Europ. J. Combinatorics (1995) 16, 589-602

Distance-regular Subgraphs in a Distance-regular Graph, I
Axira Hiraxa

Let T be a distance-regular graph with r=1(1,0,k—1)>0 and c,,,, =1. We show the
existence of a Moore graph of diameter r+1 and valency a,,,+1 as a subgraph in . In
particular, we show that eithera,.;=lorr=1.
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1. INTRODUCTION

All graphs considered in this paper are unidirected finite graphs without loops or
multiple edges. Let I" be a connected graph. We identify I" with the set of vertices.

For two vertices u,v in ', a walk of length ! connecting u and v is a sequence of the
vertices u = Xg, X1, .. ., X; = v such that each (x;, x;.,) is an edge of I'. If x;_, # x;,, for
1=<j=<l-1, then we say that the walk is a path. We denote by ar(u, v) the distance
between u and v in T}, i.e. the length of a shortest path connecting # and vin I'. Let

) ={x eT|or(u, x)=j},
kr(u) = IT1(u)l,
dr(u) = max{o(u, x) | x e T}.
For two vertices u and x in I" with ar(, x) =, let
C(u, x)=T;_1(u) NT(x),
A(u, x) =T (u) NT(x)
and
B(u, x) =Tj.1(u) N T (x).
T is said to be distance-regular if
M) =IC, x), a(l)=|A,x)] and  by(I)=|B(w,x)|

depend only on j = 3p(u, x) rather than on individual vertices. It is easy to see that if I
is a distance-regular graph, then k() and dr(x) do not depend on the choice of w.
Hence we write kr and dr. They are called the valency and the diameter of T.
Sometimes we omit the suffix when the concerning graph is clear. The numbers c;, a;
and b; are called the intersection numbers of T', and

% cl cz P cj e o 0 cd—l Cd
N=4ay a1 a -+ a -+ a4 a4
bo by by -++ by -+ by *

is called the intersection array of I'.

The following are basic properties of the intersection numbers which we use
implicitly in this paper;
Q) ¢+a;,+b,=k;
(2) k=by=b,=-+-=by_2b;_121;
(3) 1 =C2st2$’ . -$cd_1ScdSk.

The reader is referred to [1, 3] for general theory of distance-regular graphs.
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We use the following notation in this paper:

I(a» B: 7) = #{] I (cj’ aj: b]) = (Cl, Bs 7)}

For vertices x, y € I, we write x ~y when they are adjacent. Let X and Y be sets of
vertices. We denote e(X, Y) the number of edges between X and Y. We write
e({x}, Y)=e(x, Y) when X consists of a single element x. Let x, y e I" with ar(x, y) =t
We denote by p[x, y] the unique shortest path connecting x and y when ¢,=1.-We
write p[x, y] = {z;}; if

plxyl=x=z2~zu~ - ~z~ - ~z~z=y}

A circuit of length I is a sequence of distinct vertices xqo, x;,...,x,—; such that
(xi, x;41) is an edge of T for 0=<i=<[—1, where x, =x, and / #2. Let g = g(T') denote
the girth of T that is the minimal length of a circuit in T

In this paper, we prove the following result.

THEOREM 1.1. Let T be a distance-regular graph with r =1(1,0, k — 1) > 0. Assume
that ¢,y = 1. Then there exists a Moore graph of valency a,., + 1 and dtameter r+1as
a subgraph in T.

A detailed description of Moore graphs will be found in [1, 3].
Using the classification of Moore graphs, we obtain the following:

CoroLLary 1.2, Let T be a distance-regular graph with r =1(1, 0, k — 1) > 0. Assume
that ¢, =1. Then either a,,.,=1orr=1.

The theorem is clear for the case a,.; =1, in this case the subgraphs are mere circuits
of length 2r +3.

Proposition 4.3.11 of [3] shows the existence of distance-regular subgraphs with d =2
and ¢;=1 in a distance-regular graph with r=1I(1,a,,b,)=1 and c;=1. So our
theorem is the result for general r, but with addtional condition a;=0. In the
subsequent paper [6], we treat the case a;>0 and show that the existence of a
collinearity graph of a Moore geometry as a subgraph in a distance-regular graph with
r= 1(1, a,, bl) and Copr1 = 1.

Here we conjecture the following:

Coniecture. Let T be a distance-regular graph and let r=I(1, a;, b,). If ¢, =1,
then s <2r + N for some absolute constant N.

Our results show the conjecture is true on the assumption r =2 and a,,, # 1. For the
remaining cases, we hope that our method is also applicable with some modification.

We believe that to find ‘nice’ distance-regular subgraphs in a distance-regular graph
will be a key for the classification of distance-regular graphs.

2. PRELIMINARIES

In this section, we introduce the intersection diagram which will be our main tool.
Let o and B be adjacent vertices and D{=T,(a) N T} (B). The intersection diagram
with respect to (e, B) is the collection {D},; w1th lines between them. We draw a line

Dj—-D4,

if there is a possibility of an existence of edges between them, and we erase the line
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when we know that there is no edge between them. Also, we erase D} when we know
that it is empty. A detailed description of the intersection diagram wxll be found in [2],
[4] and [5]. In this paper we say ‘(a, 8)-diagram’ instead of ‘the intersection diagram of
the graph I' with respect to (a, B)’. .

In this section, we assume that I' is a distance-regular graph with r=1(1,0,k—1)=
2, €41 = 1 and a,.1=a =2

Lemma 2.1.  Let a and B be adjacent vertices in T'. Let q be an integer with 1 <q <r.
Then:
(1) The (a, B)-diagram has the following shape:

D(‘)—Di ee — Dr  ——Dr+l _pr+2 ee —D?r

r+l r+2 r+3 2r+} 2r+2
] — r+2 _— DI D2r+] 2742 o0
D r+l Dr+2 D2r D2r+l D 2r+2
V] cer —— 1 +2 +3 aee — D2+l 2re2
DO Dl D? D:-rl D;+2 DZr D2r+|

Moreover, there exists no set of 3-vertices {x, y, z} with x ~y~z, x € D'Z}, ye D! and
zeDi_UD! ! fort<2r+1.

) Ifzo~zl <« -~z is a walk of length r with or(a, z;)=r+1+] for 0<]<r and
PpE rr+](ﬁ): then 3r(ﬂ, Z]) =r+1 +]f0" 1 <] sr

(3) If zo~z,~ " ~2 is a walk of length r with dr(a, z;))=r+1+j for 0<j<r and
20 e T.(B), then ar(B, z)=r+jforl<j=r.

@) If xo~x;~ -+ ~x is a walk of length | with dr(a,x;)=q —1 +] forO0=<j=<land

xo € T,(B), then or(B, x;)=q +j for 0<j=<min{,, r +1—gq}.
) lf Xo~Xy~+++~x is a path of length | with xqeT,(B) and x, e T';..(B), then
or(B,x)=q +jfor0<j<min{l, r +1-g}

Proor. (1) See [2] and [S].

(2) Consider the (a, B)-diagram. We have z, € D;i] from our assumption. Since
21~ 2o and (e, z,) = r + 2, we obtain z; € D7*3. Inductively, we obtain z; € D313/ for
2 =<j=r This implies our assertion.

(3,4) We have our assertion, similar to (2).

(5) Since ¢,+;=1 and a,.;=0 for 1 <j=<r—gq, we have the assertion. O
Let X be a set of vertices. We identify X with the induced subgraph on X.

DeriNTion 2.2, Let X, Y < T and p, q be positive integers. A nonempty set X is the
(p, q)-subgraph with respect to Y if the following conditions hold:
(1) kx(z)=p for any z € X;
(2) or(x,y)<qgforanyx e Xandy e Y.

Lemma 2.3. Letw, z e T and A be an (a, r + 1)-subgraph with respect to {w}. Then:
(1) if z e ANT(w) for some 1 <s =<r, there exists x € A;(z) NT;..1(w),
(2) ANT, (W)= 2.

Proor. (1) Suppose that A;(z) NI, (w)=2. We have A(z) cT(w)UT;_1(w).
Thus
2<saskp(z)<a;+c¢ =1

This is a contradiction.
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(2) Let m=max{j |ANT;(w)»*}. We have 1=sm=r+1 from our assumption.
From the maximality of m, we have z e ANT,(w) and ANT,,,,(w)=O. Suppose
that m <r. Then we have a contradiction from (1). Thus m =r + 1. O

LemMma 2.4. Let a, B be adjacent vertices in T. Let A be an (a +1, r + 1)-subgraph
with respect 10 {a} such that a, B e A. If dr(a, x)=0dr(a,x) for any x € A, then
ar(B, x) = 8A(B, x) for any x € A.

Proor. Consider the (e, B)-diagram. Let

r+1

L=UDl, RrR=UDi".
i=0 i=0

From our assumption, we have DN A= fori=r +2. Thus Ac LURU D;}]. Take
any x € A. Note that ar(a, x) = d(a, x) iff p[e, x] = A. Thus it is sufficient to show that
plB,x]cA. If x e L, then

p{B,x]={B}Up[a,x] = A.
If x € R, then
p[B. x]=pla, x] = A.

Assume that x e D;}] and set {y} =T,(x) N D;*'. We show that y e A. If y ¢ A, then
Ai(x) e DIT1u Dy,;. Thus we have

a+1sk(x)<e(x,DII}UD..)=a.
This is a contradiction. Thus we obtain y € A. Since y €e RN A, we have
p[B, x]=p[B, y]U{x} = A.
This is the desired result. a

3. PaIrs oF WALKS

Let m and n be positive integers and X = (x;,...,x,) and Y=(y,,...,y,) be
sequences of vertices of I'. The distance matrix M[x,, ..., Xy, ..., y,Jon X and Y is
an m X n matrix the (i, j)th entry of which is ar(x;, y;). Let

J_<r+1 r+1)
r+1 r+1/
r r+1 r+1 r
B w0l
T\r+1 r+1 E, r+1 r+1/°
r+l1 r+1 r+1 r+1
Be(T 1) we ne(2D 7YY
3 r r+1 and E, r+1 r

Let s, ¢ and / be non-negative integers. Let

Xixo~x~~Xxy, Yiyo~yi~ ~Yus
and

W:wo~w]~...~w’

be walks of length 2/, / + s and ¢, respectively.
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In this paper, walks are ordered, i.e. the following are considered to be different:

Wiwg~wy~---~w, and Wiw~we_ 1~ ~wp.

DeriNiTioN 3.1, A pair of walks (X, Y) is of type C of size (I, s) if the following
conditions hold:
1) 0=ss<l;
(2) E = M[x,', Xi+13 Yi—i—1, y[_,'] € {J, E], E4} forOsis|- 1;
(3) Frui=M[x1sy Xiin13 Yir Yisr) €4, Ez, Es} for 0<isl-1;
(4) 8= M[xi, Xis1; Yiai Yisin1]) € Y, Ep, Es}for 0<is<s—1;
(5) Su-i=M[xy i1, Xa—is Y141 Viwie1] €4, Eq, Eg} for 0siss—1.

DerFiNITION 3.2. A pair of walks (X, Y) is of type C* of size (I, s) if the following
conditions hold:
1) O0ss<is=sr;
(2) or(ypxi-)=or(yp xis)=r+1-Il+jfor0=<j=<l;
(3) ar(xb)’j)= r+l—jforO0=j=<l
(4) or(xp, yuj)=r+1-l+jfor0<js=<s;
(5) ar(x;, y)<r+1foranyi j

Remark. The above definitions give us the following entries of the distance.matrix
on X and Y:

Type C Type C*

Yo Y Yivs Yo ¥ Vies

B [

X X

where @ =r+1, O=r+1-land O=r+1—-[+s.
For the rest of this paper we use the notation (X, Y) for a pair of walks (X, Y).

Lemma 3.3. Let (X, Y) be of type C* of size (I, s). Then the following hold:
(1) dc(y-rx1)=r+1-l+i+jforO<i<land 0sj<I-i;
(2) or(yi—pr xivj)=r+1-l+i+jforO<i<land0sj<l-—i,
3) or(Yienxi-)=r+1-Il+itjforO<issand 0<j<l-i
@) or(Yrei» Xpuj)=r+1—-l+i+jfor0<issandO<j<l-i,
() E=M[xi, X313 Y1-i-1, Yi-i] = Eq for 0isl—1;
(6) Frei=M[x\sp, Xp1ie13 i yir1] = Ep for 0si<l-1;
(7) Si=M[xi, Xi113 Yiui Yisin1] = Es for 0<i<s - 1;
(8) Sa-i=M[xy_;—1, X3 Y1+is Yisir1) = E1 for 0<i<s—1.

Proor. (1) We prove the assertion by induction on i. The case i =0 follows from
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Definition 3.2(2). Let 1<h =</ and set g=r+1-1+h. We have x, e [';(y,-5) from
Definition 3.2(3). From the inductive assumption, we have dr(y;—x+1, X1-;) =q — 1 +j
for 0<j</—h+1. Thus we have dr(y,—n x;1-))=q +j for 0<j<[/—h from Lemma
2.1(4). This is the desired result.

(2-4) We have our assertions, similar to (1).

(5) Let 0<i<!-1 and consider the (x;, x;,,)-diagram. We have y,_; e D;*! and
Yi—i-1 € Tryi(xi4q) from (1). Since op(y;-i-1, x;)<r+1 from Definition 3.2(5), we
obtain y,_;_, € D71}]. This is the desired result.

(6-8) We have our assertions, similar to (5). O

CoroLLARY 3.4, If (X, Y) is of type C* of size (I, 5), then (X, Y) is of type C of size
@, s).

Proor. This is a direct consequence of Lemma 3.3. O

DerNniTioN 3.5. Let u, v1, y2, 8), 8; be mutually distinct vertices in I'. The
quintuple (u, 1, ¥2, 6;, 62) is a basis if the following conditions hold:
(1) Y15 Y2 61; 825 r,+,(u),
(2) y,~v; and &; ~ §,.
(3) Let
Pl =p[u) ‘YI]np[u, 81]={u =uUg~Up~-- .~u1},
P2=p[uv 72] np[u, 62] ={u =yg~v;~-- ~vh}-
Then PNP,={u}and !l +h=r+1.

The following lemma shows that we obtain two pairs of paths of type C* from a
basis.

LemMA 3.6. Ler (u, v, v, 81, 8,) be a basis. Set

plu, il={u=uo, us, ..., uy=PBun, Bu-1, B2, -- -, Bo= 71}
plu, 8\)={u=uo, uy, ..., u; =By, Brs1, Bhi2s- -+, Ban =81},
plu, v ={u=vo,v1,..., 0s=x, %1, X125,..., %= ¥2h
plu, Sl={u=vo,vy,...,un=x, Xi41, Xi42, ooy X2 = 83},
Uiy ~uyy~ -+ - ~uy, B:Bo~PBi~" "~ B,
Vivp~vy_1~- -~y and Xixg~x;~: " ~xy

Then:

(1) (X, U) is of type C* of size (I, 0);

(2) (B, V) is of type C* of size (h, 0).

Proor. €onsider the distance matrices on X and U (resp. B and V). It is easy to
check the conditions of Definition 3.2. ]

LEMMA 3.7. Let a and B be adjacent vertices in T. Let A be an (a, r + 1)-subgraph

with respect to {a, B). If x e ANT,, (), then there exists a vertex 7 e A (x) with
M(z, x;a,Ble{J, E\, E4}

ProoF. Since 2<a =<k, (x), we have z),z, € A,(x). Consider the (a, B)-diagram.
Note that (D73UD3UDIENNA=C and x e D721 U D™! from our assumption.
First, we assume that x € D/*', Since e(x, D}_; U Di.))=c,+a,=1and AND}?=

, at least one of z; and z, is in D/}l So we have z e D'T1N A (x). Then it
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is easy to show that M([z, x; @, B] = E,. Second, we assume that x € D}1. If z; € D[1}
for some i € {1, 2}, then we have z =z € A;(x) with M[z, x; a, B]=J. Suppose that
z ¢ D7t} for i=1,2. Since e(x, Dj.)=e(x,D!*")=1 and D[{2N A=, we may
assume that z; € D7, and z, € D;*. Thus we have z;, € A;(x) with M([z,, x; @, B] = Ey
Hence we have our assertion. O

Next, we obtain a sufficient condition to yield a pair of walks of type C.

DeriniTioN 3.8. A pair of walks (X, Y) is partially of type C of size (l,s) if the
following conditions hold:
(1) Let Y':yo~y,~---~y. Then (X, Y') is of type C* of size (I, 0).
(2) There exist (a, r + 1)-subgraphs A, A’ with respect to {y;, ¥+1, ..., Y1+s} such that
xo € A and x5 € A’, where A and A’ need not to be different.

We construct a pair of walks of type C from the one which is partially of type C. Let
(X, Y) be partially of type C of size (I, s). We may assume that 0 <s. Let a;,,; = x; for
0<j=<2l and A and A’ be the subgraphs as in Definition 3.8(2). Since ar(y, a;) =
r +1, we obtain

a,_y € Ay(a;)  with Ma,_y, a5y, Yisa] € U, Ey, Edq}
from Lemma 3.7. Hence we have dr(a;-1, y1+1) = r + 1. Inductively, we can take.
a;-; € A(a;_j4) with M{a,_j, @s_ji1; Yiej-1, Vi) € Y, Ev, Eg}
for 2=<j=s. Similarly, we obtain
Cprrs4 € A(@2as4j-1)  With M[@as), @arej—1i Yisj-1, Yinegl € U, E1, Ed}
for 1 <j=s. Note that
M[x,y, z, w] e {J, Ey, E4} iff My, x, z, w] e {J, E,, E3}.
Letm=1I!+sand X* a¢yg~a;~ - -+ ~ a,, be a walk of length 2m.

ProrosiTiON 3.9. Let (X, Y) be partially of type C of size (I, s), m=1+s and X* be
a walk of length 2m defined above. Then (X*, Y) is of type C of size (m, 0).

Proor. This is a direct consequence of definition of X* and Lemma 3.3. O
(X, Y): partially of type C X+ Y)
Yo Yias
% Lo
y y Vies
X 0 il I Xp=0y s O
Xy |® ceeeeenereninnaens o am P ol

*a = *u= %m-3 —El
.
o i

where @=r+1and O=r+1-1
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DerINtTION 3.10. A pair of walks (X, W) is partially of type C* of size (I, ¢t, f) if the
following conditions hold:
(1) ar(Wo, x,) =r+1.
(2) or(wy, xp4)=o0r(w, x;_))=r+1-Il+jfor0sj=<l
(3) or(w;, x;)<r+1 for any i, j.
(4) There exists an integer f with 0<f =t and [+ f <r which satisfies or(x;, w,_;) =
r+1-Il—-jfor0<j<f, or(x;,, w,_p_1)=r+2-1—fand or(wp, w,_p) =t — f.
(5) There exist (a, r + 1)-subgraphs A, A’ with respect to {wg, w;,..., w,} such that
Xo € A and x5, € A’, where A and A’ need not to be different.

We can make up a pair of walks of type C* from the one partially of type C*. To
show this, we investigate (X, W) which is partially of type C*.

Lemma 3.11. Let (X, W) be partially of type C* of size (I, 1, f). Then the following
hold:
(1) I+2f =z,
@) or(xp, wepu) =r+1=I-f+jfor0<j<f;
) dr(xp,ws_)=r+l1—-I—f+jfor0O<j<l+f,;
@) or(xppwi—p=r+1-Il—-f+ifor0<is<l
S) or(xi—powi—p)=r+1-Il-f+iforOsi=<l

Proor. (1) We have
r+l= ar(Wo, x,) = ar(Wo, W,_f) + ar(W,_f, x,) = (l _f) + (r +1—1 _f)

from Definition 3.10(1), (4). The assertion follows.

(2) The assertion follows from Definition 3.10(4).

(3) Since or(wo, w,_) =t —f, we have w,_;~w,_,_;~--~wy is a path of length
t — f. Hence the assertion follows from Lemma 2.1(5).

(4) From Definition 3.10(2), we have ar(w,, x;+;,) =r+1—1+i. Thus

r+1=1+i=03r(w, x14;) < oW, wi—s) + r(W,—p, Xp0)) S f + 0r(Wi—p, X14)-
On the other hand, we obtain
Or(Wi—p X14) S Or(Wi—p X;) + 0r(xy, Xpp ) S (r+1—=1—f)+i

from (2). Hence the assertion follows.
(5) We have our assertion, similar to (4). O

Let §;=w,_;_pr; for 0<j</+2fand W*: §5~8,~ -~ 8;+2. For the case f =0,
we set n;=x; for 0<i=<2/ and X*=X. For the case f>1, we set Nr+ = X; for
O=<i=?2/and m =1+f Then we have

or(ny, 8m) = or(xo, W) =r+1—f=r

from Lemma 3.11(5). Let A and A’ be subgraphs as in Definition 3.10(5). Since
nr € ANT,,, 4(8,), we obtain n,_; e Ai(n)N I12-4(8,) from Lemma 2.3(1). In-
ductively, we have M- € Ai(ny—j+1) N p4j(8,) for 2<j=<f Similarly, we have
Mu+f+j € A;(T]z,+j_1) N F,+1..f+j(8,,,) for 1 g] sf Let X*: Mo~ M ™" """~ MNon be a
walk of length 2m.

ProposiTion 3.12.  Let (X, W) be partially of type C* of size (I, 1, ). Let X* and W*
be walks which are defined above. Then (X*, W*) is of type C* of size (m, f) where
m=1[+f.
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Proor. This is a direct consequence of Lemma 3.11 and the definition of X* and
W, O

(X, W) partially of type C* (X*, W¥*)

n m m+f
. Wy By w_, ) ] .
0 . nx
x|e Xy KOsk eenen o nm @ ceovserereeneae F1-F e (3
xy [
Nom hd

where ®=r+1, O=r+1-,, O=r+1-Il—~fand *x =r+2-1-7

4. A FamiLy oF MINIMAL CircuITS

In this section, we construct a nice family of minimal circuits from a pair of walks of
type C and we show that it gives us a lot of information about distance relations of
their neighbors.

In this paper, we define -a minimal circuit as a circuit of length g =2r +3. Let x,
z e I' with op(x, z) =r + 1. Set H(x, z) = A(x, z). It is clear that p[x, z] U p[x, w] forms
a minimal circuit when w € H(x, z).

Lemma 4.1. Let o, B, v, x, e T with a ~ B, ar(y, x,)=r+1and p[y, x,] ={y~x,~
x,~-++~x.}. Let £e H(y,x,) and ply, €] ={y};, then in the (a, B)-diagram the
following hold:

(1) ifye D}t and x; e D} " for0<j<r, then yye D;1iY forO<j=<r;
(2) if ye D;t} and x; e D}, forO<j<r, then yye D{i{i forO<j<r;
() if ye D,  and x; e D711} for 0<j<r, then y;e D}, for0<j=<r.

Proor. (1) It is easy to see that £ e DI/1}U D37} and y; e D71y} for O0<j=<r
from Lemma 2.1(1).

(2) Let {8}=TI1(B)NT,(x,) and consider the (B, §)-diagram. It is clear that
xoe D;*! and y e D}]. From our assumption and Lemma 2.1(3), we have x; € D;3;*/
for 1<j<r. We obtain the locations of the ys in the (B, 8)-diagram from (1). In
particular, we have or(B, y;)=r+1+j for 1 <j=<r. Since yp=7y eT,,,(a), we obtain
or(a, y;)=r+1+j for 1 <j=<r from Lemma 2.1(2). This is the desired result.

(3) We have our assertion, similar to (2). O

ProposiTION 4.2. Let (X,Y) be of type C of size (I,s) and v el (yis). If
or(x;, v) =r +2, then or(xy-5, v) =r+2.

Proor. First, we assume that s=1. Let m=1I+s, vi=vel,,,(x,) and take
V) eTryafx,)NT(vY,) for 2<i=<r. Then we have dr(yn-, v9)=r+1 Take
&0 € H(Ym-1, v7) and let p[ym,_1, &) ={v}}
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SUBLEMMA 4.3. ar(x;_1, v})=r+1+iforO<is<r.

Proor. Note that op(x,, v))=r+1+ifor0s<i=<r and

Ss—l = M[xs—lx x:;ym—l.- ym] € {]’ EZ: E3}

Consider the (x,, X;_;)-diagram. Suppose that S,_,=J. We have v{e D;}}} for

O<is<r from Lemma 2.1(2). Note that v}=y,_, e DI}, & € H(Ym-1,v?) and
P[Ym-1» &) ={v}}. We have v} e D;I]3! for 0<i=<r from Lemma 4.1(2). Hence the
assertion follows. Suppose that S,_, = E,. In the same manner, we have our assertion
from Lemmas 2.1(3) and 4.1(1). Suppose that S,_,=E;. Similarly, we have the
assertion from Lemmas 2.1(2) and 4.1(3). Thus we obtain the desired result. ]

Now consider the distance of y,,_, and v! from x,_;: we have ar(ym-1, v}) =1 +1.
Hence, inductively, the following results hold:

SuBLEMMA 4.4, Take & € H(Ym-i—1, V) and let p[ym-i-1, & =i} for 1sis
m — 1. Then:
(1) or(xs—p )=r+1+ifor0<fss 0<i<r,
() orlxpviN=r+1+ifor0sf=<l 0<is<r,
() oar(xpp VN =r+1+ifor0<sf<i 0<is<r
(4) or(xy—pvif)=r+1+ifor0sf=<s O<is<r

Proor. We have our assertions, similar to Sublemma 4.3. B

Hence, we have ar(xy_;, v) = dr(xa_;, v3) =r + 1, by sublemma 4.4.
Second, we treat the case s =0. In this case, we also obtain the same results in

Sublemma 4.4(2)(3). Hence we obtain the desired result. O
CO Cl CZ §m—2 Cm—l
vo vl v2 v3 ym2 ym-l \gym
v
1

ve v
v) v v2 ve-l gy
v vl v} v l V-2 eyl gy

Vm Im-t Im2 Im-3 Y2 1 Yo

CoroLLARY 4.5. Let (u, y1, ¥2, 81, 8,) be a basis and z e Ty(u). If dr(y2, 2) =1 +2,
then 3p(6,, z)=r+2. ‘

Proor. From Lemma 3.6, we have a pair of paths (X, U) of type C* of size (I, 0).
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Then (X, U) is of type C of size (/, 0) from Corollary 3.4. The assertion follows from
Proposition 4.2. O

COROLLARY 4.6. Let (X, W) be partially of type C* of size (I, t, f) and £ e T\(w,). If
or(xe, £) =r +2, then dar(xy, £)=r+2.

Proor. From Proposition 3.12, (X*, W*) is of type C* of size (m, f), where
m =l+f, X*: Mo~ N1~ """~ Nam and W*: 60"‘61""" '~61+2f=W,. Note thatxo=17f
and X = 12,5 Hence our assertion follows from Proposition 4.2. a

5. PrROOF OF THE THEOREM

Our purpose in this section is to prove Theorem 1.1.

Let T be a distance-regular graph with r=1(1,0,k —1)=2, ¢;,4,; =1 and a,4; =a =
2. Fix a vertex ueTl. Let G=G[u] be the subgraph induced by I',.,(u). Set
G =GyU G, U - - UG,, where the G;’s are connected components of G. It is clear that
each G; is a connected regular graph of valency a. Next we define a graph € as follows:

DeriniTion 5.1, (1) The vertex set of Qis {G;|0=<j=<e}.
(2) G, and G, are adjacent in Q if g #t and there exist x;,x; € G, and y;, y; € G,
with (u, x,, x5, y1, y2) as a basis.

When G, and G, are adjacent in Q, we write G, ~G,. Set Q=Q,UQ,U~--UQ,
where Q;’s are connected components of Q. Let

v= U G, A= U ply, x].
Gyefl xeW

In order to prove Theorem 1.1, it is sufficient to show that the graph A is a regular
graph of valency a + 1, diameter r + 1 and girth 2r + 3.

Lemma 5.2. (1) g(A)=g()=2r+3.
(2) 8r(u, x) = 3a(u, x) for any x € A.
(3) T;w)yNA=D forany j=r+2.

(4) dpy(u)=r+1.

(5) kaw)=a+1 forany w e W.
(6) ka(u)=a +1.

(7) ka(x)=a +1 for any x € A.

Proor. (1)—(4). The assertions follow from the definition of A.
(5) Let w € W. Note that W cT,,,(u). We have C(u, w)cplu, wjc A, A(u,w)c
W c A and B(u, w) N A= since (3). It follows that

kA(w) = IAI(W)I = IC(u, W)I + IA(u’ W)l =61 + ar1 = 1+a.

(6) Take w e W. Let {x;, xs,...,%}=%¥i(w), plu, w]={w}; and plu, x)={z}}
Since g(T)=2r+3, wy#z} and z}#z{ for 1<ig=<a and i#q. Note that w, €
plu, wl< A and z} € p[u, x;] = A. Thus we have

ka(u)= #w}+ #{z1, 23, ..., 20}=1+a

(7) Take x € A. Let h = dr(u, x). Then we have h <r +1 from (3). We may assume
that 1 <h <r from (5) and (6). Since x € A, there exists w,,; e ¥ withx e plu, w1l =
{w}. Note that x=w, Take z,. €A%, w,,) and let plu, Z+1] =1z} Set
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I=r+1—h. Then we have dr(x, z;) = r + 1. Now we show that A(z, x) = A. Take any
y e A(z;, x):

2 Wil Wha2
A Y — e ses
24
w
h+l y
zl-r»-—o—o— eve m W
2 ] 1 h=x

If y=w,,, then we have y =w,,; € p[u, w,.;]c A. Hence we may assume Fhat
y #wy.1. Let p[z, y] ={y}; Note that y, #z,,, because g(I') =2r + 3. Now consider
the (u, w,)-diagram:

V-1
Z) ._< .es
W zl Z,
1
21 pYy € DY
Whel W
Wy ’_‘:— o _,:<:_—0- .
2 h y Yol

Since z,.1, Wes1, Yn, Yae1 € Ia1(u), we have z,.1, W,y € G, and y,, Ya+1 € Gy for some
q, f Note that G, e Q and (¥, 2,41, Wr+1, Ya, Ya+1) is a basis. If G, =Gy, then
Yn+1 € G, W. If G, # Gy, then we have G, = G;. Also we have y,.; € G, = W. Hence
y € p[u, yn+1] © A. Thus we have A(z, x) = A, whence

ka(x)=#{w,_ 1} + #A(z, x)=1+a. O

ProrosiTION 5.3.  Let z € A. Then the following hold:
M T(z)NA=D forany j=r +2;
(2) 9r(z, x) = 3a(z, x) for any x € A;
(3) da(z)=r+1,;
(4) ka(x)=a+1 forany x € A,,1(2).

We prove our assertion by induction on h =dr(u, z). For the case h =0, our
assertion follows from Lemma 5.2. Let 0<t<r+1. In the proof of the following
lemmas we assume that our assertion is true for any k<t and we show that our
assertion is true for A =1+ 1. Take any w e A,,,(u) and set p[u, w] = {w};.

Lemma 5.’4. Let G, € Qq. In the (w,, w)-diagram, exactly one of the following holds:
(1) G,N(DiuD Y=,
(2 G,ND/Hi=w@.

ProoF. From the inductive assumption, we have I';(w,) N A = for i = r + 2. Hence
we obtain DjNA=( for any i=r+2 and A is an (a + 1, r + 1)-subgraph with respect
to {w,} from Lemma 5.2(7).

Suppose that both of (1) and (2) hold. Then we have a contradiction, from Lemma
2.3(2).
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Suppose that neither (1) nor (2) holds. Take a € G, N D;}} and B € G, N(D;iV
D7*™). Since G, is connected, there exists a path in G, connecting. them:

a=Xg~X 1~ ~X,=B.

Without loss of generality, we may assume that x; ¢ D1} for j#0. Let I=
max{j | x; € D;337}}. Then xo € D73}, xuy e D;il and x;, xy_;je D337} for 1<j=<l.
Set X:xg~x;~+++~xy and Wiwg~w;~---~w, Now we show that (X, W) is
partially of type C*. Since x; € G, =T',.,(u) and u =wj,, we have ar(wy, x) =r + 1. We
have dr(w,, X14;) = 8r(W, x;—;)) =r+1—1+j for 1<j=<! from the locations of the x;’s
in the (w, w)-diagram. Since w;, x; € A, we obtain ar(w;, x;) = da(w;, x;) <das(w;) =
r+1 for any i,j from the inductive assumption. Let f=max{i|w,; € p[x;, w;]} and
A=A'=G,. Itis easy to see that they satisfy the conditions of Definition 3.10(4), (5).
Hence we have that (X, W) is partially of type C* of size (I, t, ).

X1 X X
e —0—8

.es —0—0<..T."'_.<:‘::
e it Y -\

xu

Note that ar(w, xo) =r+2 and ar(w, x5)#r +2. This contradicts Corollary 4.6.
Hence we obtain the desired result.

Now we say that G, is of type (1) (resp. of type (2)) with respect to w, if G, satisfies
the condition of the case (1) (resp. (2)) in Lemma 5.4.

LemMa 5.5. T ,(w)N¥=0.

Proor. Let W:wy~w;~ -+~ w, be a path of length ¢. Since w € A, we have y e ¥
with w € p[u, y]. Let G, € Q; such that y € G,. Consider the (w,, w)-diagram. Then we
have y e D!*!7" It is easy to see that G, is of type (2) with respect to w. Suppose that
there exists x € T, ,o(w) N'¥. Let G, e Q; such that x € G,. Since x e Dt G, is of
type (1) with respect to w. Since € is connected, there exists a path in €, connecting
G, and G:

Gq=Hozle"'sz=Gh,

where each H, € Q,. Now we have that H, is of type (1) and H;.,, is of type (2) for
some O0<s<p. Since H,~H,,,, there exist y,,y,e H; and &), ;€ H;, with
(4, Y1, 2, 81, 82) as a basis. Thus we obtain a pair of paths (X, U) of type C* of size
(I, 0) from Lemma 3.6. Set

Q:ul~.--~u1~u~w1~.-.~wl

to be a walk of length g =! + t. Then we have that (X, Q) is partially of type C of size
(I, 1) with A= H,, A’ =H,,,. From Proposition 3.9 we obtain that X*: ag~ - ~ay;
is a walk of length 2¢ such that (X* Q) is of type C of size (g,0). Since
M[ao, ay;w,_y, w,) € {J, E, E,}, we have that dr(ao, w;) =7 + 1. Since ag e A=H, and
H; is of type (1) with respect to w, we have that ap e D’+3. Hence we have that
dr(ag, w)=r+2. On the other hand, we have that dr(az,w)=r+1 from
Mla,,_y, ay;w,_y, w] € {J, E;, E3}. Since ay, € A’ = H,.y and Hy., is of type (2) with
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respect to w, we have that a,, € D;"'U D7} Thus we have that dr(az, w)#r+2.
This contradicts Proposition 4.2. Hence the lemma is proved. a

ProOF of ProrosiTion 5.3. (1) Consider the (w,, w)-diagram. From the inductive
assumption, DiNA= for i=r+2, it is sufficient to show that DIIINA=@.
Suppose that Z = D;1} N A# (. Take any x € Z. We have

a+1<ky(x)=|A(x) = D3N A (X)] + DLy N A (X)) < |Z,(x)] + 1.

Since dr(u, x) <d,(u) =r +1, we have that Z is an (a, r + 1)-subgraph with respect to
{u}. From Lemma 2.3(2), we have that

G#ZNT,1(u)=DiHNANT, . (w) = DN W T, (W) N

This contradicts Lemma 5.5.

(2) Since A is an (a + 1, r + 1)-subgraph with respect to {w,}, our assertion follows
from Lemma 2.4.

(3) This follows from (1), (2) and Lemma 2.3(2).

(4) Let x € A,+1(w). Note that ap(w, x)=r +1 from (2). We have B(w x)NA=¢
from (1). Hence A,(x) = C(w, x) U A(w, x). This implies that

kA(x) = C(wl x)l + IA(W) X)l =Cray + a, = 1+a

Hence our assertion follows from Lemma 5.2(7). O

Proor oF THEOREM 1.1. Note that g(A)=2r+3 from Lemma 5.2(1). Take any
x € A. We have dj(x) = r + 1 from Proposition 5.3(3). Thus we have z € A,,,(x). This
implies that x € A,;(z). Thus we have that k,(x) =a + 1 from Proposition 5.3(4). This
implies that A is a regular graph of valency k, =a + 1, diameter d,=r+1 and girth
g(A) =2r + 3. Thus we obtain the desired result.

This completes the proof of Theorem 1.1. g
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