrose yielded a single peak,
whereas maltose yielded five IMS peaks. This indicates
that the reducing sugar in maltose is probably present
in different configurations, possibly even the open-
chain form, and potentially that different locations for
metal ion adduction are possible. Of interest was that
isomaltose (a-D-Glep-(1-6)-D-Glc), which is also a re-
ducing disaccharide, yielded just one peak (Table 4).
These experiments, along with those previously re-
ported [31] indicate that a reducing sugar usually
complicates analyses of disaccharides, that if a reducing
structure yields just one peak it is either due to one
dominant adduct or coincidental co-migration of more
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Table 4. Drift times and reduced mobilities determined for some sodiated adducts of reducing monosaccharides and some

disaccharides employing ion mobility /mass spectrometry *

Compound m/z Drift times and reduced mobilities (bracketed) for ion mobility peaks®
Glucose® 203 11.80 (1.52); 12.14 (1.48); 12.31 (1.46)

Fructose® 203 12.13 (1.48); 12.23 (1.47)

Ribose® 173 11.41 (1.58)

Xylose® 173 11.13 (1.62); 11.36 (1.58)

Sucrose* 365 19.02 (1.27)

Maltose® 365 19.56 (1.23); 19.24 (1.25); 20.48 (1.18); 21.09 (1.14), and 21.58 (1.12)
Isomaltose? 365 19.65 (1.23)

®N, was used as the drift gas at ~1300 mL/min.
PReduced mobility in cm? V=1 s~

°Denotes measurements performed at 514 V/cm and 699 mm Hg pressure.
9Denotes measurements performed at 412 V/cm and 700 mm Hg pressure.

than one, and that it is in most cases desirable to reduce
a larger oligosaccharide with sodium borohydride to
the alditol at the reducing end to simplify analyses.

Conclusions

Separation of metal adducts of anomeric methyl glyco-
side isomers (MeMan, MeGal, and MeGlc) and isomeric
forms of reducing sugars were achieved using ESI-
APIMS-TOFMS. Methyl glycosides yielded single IMS
peaks, but more than one peak was typically observed
for free reducing monosaccharides suggesting that in
the gas phase different anomers and ring forms of
reducing monosaccharides might be differentiated by
APIMS. Ion mobility profiles of reducing monosaccha-
rides examined at given m/z values were unique and

may enable them to be identified in the future as
product ions derived from larger oligosaccharides
when used in combination with gas-phase isolation/
dissociation techniques.

Both the nature of the metal cation complex used for
adduction and the drift gas employed in the IMS
influenced separation between carbohydrate isomers in
independent and often unpredictable ways. However,
regardless of the nature of the drift gas or metal ion
complex, the a-methylglycosides invariably had longer
drift times (i.e., larger collisional cross-sections) than
the B-anomers. Between sodium and cobalt acetate
adducts, all 15 combinatorial pairs of these methyl
hexopyranosides could be separated, which demon-
strates the potential of ESI-APIMS-TOFMS as applied to
structural elucidation of carbohydrates. Furthermore,

23000 fFyrryrrjfrreryYryYyevwyYrTyryrvyYyY7vYryYyvvvrqyvyvyTtT)

- Na" adducts of maltose B

OH OH

22000 - HOy,, Oay -~ _p%H -

i [~ o .

. : HO' Y w (o] OH :
] ; s L R ;
21po6 -

£ : Ho”” E
= ; . :
o : -
=3 r )
T 20D00 |~ .
[=] L -
£ o 4
L o -

i ~ g .

19000 | - 3
183000 - PEET T ST T T NN T NN BN ST TNT NN A NN ST NN TN RSN TAT RN RN NN N :

340 345 350 365 380 365 370

miz

Figure 8. IMS separation of the disaccharides sucrose (nonreducing) and maltose (reducing) as
sodium adducts (m/z 365). Unlike sucrose multiple IMS peaks were observed for maltose, the drift

times of which are listed in Table 4.
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other metal ions and metal ion complexes also mark-
edly affected the resolution of isomers and when used
orthogonally to different drift gases, a number of phys-
ically alterable properties can be easily varied to at-
tempt to elicit separations of sugar isomers. While these
studies have been largely carried out with simple
glycosides and reducing sugars, the fundamental ad-
vantage of ambient pressure IMS to separate ions based
on their size when conjugated with MS provides a
high-resolution analytical tool that can be applied to
separation of isomeric ions either before or after disso-
ciation events. This may have great value in rapidly
evaluating suspected isomeric mixtures of oligosaccha-
rides through arrays of multiple experimental condi-
tions. It also seems reasonable to surmise that many
other metal-centered ion complexes, different counteri-
ons of salts, and drift gases of different selectivity along
with optimization of instrumental parameters, might be
exploited to further enhance the flexibility of IMS as
applied to carbohydrate structure analyses.
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