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Distance-regular Subgraphsin a Distance-regular Graph, I 

AKIRA HIRAKI 

Let F be a distance-regular graph with r=l(1, O , k - 1 ) > O  and c~,.1 =1. We show the 
existence of a Moore graph of diameter r + 1 and valency a,+a + 1 as a subgraph in F. In 
particular, we show that either a,÷~ ffi 1 or r = 1. 

~) 1995 Academic Press Limited 

1. INTRODUCTION 

All graphs considered in this paper are unidirected finite graphs without loops or 
multiple edges. Let r be a connected graph. We identify F with the set of vertices. 

For two vertices u,v in F, a walk of length ! connecting u and v is a sequence of the 
vertices u =x0, xx . . . . .  xt = v such that each (x,  xt+l) is an edge of F. If xj-1 ~x j+ l  for 
1 ~ j  ~ l - 1, then we say that the walk is a path. We denote by 0r(U, v) the distance 
between u and v in F, i.e. the length of a shortest path connecting u and v in F. Let 

rj(u) = {x ~ r l Or(U, x) =j},  

kr(u) = Irl(u)l, 

dr(u) = max{0r(U, x) Ix E F}, 

For two vertices u and x in F with 0r(U, x) = j, let 

C(u, x) = r j_ l (u )  n r~(x),  

A(u, x)  = r j (u )  n r , ( x )  

and 

B(u, x) = Fl+lCu) A rlfx) .  

F is said to be distance-regular if 

c/(r)  = IC(u, x)l, a j ( r )  = IA(u, x)l and bj ( r )  = IB(u, x)l 

depend only on j = dr(U, x)  rather than on individual vertices. It is easy to see that if F 
is a distance-regular graph, then kr(u) and dr(u) do not depend on the choice of u. 
Hence we write kr  and dr. They are called the valency and the diameter of F. 
Sometimes we omit the suffix when the concerning graph is dear.  The numbers c ,  a~ 
and bi are called the intersection numbers of F, and 

f * Cl C2 ' ' '  Cj ' ' '  Cd-1 C~ 1 

~(F)= a0 az a2 " ' "  aj " "  a,f-z 
bo bl b2 "'" bj "'" ba-1 

is called the intersection array of F. 
The following are basic properties of the intersection numbers which we use 

implicitly in this paper; 
(1) ci+a~+b~=k; 
(2) k = b0 ~> bl ~ > - "  ~> b,,-2 >~ ba-a ~> 1; 
(3) l =c2 <~l~2~. . .<~Cd_l ~Ctl <~k. 

The reader is referred to [1, 3] for general theory of distance-regular graphs. 
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We use the following notation in this paper: 

l(ot,/3, ~) = #{ j  I (cj, aj, bj) = (a,/3, V)}. 

For vertices x, y ~ F, we write x - y  when they are adjacent. Let  X and Y be sets of 
vertices. We denote e(X,  Y )  the number  of edges between X and Y. We write 
e({x}, Y) = e(x, Y )  when X consists of a single element x. Let  x, y E F with Or(X, y )  = t. 
We denote by p[x,  y] the unique shortest path connecting x and y when ct = L - W e  
write p[x, y] = {z j l j  if 

p[x,  y] = {X = Zo~ Zl . . . . .  zj . . . . .  z t - l  ~ zt = y}. 

A circuit of length l is a sequence of  distinct vertices Xo, x ~ , . . . ,  xt-~ such that 
(x,  x~+l) is an edge of F for 0 ~ i <~ l -  1, where xt = x0 and l ~ 2. Let  g = g(F)  denote 
the girth of F that is the minimal length of  a circuit in F. 

In this paper, we prove the following result. 

THEOREM 1.1. Let  F be a distance-regular graph with r = 1(1, O, k - 1) > 0. A s s u m e  
that c2,+~ = 1. Then there exists a Moore  graph o f  valency ar+l q- 1 and diameter  r + 1 as 
a subgraph in F. 

A detailed description of Moore graphs will be found in [1, 3]. 
Using the classification of Moore graphs, we obtain the following: 

COROLLARY 1.2. Let  F be a distance-regular graph with r = l(1, 0, k - 1) > 0. A s s u m e  
that c2~+1 = 1. Then either a,+l = 1 or r = 1. 

The theorem is clear for the case a,+l = 1; in this case the subgraphs are mere circuits 
of length 2r + 3. 

Proposition 4.3.11 of [3] shows the existence of distance-regular subgraphs with d = 2 
and c2 = 1 in a distance-regular graph with . r=l (1 ,  al ,  b l ) = 1  and ca = 1. So our 
theorem is the result for general r, but with addtional condition a~ = 0. In the 
subsequent paper [6], we treat the case a~ > 0  and show that the existence of a 
collinearity graph of a Moore geometry as a subgraph in a distance-regular graph with 
r =/(1,  al,  bl) and c2,+1 = 1. 

Here  we conjecture the following: 

CONJECTURE. Let  F be a distance-regular graph and let r = l(1, al ,  bl).  If cs = 1, 
then s ~ 2r + N for some absolute constant N. 

Our results show the conjecture is true on the assumption r ~ 2 and a,+l ~ 1. For  the 
remaining cases, we hope that our method is also applicable with some modification. 

We believe that to find 'nice' distance-regular subgraphs in a distance-regular graph 
will be a key for the classification of distance-regular graphs. 

2. PRELIMINARIES 

In this section, we introduce the intersection diagram which will be our  main tool. 
Let  a and /3 be adjacent vertices and D}= Fl(at)f~ Fj(/3). The intersection diagram 

with respect to (c~,/3) is the collection {D))tj with lines be tween  them. We draw a line 

i p D I e D  q 

if there is a possibility of an existence of  edges between them, and we erase the line 
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when we know that there is no edge between them. Also, we :erase D~ when we know 
that it is empty. A detailed description of the intersection diagram will be found in [2], 
[4] and [5]. In this paper we say '(a,/3)-diagram' instead of ' the intersection diagram o f  
the graph r with respect to (a,/3)' .  

In this section, we assume that r is a distance-regular graph with r = l(1, 0, k - 1) ~> 
2, c2,+t = 1 and a~+l = a ~> 2. 

LEMMA 2.1. Let a and [3 be adjacent vertices in F. Let  q be an integer with 1 <<- q <~ r. 
Then: 
(1) The (a, fl )-diagram has the following shape: 

. . . .  D r+l Dr+2 D2r D2r+l  
DO O l  o r r+ l  r+2 r+3 " ' "  2r+l 2r+2 . . . .  

/ 
I 2 r+ l  / ) r + 2  ~ D r ÷ 3  . . . .  D 2r+l D 2r+2 

D O - -  DI . . . .  Dr ~ r + l  r÷2 2r 2r+l . . . .  

Moreover, there exists no set o f  3-vertices {x,y, z} with x ~ y  ~ z ,  x E Dtt:], y ~ Dtt and 
Z ~ D t t - l O D [ : l f o r t < ~ 2 r + l .  
(2) I f  Zo ~ Zl . . . . .  Zr is a walk o f  length r with 0r(a, zj) = r + 1 + j for O<~j <<- r and 
z0 E Fr+l(fl), then 0r(fl, z/) = r + 1 + j  for 1 <~j ~ r. 
(3) I f  z o ~ z l  . . . . .  z, is a walk o f  length r with Or(a, z j ) = r  + l + j for O<~j<~r and 
Zo E I'~([3), then Or(fl, z i) = r + j  for 1 <<-j<~ r. 
(4) I f  Xo ~ x l  . . . .  - x l  is a walk o f  length 1 with 0r(a, xj) = q - 1 + j  for O<~j <<- l and 
x0 e Fq(fl), then 0r(fl, x/) = q + j for 0 <<-j <~ rain{l, r + 1 - q}. 
(5) I f  Xo~Xl  . . . . .  xt is a path o f  length 1 with Xo ~ Fq(fl) and xl E I'q+l(/3), then 
Or(J3, xj) = q + j for 0 <~ j <<- rain{l, r + 1 - q}. 

PROOF. (1) See [2] and [5]. 
r~r÷l from our assumption. Since (2) Consider the (a,/3)-diagram. We have Zo ~ ,-,r+l 

r ~ r + l + j  n~+2 Inductively, we obtain zj E/-.Jr+l+i for zl - z0 a n d  0r(~, ,  z~) = r + 2 ,  we obtain z~ e "-'r+2. 
2 ~<j ~< r. This implies our assertion. 

(3, 4) We have our assertion, similar to (2). 
(5) Since cq+~ = 1 and aq+/= 0 for 1 ~<j ~< r - q, we have the assertion. O 

Let X be a set of vertices. We identify X with the induced subgraph on X. 

DEHNITION 2.2. Let X, Y c F and p, q be positive integers. A nonempty set X is the 
(p, q)-subgraph with respect to Y if the following conditions hold: 
(1) kx ( z )  >~p for any z ¢ X; 
(2) Or(X, y) ~ q for any x ~ X and y ~ Y. 

LEMMA 2.3. Let  w, Z e F and A be an (a, r + 1)-subgraph with respect to {w}. Then: 
(1) i f  z ~ A N Fs(w) for some 1 ~ s <~ r, there exists x ~ AI(z) n F,+l(W); 
(2) h n r r + , ( w ) ~ O .  

PROOF. 
Thus 

(1) Suppose that AI(z) N F,+t(w) = ~ .  We have AI(Z) c F,(w) U F,_l(W). 

2 <~a <~kA(Z)<~a, + c~ = 1. 

This is a contradiction. 
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(2) Let  m = max{] I A N F/(w) ~ 0}. W e  have  1 ~< m ~ r + 1 f rom our  assumpt ion .  
F r o m  the maximal i ty  of  m, we have z E A N F,,,(w) and A N F , , ,+ l (w)=  0 .  Suppose  
that  m ~< r. Then  we have  a contradict ion f rom (1). Thus  m = r + 1. [] 

LEMMA 2.4. Let a, ~ be adjacent vertices in F. Let  A be an (a + 1, r + 1)-subgraph 
with respect to {a} such that a, ~ E A. I f  Or(a, x)  = OA(a, X) for any x • A, then 
0r(/3, x)  = OA(fl, X) for any x • A. 

PROOV. Consider  the ( a , /3 ) -d iag ram.  Let  

r+ l  ~.~ 
L =  [,.J i r~i+l Oi+l, R = --t • 

i=0 i=0 

c L tO R t0 D,+a. T a k e  F r o m  our  assumpt ion ,  we have D~ A A = O for  i >t r + 2. Thus  A r+l 
any x • A. Note  that  Or(a, x)  = OA(a, X) i f f p [ a ,  X] c A. Thus  it is sufficient to show that  
p[/3, x] c A. If  x • L, then  

p[t , x] = {t3} tOp[a, x] c A. 

I f x  e R, then 

p[fl, x] : p[a, x] : A. 

/ '~r+ 1 r+ l  A ssume  that  x • ,--,+1 and set {y} = Fj (x)  N D ,  . W e  show that  y • A. I f  y ~ A, then 
A x) c D ~+1 I( , ~r+~t3D~+1.  Thus  we have 

a + 1 <- k1(x) ~ e(x, D~+~ U D;+I) = a. 

This is a contradict ion.  Thus  we obtain  y e A. Since y • R A A, we have  

p[/3, x] = p[/3, y] tO {x} = A. 

This is the desired result .  []  

3. PAIRS OF WALKS 

Let  m and n be  posi t ive  integers and X = (xl . . . .  , x,,,) and Y =  (Yl . . . .  , y , )  be  
sequences  of  vert ices o f  F. The  distance matrix Mix1 . . . .  , x,,; Yl , .  • •, Y,] on X and Y is 
an m x n matr ix  the (i, ] ) th  entry  of  which is Or(X, yj). Let 

r + l  r +  ' 

E l = ( r  r + 1 1 )  E 2 =  ( r + l  r ) 
r + l  r +  ' r + l  r + l  ' 

E 3 = ( r +  l r+  l )  ( ) \ r r + l  and E4 = r + l  r + l  . 
r + l  r 

Le t  s, t and I be non-nega t ive  integers.  Le t  

X :  x 0 ~ x 1 . . . . .  x21  , Y: Yo ~ Yl . . . . .  Yt+, 
and 

W: w o ~ w I ..... w t 

be walks of length 21, I + s and t, respectively. 
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In this paper, walks are ordered, i.e. the following are considered to be different: 
t. W: Wo ~ wl . . . . .  wt and W .  wt ~ wt-1 . . . . .  Wo. 

DEFINITION 3.1. A pair of walks (X, Y) is of type C o f  size (l, s)  if the following 
conditions hold: 
(1) 0~< s < l ;  
(2) F~ = M[x, ,  x,+~;yt-,-1, Yt-,] e {J, E~, E4} for 0<~i ~< l - 1; 
(3) Ft+~ = M[xt+,  x~+~+l;y, y/+l] e {Jr, E2, E3} for 0 ~  < i ~< l - 1; 
(4) St = M[xi ,  xi+l; Yt+i, Yt+i+l] ~ {J, E2, E3} for 0 ~< i ~< s - 1; 
(5) S2t-i = M[x2t - i - l ,  X2l-i; Yl+i, Yt+i+l] E {J, E l ,  E4} for 0~<i ~<s - 1. 

DEFINrnON 3.2. A pair of walks (X, Y) is of type C* o f  size (l, s) if the following 
conditions hold: 
(1) O < - s < l < ~ r ;  
(2) Or(Yt, x t - i )  = Or(y,  xt+/) = r + 1 - 1 + j for 0 ~<j <~ l; 
(3) ar(X, y/) = r + 1 - j  for 0<~j ~<l; 
(4) ar(Xt, Yt+/) = r + 1 - l + j for 0 ~< j ~< s; 
(5) Or(X, yj) ~< r + 1 for any i, j. 

REMARK. 
on X and Y: 

The above definitions give us the following entries of the distance.matrix 

TypeC Type C* 

Yo 
Xo 

. L . ~ .  

F( ..... E 

21 rl_N E 
"°...° 

"°o°... ..-°" 

x2t 

Yl Yl+s YO Yl Yl+s 

x~ 

X l 

X21-$ 

X2/ 

where O = r + l ,  © = r + l - I  and < > = r + l - l + s .  

• . . . . . . . . . . . . . . . . . .  0 . . . . . . . . . . . .  O 

For the rest of this paper we use the notation (X, Y) for a pair of walks (X, Y). 

]..EMMA 3.3. Let  (X, Y )  be o f  type C* o f  size (l, s). Then the fo l lowing hold: 
(1) Or(Yt-i, x l - j )  = r + 1 - l + i + ] f o r  0 <~ i ~ l and 0 <<- j <~ l - i; 
(2) Or(Yt-i, xt+j) = r + 1 - l + i + j f o r  0 <~ i <~ l and 0 <~j <~ l - i; 
(3) 0r(Yt+, xt-y) = r + 1 - l + i + j f o r  0 <~ i <~ s and 0 <~j <~ l - i; 
(4) 0r(Yt+i, xt+/) = r + 1 - l + i + j f o r  0 <~ i <~ s and 0 <~j <~ l - i; 
(5) F~ = M[xi,  xi+l; Yt-~-l, Yt-d = E4 f o r  0 <~ i <~ l - 1; 
(6) Ft+~ = M[x~+. x/+~+l; yi; Yi+~] = E2 fo r  0 <~ i <<- l - 1; 
(7) Si = M[xi,  xi+l; YI+, Yt+i+l] = E3 f o r  0 <~ i <~ s - 1; 
(8) S2t-i = M[x2t-i-1,  x21-i; Yt+i, Yt+i+z] = El  f o r  0 <~ i <~ s - 1. 

PROOF. (1) We prove the assertion by induction on i. The case i = 0 follows from 
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Defini t ion 3.2(2). Let  1 ~< h ~< l and set  q = r + 1 - l + h. W e  have  xt e rq(Yl-h)  f r o m  
Defini t ion 3.2(3). F r o m  the induct ive assumpt ion,  we have  ar(Yt-n+l, x t - j ) = q -  1 + j  
for  O < - j < . l - h  +1 .  Thus  we  have  ar(Yt_h, X t _ j )=q  + j  for  O < ~ j < ~ l - h  f rom L e m m a  
2.1(4). This is the desired result .  

(2 -4 )  W e  have  our  asser t ions,  similar to (1). 
(5) Let  0~<i < ~ l - 1  and consider  the (x ,  x~+l)-diagram. W e  have  Y H  • D~ +I and  

Yt-~-i • I'r+l(Xi+l) f rom (1). Since ar(yt_~_l,x~)<~r+ 1 f rom Defini t ion 3.2(5), we  
r~r+~ This is the  desired result. o b t a i n  Y t - i - 1  E L . , r +  1. 

(6 -8 )  We  have  our  asser t ions,  similar to (5). []  

COROLLARY 3.4. I f ( X ,  Y )  is o f  type C* o f  size (l ,s) ,  then (X,  Y )  is o f  type C o f  size 
(l, s). 

PROOF. This is a direct  consequence  of  L e m m a  3.3. [] 

DEFINITION 3.5. Let  u, y~, 3'2, 6~, 62 be mutual ly  distinct vert ices in F. T h e  
quintuple  (u, 3'1, 2/2, 6~, 62) is a basis if the following condi t ions hold: 
O) 2/1, 2/2, a~, a2 E L÷ , (u ) .  
(2) 2/l ~ 2/2 and 61 ~ 62. 
(3) L e t  

P, = p[u,  2/,] r ip[u,  a, ]  = {u = Uo - u, . . . . .  u,}, 

P2 = P [u, 2/2] f3 p [u, 62] = {u = Vo ~ vl . . . . .  vh}. 

T h e n  P~ f3 Pz = {u} and l + h = r + 1. 

T h e  following l emma shows that  we obtain  two pairs o f  paths  of  type C* f r o m  a 
basis. 

LEMMA 3.6. Let  (u, 2/1, 2/2, 61, 62) be a basis. Set 

p [ u ,  2/1]  = {U = UO, U 1 . . . . .  Ul ~" /3h, ~3h-l, / 3 h - 2 , ' ' ' ,  /30 = 2/1} ,  

p[u, al]= {u = Uo, Ul, . . . , ut =/3h, /3h+l, /3h+2 . . . .  , / 3 2 h  -~- a l } ,  

p[u, 2/2] = {u = Vo, va . . . . .  vh = Xt, Xt-1, Xt-2 . . . . .  X0 = 2/2}, 

p[u, a2] = {u = Vo, vl . . . .  , Vh = Xt, Xl+l, X/+2 . . . . .  Xzt = 62}, 

U: ul -- Ul-i . . . . .  Uo, B: /3o~ /31 . . . . .  /3~, 

V: vh ~ vh- 1 . . . . .  Vo and X:  Xo ~ xl . . . . .  x2~. 

Then: 

(1) (X,  U) is o f  type C* o f  size (l, 0); 
(2) (B, V )  is o f  type C* o f  size (h, 0). 

PROOF. Consider  the d is tance  matr ices  on X and U (resp. B and V). It is easy  to 
check the condit ions of  Def ini t ion 3.2. []  

LEMMA 3.7. Let  a and [3 be adjacent vertices in F. Le t  A be an (a, r + 1)-subgraph 
with respect to {a,/3}. f f  x • A NF~+1(a),  then there exists a vertex z e Al(x)  with 
M[z, x; ~,,/3] ~ {j, E,, E,}. 

PaOOF. Since 2~<a <~kA(x), we have  zl,z2 e Al(x). Cons ider  the ( a, /3 )-diagram. 
Note  that  //')r+21 I FI r+21 i/"~r+lx r~r+l t_J D~ ÷1 f rom our  assumpt ion .  ~'-'r+2 "~ "-',+1 "-' "-',+2) N A = ~ and x • ,--,+1 

/ ' ) r +  1 First, we assume that  x e u r  . Since e(x, Dr_l  U D~+I) = c, + ar = 1 and A r~ r~,+2 ~LI  I a..," r +  1 
~ ,  at least one of zl and z2 is in T'lr+l r~r+l " ,+1 .  So we have  z •,-,~+1 f3Al(x).  T h e n  it 
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. . . . . .  D r+l D "+1 If zl is easy to show that M[z,  x; a, [3] = E4. Second, we assumethat  x ~ ,+1. ,+1 
for s o m e  i ~ {1, 2}, then  w e  have  z = zi ~ A l ( x )  with M[z,  x; a,[3] =J.  S u p p o s e  that 

n,-+2 f3 A = O,  we may n~+l for i = 1,2. Since e(x, D;+1) = e(x, D'r +1) = 1 and "-',+2 Zi ~ ~-'r+l 
assume that Zl e D~+I and z2 e D ;  +1. Thus we have zl e Al(x) with M[zl, x; a, /3]  = El: 
Hence we have our assertion. [] 

Next, we obtain a sufficient condition to yield a pair of walks of type C. 

DEFrsrrioN 3.8. A pair of walks (X, Y) is partially o f  type C o f  size (l, s) if the 
following conditions hold: 
(1) Let Y':Yo~Yl  . . . . . .  Yr. Then (X, Y') is of type C* of size (l, 0). 
(2) There exist (a, r + 1)-subgraphs A, A' with respect to {Yt, Y~+I,... ,  Yt+,} such that 
x0 E A and x~ ~ A', where A and A' need not to be different. 

We construct a pair of walks of type C from the one which is partially of type C. Let 
(X, Y) be partially of type C of size (l, s). We may assume that 0 < s. Let aj+, = xj for 
O<~j<-21 and A and A' be the subgraphs as in Definition 3.8(2). Since ar(yt, a , ) =  
r + 1, we obtain 

a , - i  ~ A1(%) with M[a,-1, a,; yl, Yt+1] E {J, El, E4} 

from Lemma 3.7. Hence we have ar(a,-1, Yt+l) = r + 1. Inductively, we can take 

as-i ~ Al(a,-j+1) with M[ot,_i, %-i+fi  Yl+I-1, Yt+i] e {J, El,  E4} 

for 2 ~< j ~< s. Similarly, we obtain 

a~+,+/ E A~(a~+,+j_l) with M[a2t+j, a2t+j-~; Yt+i-1, Yt+j] E {:I, E~, E4} 

for 1 ~< ] ~< s. Note that 

M[x, y, Z, w] ~ {J, El, E4} iff M[y, x, z, w] E {J, E2, E3}. 

Let m = l + s and X*: a0 ~ a~ . . . . .  a ~  be a walk of length 2m. 

PROPOSITmN 3.9. Let (X, Y) be partially o f  type C of  size (l, s), m = l + s and X*  be 
a walk o f  length 2m defined above. Then (X*, Y) is o f  type C of  size (m, 0). 

PROOF. This is a direct consequence of definition of X* and Lemma 3.3. [] 

Y0 
% 

(X, Y): partially of type C 

xoYO Yt Yl+s Xo =¢~t 3 

% 

x21 = ~.m-3 

172m 

X21 

(X*, Y) 

Yt+s 

!' 
• . . . . . . . . . . . . . . . . . . . .  0 

'.°. 

w h e r e • = r + l a n d © = r + l - l .  
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DEFIr~TION 3.10. A pair of walks (X, W) is partially o f  type C* o f  size (l, t , f )  if the 
following conditions hold: 
(1) 0r(Wo, xl) = r + 1. 
(2) Or(W,, xt+i) = Or(W,, x t - i )  = r + 1 - 1 + j for 0 ~  < ] ~< l. 
(3) Or(W, x;) <~ r + 1 for any i, ]. 
(4) There exists an integer f with 0 ~<f ~< t and l + f  ~< r which satisfies Or(Xt, w, -  i) = 
r + 1 - 1 - j for 0 <- j <~ f,  Or(Xt, w,_i_ l) = r + 2 - 1 - f and Or(Wo, w,_I) = t - f 
(5) There exist (a, r + 1)-subgraphs A, A' with respect to {Wo, w~ . . . . .  wt} such that 
Xo • A and x2t • A', where A and A' need not to be different. 

We can make up a pair of walks of type C* from the one partially of type C*. To 
show this, we investigate (X, W) which is partially of type C*. 

LZMMA 3.11. Le t  (X, W )  be partially o f  type C* o f  size (l, t , f ) .  Then the fo l lowing  
hold: 
(1) l + 2 f  <<-t; 
(2) Or(Xt, wt-i+j) = r + 1 - 1 - f  + j  for  0 <~j <~f; 
(3) Or(Xt, wt - l - j )  = r + 1 - 1 - f + j f o r  0 ~ j ~ 1 + f ;  
(4) 0r(Xt+, wt-i) = r + 1 - 1 - f + i f o r  0 <~ i ~ l; 
(5) Or(Xt_, w , _ r ) = r  + l - l - f  + i  forO<-i<-..l.  

PROOF. (1) We have 

r + 1 = 0r(W0, xt) ~< Or(Wo, w,- I )  + Or(W,- I, xt) = (t - f )  + (r + 1 - l - f )  

from Definition 3.10(1), (4). The assertion follows. 
(2) The assertion follows from Definition 3.10(4). 
(3) Since 0r(Wo, w,- I)  = t - f ,  we have w , _ i -  w,_i_ ~ . . . . .  Wo is a path of length 

t - f .  Hence the assertion follows from Lemma 2.1(5). 
(4) From Definition 3.10(2), we have Or(W, xj+~) = r + 1 - l + i. Thus 

r + 1 - 1 + i = Or(W, xt+i) <~ Or(W,, w,_i)  + Or(W,_:, xt+i) <~f + Or(W,-/, Xl+i). 

On the other hand, we obtain 

Or(Wt-f, Xl+i) ~ Or(Wt-i, Xi) '~ OF(XI, Xl+i) ~ (r + 1 - 1 - f )  + i 

from (2). Hence the assertion follows. 
(5) We have our assertion, similar to (4). [] 

Let 8j = w,-t-2i+j for 0 ~<j <~ 1 + 2f  and W*: 80 - 8~ . . . . .  8t+2i. For the case f = 0, 
we set ~7i = x,- for 0 ~< i ~< 21 and X* = X. For  the case f t> 1, we set rlr+,. = x,. for 
0 ~< i ~< 21 and m = l + f. Then we have 

Or(Tq I, 8m) = 0r(Xo, wt-i)  = r + 1 - f <~ r 

from Lemma 3.11(5). Let A and A' be subgraphs as in Definition 3.10(5). Since 
~7I • A N F,+~_i(Sm) , we obtain ~7I-~ • A~(~i) N F,+2_i(8,,) from Lemma 2.3(1). In- 
ductively, we have ~TI-j • Al(rll-j+1)A Fr+l-/+j(Sm) for 2~<j ~<f. Similarly, we have 
T~21+f+j • A;(172/+]-1) [") Fr+l_f+l(~m) for 1 ~<j ~ f .  Let X*: 7/o ~ 711 . . . . .  772,, be a 
walk of length 2m. 

PROPOSITION 3.12. Let  (X, W )  be partially o f  type C* o f  size (l, t, f ) .  Le t  X *  and  W *  
be walks  which are defined above. Then (X* ,  W*)  is o f  type C* o f  size (m, f )  where 
m = l + f .  
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This is a direct consequence of Lemma 3.11 and the definition of X* and 
[] 

(X, W): partially of type C* 

a)_t_2f a)_f a) 

x t  * 0 .  ....... o 

¢), 

x o 

x I • 

(X*, W*) 

noaO a a÷ I 

)7 s 

)Ira • . . . . . . . . . . . . . . . .  * o *  . . . . . . . .  0 

rl2m • 

w h e r e @ = r + l , O = r + l - l , ( > = r + l - l - f a n d  * = r + 2 - l - f .  

4. A FAMILY OF MINIMAL CIRCUITS 

In this section, we construct a nice family of minimal circuits from a pair of walks of 
type C and we show that it gives us a lot of  information about distance relations of 
their neighbors. 

In this paper, we define ~a minimal circuit as a circuit of length g = 2r + 3. Let x, 
z ~ F with 0r(X, z)  = r + 1. Set H(x, z) = A(x, z). It is clear that p[x, z] Up[x, w] forms 
a minimal circuit when w • H(x, z). 

LEMMA 4.1. Let oL, /3, % x, • F with a ~ /3, Or(y, x,) = r + 1 and p[y, x,] = {3, ~Xo 
xl . . . . .  xr}. Let  ~ • H(3,,x,) and P[3',~]={Y/}i, then in the (a, /3)-diagram the 
following hold: 

r),+l and ,-,r+l+j ,. O<~j< then ,-,,+l+j ,. < j  (1) i f  3' • ,-',+1 xj • r, r; ur+l+ifor 0 -< u~+j yor y~ • 
(2) i f  3" • D; +] and x i • O;+]+ i for 0 ~ j  <~ r, then yj • O ~ . ~  i for 0 ~ j  <~ r; 
(3) i f  3" • D;+~ and xj • D; +] +i for 0 <<- j <~ r, then yj • D~_~ +j for 0 ~ j ~ r. 

r l2 r+2  /'~2r+ 1 and T~mr+l +j PROOF. (1) It is easy to see that ~•L~'2r+ILJL. , '2r+ 1 y j •  L,,r+l+ j for O<~j<-r 
from Lemma 2.1(1). 

(2) Let {8}=FI( /3)NF,(x0)  and consider the (/3, 8)-diagram. It is clear that 
r '~r+l+j  Xo • --rrv+l and 3' • ,--~+l.r)~+~ From our assumption and Lemma 2.1(3), we have xj • u~+/ 

for 1 ~<j ~< r. We obtain the locations of the yj's in the (/3, 8)-diagram from (1). In 
particular, we have 0r(/3, yj) = r + 1 + j  for 1 ~ j  ~<r. Since Y0 = 3' • F~+~(a), we obtain 
Or(a, yj) = r + 1 + j  for 1 ~<j ~ r from Lemma 2.1(2). This is the desired result. 

(3) We have our  assertion, similar to (2). [] 

PROPOSITION 4.2. Let (X, Y)  be o f  type C of  size (l ,s)  and v • Fl(yt+,). If" 
Or(X,, v) = r + 2, then 0r(X21-,, v) = r + 2. 

PROOF. First, we assume that s ~> 1. Let  m = l + s, 
v°•Fr+a+i(x,)nFl(v°_l)  for 2<~i<-r. Then we have 
Go • H(y , , - I ,  v °) and let P[Y,,,-1, G0] = {v)}j. 

v ° = v • rr+2(x,) and take 
Or(Ym-l, v °) = r + 1. Take 
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SUBLEMMA 4.3. Or(Xs-1, v~) = r + 1 + i f o r  0 <~ i ~ r. 

PROOF. Note that Or(X,, v °) = r + 1 + i for 0 ~< i <~ r and 

S~_, = M[x~_,, x,; y,,,-1, Ym] ~ {J, E2, E3}. 

r ~ r + l + i  f o r  Consider the (x,,x,_l)-diagram. Suppose that S~._~=J. We have v°E~,+l+-~ 
r~r+l H(ym-1 ,  v °) and O<~i<~r from Lemma 2.1(2). Note that v~=y, , , -1E, . , ,+~,  f o e  

1 n ,+l+,  for O ~ i < ~ r  from Lemrna 4.1(2). Hence the P[Ym-1, G0] = {V}}j. We have vi E "-'r+l+i 
assertion follows. Suppose that Ss_q = E2. In the same manner, we have our assertion 
from Lemmas 2.1(3) and 4.1(1). Suppose that Ss_q=E3.  Similarly, we have the 
assertion from Lemmas 2.1(2) and 4.1(3). Thus we obtain the desired result. • 

Now consider the distance of ym-2 and v~ from x,-l :  we have Or(Y,,,-1, v~) = r + 1. 
Hence, inductively, the following results hold: 

SUBLEMMA 4.4. Take ~ ~ H(ym- i -1 ,  v~) and let P[Ym-i-1,  ~i] ~+1, ={vj ~j for  l ~ i < - 
m - 1. Then: 
(1) Or(X~_1, v ~ = r  + l + i f o rO<~f  <~s, O<-i ~ r ;  
(2) Or(X I, v~ ÷r) = r +  1 + i  for  O<-f <~l, O~i<~r;  
(3) Or(Xt+f, v~ ÷~-f) = r + 1 + i for  0 <~ f <~ l, 0 <~ i <<- r; 
(4) Or(X2t-f, v~ - f )  = r + 1 + i for  0 <~f ~ s, 0 ~ i <~ r. 

PROOF. We have our assertions, similar to Sublemma 4.3. 

Hence, we have 0r(X2t-s, v) -- ar(X21-s, Vo °) = r + 1, by sublemma 4.4. 
Second, we treat the case s = 0. In this case, we also obtain the same results in 

Sublemma 4.4(2)(3). Hence we obtain the desired result. [] 

Vrm__ll V m 
r 

Tv i ::t ::! ::t I ! FT 
Ym Y,~-I Ym-2 Ym-3 Y2 Yl Yo 

COROLLARY 4.5. Let  (u, 3'1, T2, 81, 82) be a basis and z ~ ra(u). IfOr(~/2, Z) = r +2 ,  
then 0r(82, z) = r + 2. 

PROOF. From Lemma 3.6, we have a pair of paths (X, U) of type C* of size (l, 0). 
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Then (X, U) is of  type C of size (l, 0 ) f r o m  C o r o l l ~  3,4, The  assertion follows f r o m  
Proposition 4.2. [ ]  

COROLt~RV 4.6. Let (X, W )  be partially o f  type C* o f  size (l~ t, f )  and ~ • F~(wt). I3 e 
ar(X0, ~) = r + 2, then ar(X~, g) = r + 2. 

PROOF. From Proposition 3.12, (X*, W*)  is of type C* of s i ze  (m, f ) ,  where 
m = 1 +f ,  X*: r/0 ~ ~1 . . . . .  712,, and W*: 80 ~ 8~ . . . . . .  ~St+2r= w,. Note  that Xo = r/f 
and xn  = ~z,,-r. Hence  our assertion follows from PropOsition 4,2. [] 

5. PROOF OF THE THEOREM 

Our purpose in this section is to prove Theorem 1.1. 
Let  F be a distance-regular graph with r = l( l ,  O, k - 1) >1 2, c~+~ = 1 and a,+l = a ~> 

2. Fix a vertex u • F. Let  G = G [ u ]  be the subgraph induced by Fr+~(u). Set 
G = Go U G] U- • • U G,, where the Gj's are connected components of  G. It is clear that 
each Gj is a connected regular graph of valency a. Next we define a graph t2 as follows: 

DEFINITION 5.1. (1) The vertex set of f~ is {Gj I 0 ~<j ~< e}. 
(2) Gq and G, are adjacent in t2 if q ~ t and there exist x~, x2 • G o and Yl, Yi • G, 

with (u, xl ,  x2, Yl, y2) as a basis. 

When Gq and Gt are adjacent in fl, we write Gq ~-Gt. Set f l  = D.0 U f~l t.J . . . .  U f~, 
where t2j's are connected components of f~. Let  

= U c~, a = U p[u, x]. 
GqE~ x E~V 

In order to prove Theorem 1.1, it is sufficient to show that the graph A is a regular 
graph of valency a + 1, diameter r + 1 and girth 2r + 3. 

LEMMA 5.2. (1) g(A) = g ( r )  = 2r + 3. 
(2) Or(U, x)  = On(u, x )  for  any x • A. 
(3) Fj(u) A A = O for  any j >~ r + 2. 
(4) tin(u) = r + 1. 
(5) kn(w) = a + 1 for  any w • ql. 
(6) kn(u) >~ a + 1. 
(7) kn(x) ~ a + 1 for  any x • A. 

PROOF. (1)--(4). The assertions follow from the definition of A. 
(5) Let w • W. Note  that ~P = Fr+l(u). We have C(u, w)  =p[u, w] = A, A(u,  w)  = 
= A and B(u,  w) N A = O since (3). It follows that 

k n ( w )  = Ial(w)l  = IC(u, w)l + IA(u, w)l = c . . ,  + a..~ = 1 + a. 

(6) Take w • ~P. Let  {x~, x2 . . . .  , xo} = rp~(w), p[u, w] = {wj}j and p[u, x,] = {z~j. 
Since g(F) = 2r + 3, w~ # z~ and z~ ~ z~ for 1 ~< i,q <~ a and i ~ q. Note  that wz • 
p[u, w ] = A  and z~ • p [ u ,  x i]=A.  Thus we have 

kn(u) >>- #{w~} + # { z L  z 2~, . . . ,  z~} = 1 + a. 

(7) Take x • A. Let  h = Or(U, x). Then we have h <~ r + 1 from (3). We may assume 
that 1 <~h <~ r f rom (5) and (6). Since x • A, there exists w,+l • ~F with x • p [ u ,  w,+l] = 
{wj}j. Note that x = w h .  Take zr+l ~ A ( u , w , + l )  and let p[U, Zr+I]={Zj}j. Set 
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l = r + 1 - h. Then we have 0r(X, zt) = r + 1. Now we show that A(zt, x) c A. Take  any 

y ~ A(zt, x): 

ZI+ 1 Wr+l Wh+2 

y 

E l _  I ~ : = . . .  ~ = ~ • . .  
7"1-2 ~'1 U W 1 Wh = x 

If  y=wh+l,  then we have y=wn+~ Ep[u,w,+~]cA.  Hence  we may assume that 
y @ wn+x. Let p[zt, y] = {Yj}j. Note  that y~ # zt+~ because g(F) = 2r + 3. Now consider 
the (u, wl)-diagram: 

Y h - 1  

W 2 
' Yh+l 

E /')r+ I 
W r + l  

Since z,+l, w,+l, y~, Y~+I ~ Fr+l(u), we have z,+~, w,+~ e Gq and Yh, Yh+l e Grfor  some 
q, f. Note that Gq e Do a n d  (u, z,+l, Wr+~,yh, Yh+~) is a basis. If  Gq = G  f, then 
Ya+l ~ Gq c ~ .  If  Gq ~ G I, then we have Gq ~ Gf. Also we have Yh+l e Gr c W. Hence  
y E p[u, Yh+l] C A. Thus we have A(z~, x) c A, whence 

ka(x) ~> #{wh-,} + #A(zl ,  x)  = 1 + a. [] 

PROPOSITION 5.3. Let z ~ A. Then the following hold: 
(1) F j ( z ) N ~ , = O  for any j>~r + 2; 
(2) 0r(Z, x) = 0A(Z, x) for any x E A; 
(3) da(z)  = r + 1; 
(4) ka(x) = a + 1 for any x E Ar+l(z). 

We prove our assertion by induction on h = at(u,  z). For  the case h = 0, our  
assertion follows f rom Lemma 5.2. Let 0 ~< t < r + 1. In the proof  of the following 
lemmas we assume that our assertion is true for any h ~< t and we show that our 
assertion is true for h = t + 1. Take  any w ~ At+x(u) and set p[u, w] = {w/}/. 

LEMMA 5.4. Let Gq ~ Do. In the (w,, w)-diagram, exactly one o f  the following holds: 
[ r ~ r + l  (1) Gq f"l ~dJr+l LI D, ~+') = 0 ;  

(2) Gq ~ n , + l  __ r~ i i z.,,, r +  2 - -  ~ ( j .  

PROOF. From the inductive assumption, we have F~(w,) f3 A = O for i ~> r + 2. Hence  
we obtain D~ f'l A = O for any i t> r + 2 and A is an (a + 1, r + 1)-subgraph with respect 
to {w,} from Lemma 5.2(7). 

Suppose that both of  (1) and (2) hold. Then we have a contradiction, f rom L e m m a  
2.3(2). 
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t'l (D,+I U Suppose that neither (1) nor (2) holds. Take a e Gq ,r~, "-',+2n'+1 and 13 e Gq ,+1 
D:+~). Since Gq is connected, there exists a path in Gq connecting them: 

a = X o ~ X l  . . . . .  X p  = ft. 

n,+a  for j ~ O .  Let t =  Without loss of generality, we may assume that xj ~ ,--,+2 
e Dr+2-J}. Then Xo = ,--,+2, x2t E ,-',+1 and x s, x2t-s e .--,+2-j for 1 <~j ~< L max{j I xj ,+1-~ .. n~+1 n~+l n r+ l - j  

Set X: x o - x l  . . . . .  x2~ and W: Wo~W~ . . . . .  w,. Now we show that (X, W) is 
partially of type C*. Since x~ ~ Gq = r,+~(u) and u = w0, we have 0r(W0, xt) = r + 1. We 
have 0r(W, x~+y) = 0r(W, xt-~) = r + 1 - l + j  for 1 <~] ~<l from the locations of the xi's 
in the (w, w)-diagram. Since w, x / c A ,  we obtain Or(W,X~)=Oa(w,x~)<-da(w~)ffi 
r + 1 for any i , j  from the inductive assumption. Let f = max{i I wt_~ ~ p [ x ,  w,]} and 
A = A' = Gq. It is easy to see that they satisfy the conditions of Definition 3.10(4), (5). 
Hence we have that (X, W) is partially of type C* of size (l, t, f ) .  

xl_ I x I . t  o 

x ~  

Note that 0r(W, Xo) = r + 2 and Or(W, x2t) ~ r + 2. This contradicts Corollary 4.6. 
Hence we obtain the desired result. 

Now we say that Gq is o f  type (1) (resp. o f  type (2)) with respect to" w, if G¢ satisfies 
the condition of the case (1) (resp. (2)) in Lemma 5.4. 

LEMMA 5.5. rr+2(w ) t") t I /= ~ .  

PROOF. Let W: Wo ~ wl . . . . .  wt be a path of length t. Since w ~ A, we have y E LF 
with w E p[u, y]. Let Gh ~ £9.o such that y E Gh. Consider the (w,, w)-diagram. Then we 
have y e D~+~ -t. It is easy to see that Gh is of type (2) with respect to w. Suppose that 

/'~r+! there exists x ~ rr+2(w) N W. Let Gq ~ f20 such that x ~ Gq. Since x E ,-,~+2, Gq is of 
type (1) with respect to w. Since DO is connected, there exists a path in DO connecting 
Gq and Gh: 

Cq -- Ho . . . . .  Oh, 

where each Hi ~ Do. Now we have that Hs is of type (1) and Hs+l is of type (2) for 
some O<~s<p. Since H~-Hs+I ,  there exist 3"~,3"2~H~ and 81,82~H~+1 with 
(u, 3'1, 3'2, 81, 82) as a basis. Thus we obtain a pair of paths (X, U) of type C* of size 
(l, 0) from Lemma 3.6. Set 

Q: u~ . . . . .  ul ~ u ~ wl . . . . .  wt 

to be a walk of length q = l + t. Then we have that (X, Q) is partially of type C of size 
(l, t) with A = H~, A' = Hs+l. From Proposition 3.9 we obtain that X*: ao . . . . .  a ~  
is a walk of length 2q such that (X*, Q) is of type C of size (q, 0). Since 
M[ao, a l ;  Wt-1, Wt] e {J, El, E4}, we have that Or(ao, wt) = r + 1. Since ao E A = Hs and 

r,,+~ Hence we have that H~ is of type (1) with respect to w, we have that ao e ,-,,+2. 
Or(ao, w ) = r + 2 .  On the other hand, we have that Or(a2q, w t ) = r + l  from 
M[a2q-1, a2q; wt-l, wt] ~ {J, E2, E3}. Since a ~  ~ A' = H~+I and H~+I is of type (2) with 
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respect to w, we have that t~2q e --,r~r+l ,-,' ' ,--',+1.r~+1 Thus we have that Or(Ot2a, w) # • + 2. 
This contradicts Proposition 4.2. Hence the lemma is proved. [] 

PROOF OF PROPOSITION 5.3. (1) Consider the (w,, w)-diagram. From the inductive 
assumption, D~ f3 A = O for i ~>- r + 2, it is sufficient to show th a t  ,-'~+2r~'+1 tq A = 0 .  
Suppose that Z -- "-'~+2r~r+l ,c~, ~A#O" Take any x ~ Z. We have 

a + 1 <<-k~(x) = I A ~ ( x ) l  = r ~ r + l  t ' ~  • -,~+2,, A,(x)l + [D~+~ tq A~(x)l ~< I/ ,(x)[  + 1. 

Since Or(U, x) <~ da(u) = r + 1, we have that Z is an (a, r + 1)-subgraph with respect to 
{u}. From Lemma 2.3(2), we have that 

O ' #  Z 1") F r + l ( U  ) -- r ~ r + l  ~ A r+l  --  L . r+  2 , , .a O F r + I ( U  ) C= Dr+ 2 N 111 c Fr+2(W ) O l I / .  

This contradicts Lemma 5.5. 
(2) Since A is an (a + 1, r + 1)-subgraph with respect to {wt}, our assertion follows 

from Lemma 2.4. 
(3) This follows from (1), (2) and Lemma 2.3(2). 
(4) Let x ~ A,+l(w). Note that Or(W, x) = r + 1 from (2). We have B(w, x) N A = dp 

from (1). Hence As(x) c C(w, x) UA(w, x). This implies that 

ka(x) ~< C(w, x)[ + IA(w, x)l = Cr+l + ar+l = 1 + a. 

Hence our assertion follows from Lemma 5.2(7). [] 

PROOF OF THEOREM 1.1. Note that g (A)=  2r + 3  from Lemma 5.2(1). Take any 
x ~ A. We have da(x) = r + 1 from Proposition 5.3(3). Thus we have z E Ar+t(x). This 
implies that x e Ar+l(z). Thus we have that ka(x) = a + 1 from Proposition 5.3(4). This 
implies that A is a regular graph of valency ka = a + 1, diameter da = r + 1 and girth 
g(A) = 2r + 3. Thus we obtain the desired result. 

This completes the proof  of Theorem 1.1. [] 
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