Distance-regular Subgraphs in a Distance-regular Graph, I

AKIRA HIRAKI

Let Γ be a distance-regular graph with $r = l(1, 0, k-1) > 0$ and $c_{2r+1} = 1$. We show the existence of a Moore graph of diameter $r + 1$ and valency $a_{r+1} + 1$ as a subgraph in Γ . In particular, we show that either $a_{r+1} = 1$ or $r = 1$.

~) 1995 Academic Press Limited

1. INTRODUCTION

All graphs considered in this paper are unidirected finite graphs without loops or multiple edges. Let Γ be a connected graph. We identify Γ with the set of vertices.

For two vertices u, v in Γ , a walk of length *l* connecting u and v is a sequence of the vertices $u = x_0, x_1, \ldots, x_i = v$ such that each (x_i, x_{i+1}) is an edge of Γ . If $x_{i-1} \neq x_{i+1}$ for $1 \le j \le l - 1$, then we say that the walk is a *path*. We denote by $\partial_{\Gamma}(u, v)$ the distance between u and v in Γ , i.e. the length of a shortest path connecting u and v in Γ . Let

$$
\Gamma_j(u) = \{x \in \Gamma \mid \partial_{\Gamma}(u, x) = j\},\
$$

$$
k_{\Gamma}(u) = |\Gamma_1(u)|,
$$

$$
d_{\Gamma}(u) = \max{\partial_{\Gamma}(u, x) \mid x \in \Gamma}.
$$

For two vertices u and x in Γ with $\partial_{\Gamma}(u, x) = j$, let

$$
C(u, x) = \Gamma_{j-1}(u) \cap \Gamma_1(x),
$$

$$
A(u, x) = \Gamma_j(u) \cap \Gamma_1(x)
$$

and

$$
B(u, x) = \Gamma_{j+1}(u) \cap \Gamma_1(x).
$$

F is said to be *distance-regular* if

$$
c_j(\Gamma) = |C(u, x)|
$$
, $a_j(\Gamma) = |A(u, x)|$ and $b_j(\Gamma) = |B(u, x)|$

depend only on $j = \partial_{\Gamma}(u, x)$ rather than on individual vertices. It is easy to see that if Γ is a distance-regular graph, then $k_{\Gamma}(u)$ and $d_{\Gamma}(u)$ do not depend on the choice of u. Hence we write k_{Γ} and d_{Γ} . They are called the *valency* and the *diameter* of Γ . Sometimes we omit the suffix when the concerning graph is clear. The numbers c_i , a_i and b_i are called the *intersection numbers* of Γ , and

$$
\iota(\Gamma) = \begin{cases} * & c_1 & c_2 & \cdots & c_j & \cdots & c_{d-1} & c_d \\ a_0 & a_1 & a_2 & \cdots & a_j & \cdots & a_{d-1} & a_d \\ b_0 & b_1 & b_2 & \cdots & b_j & \cdots & b_{d-1} & * \end{cases}
$$

is called the intersection array of Γ .

The following are basic properties of the intersection numbers which we use implicitly in this paper;

 (1) $c_i + a_i + b_i = k;$ (2) $k = b_0 \ge b_1 \ge \cdots \ge b_{d-2} \ge b_{d-1} \ge 1;$

(3) $1 = c_2 \leq c_2 \leq \cdots \leq c_{d-1} \leq c_d \leq k$.

The reader is referred to [1, 3] for general theory of distance-regular graphs.

We use the following notation in this paper:

$$
l(\alpha, \beta, \gamma) = \#\{j \mid (c_j, a_j, b_j) = (\alpha, \beta, \gamma)\}.
$$

For vertices x, $y \in \Gamma$, we write $x \sim y$ when they are adjacent. Let X and Y be sets of vertices. We denote $e(X, Y)$ the number of edges between X and Y. We write $e({x}, Y) = e(x, Y)$ when X consists of a single element x. Let $x, y \in \Gamma$ with $\partial_{\Gamma}(x, y) = t$. We denote by $p[x, y]$ the unique shortest path connecting x and y when $c_r = 1$. We write $p[x, y] = \{z_i\}$ if

$$
p[x, y] = \{x = z_0 \sim z_1 \sim \cdots \sim z_j \sim \cdots \sim z_{t-1} \sim z_t = y\}.
$$

A circuit of length *l* is a sequence of distinct vertices $x_0, x_1, \ldots, x_{l-1}$ such that (x_i, x_{i+1}) is an edge of Γ for $0 \le i \le l-1$, where $x_l = x_0$ and $l \ne 2$. Let $g = g(\Gamma)$ denote the *girth* of Γ that is the minimal length of a circuit in Γ .

In this paper, we prove the following result.

THEOREM 1.1. Let Γ be a distance-regular graph with $r = l(1, 0, k - 1) > 0$. Assume *that* $c_{2r+1} = 1$. *Then there exists a Moore graph of valency* $a_{r+1} + 1$ *and diameter r + 1 as a subgraph in F.*

A detailed description of Moore graphs will be found in [1, 3]. Using the classification of Moore graphs, we obtain the following:

COROLLARY 1.2. Let Γ be a distance-regular graph with $r = l(1, 0, k - 1) > 0$. Assume *that* $c_{2r+1} = 1$ *. Then either* $a_{r+1} = 1$ *or r = 1.*

The theorem is clear for the case $a_{r+1} = 1$; in this case the subgraphs are mere circuits of length $2r + 3$.

Proposition 4.3.11 of [3] shows the existence of distance-regular subgraphs with $d = 2$ and $c_2 = 1$ in a distance-regular graph with $r = l(1, a_1, b_1) = 1$ and $c_2 = 1$. So our theorem is the result for general r, but with addtional condition $a_1 = 0$. In the subsequent paper [6], we treat the case $a_1 > 0$ and show that the existence of a collinearity graph of a Moore geometry as a subgraph in a distance-regular graph with $r = l(1, a_1, b_1)$ and $c_{2r+1} = 1$.

Here we conjecture the following:

CONJECTURE. Let Γ be a distance-regular graph and let $r = l(1, a_1, b_1)$. If $c_5 = 1$, then $s \leq 2r + N$ for some absolute constant N.

Our results show the conjecture is true on the assumption $r \ge 2$ and $a_{r+1} \ne 1$. For the remaining cases, we hope that our method is also applicable with some modification.

We believe that to find 'nice' distance-regular subgraphs in a distance-regular graph will be a key for the classification of distance-regular graphs.

2. PRELIMINARIES

In this section, we introduce the intersection diagram which will be our main tool.

Let α and β be adjacent vertices and $D_i^i = \Gamma_i(\alpha) \cap \Gamma_i(\beta)$. The *intersection diagram with respect to* (α, β) is the collection $\{D_{jli,j}^{i}\}$ with lines between them. We draw a line

$$
D_i^i \rightarrow D_q^p
$$

if there is a possibility of an existence of edges between them, and we erase the line

when we know that there is no edge between them. Also, we erase D_i^l when we know that it is empty. A detailed description of the intersection diagram will be found in [2], [4] and [5]. In this paper we say ' (α, β) -diagram' instead of 'the intersection diagram of the graph Γ with respect to (α, β) .

In this section, we assume that Γ is a distance-regular graph with $r = l(1, 0, k - 1) \ge$ 2, $c_{2r+1} = 1$ and $a_{r+1} = a \ge 2$.

LEMMA 2.1. Let α and β be adjacent vertices in Γ . Let q be an integer with $1 \leq q \leq r$. *Then:*

(1) *The* (α, β) -diagram has the following shape:

Moreover, there exists no set of 3-vertices $\{x, y, z\}$ with $x \sim y \sim z$, $x \in D_{t-1}^{t-1}$, $y \in D_t^t$ and $z \in D_{t-1}^t \cup D_t^{t-1}$ for $t \leq 2r+1$.

(2) If $z_0 \sim z_1 \sim \cdots \sim z_r$ is a walk of length r with $\partial_{\Gamma}(\alpha, z_i) = r + 1 + j$ for $0 \le j \le r$ and $z_0 \in \Gamma_{r+1}(\beta)$, then $\partial_{\Gamma}(\beta, z_i) = r + 1 + j$ for $1 \leq j \leq r$. $z_0 \in \Gamma_{r+1}(\beta)$, then $\partial_{\Gamma}(\beta, z_j) = r + 1 + j$ for $1 \leq j \leq r$.

(3) If $z_0 \sim z_1 \sim \cdots \sim z_r$ is a walk of length r with $\partial_{\Gamma}(\alpha, z_j) = r + 1 + j$ for $0 \leq j \leq r$ and

 $z_0 \in \Gamma_r(\beta)$, then $\partial_{\Gamma}(\beta, z_i) = r + j$ for $1 \leq j \leq r$.

(4) If $x_0 \sim x_1 \sim \cdots \sim x_i$ is a walk of length l with $\partial_{\Gamma}(\alpha, x_i) = q - 1 + j$ for $0 \le j \le l$ and $x_0 \in \Gamma_q(\beta)$, then $\partial_{\Gamma}(\beta, x_i) = q + j$ for $0 \le j \le \min\{l, r + 1 - q\}.$

(5) If $x_0 \sim x_1 \sim \cdots \sim x_i$ is a path of length l with $x_0 \in \Gamma_q(\beta)$ and $x_1 \in \Gamma_{q+1}(\beta)$, then $\partial_r(\beta, x_i) = q + j \text{ for } 0 \leq j \leq \min\{l, r + 1 - q\}.$

PROOF. (1) See [2] and [5].

(2) Consider the (α,β) -diagram. We have $z_0 \in D_{r+1}^{r+1}$ from our assumption. Since $z_1 \sim z_0$ and $\partial_{\Gamma}(\alpha, z_1) = r + 2$, we obtain $z_1 \in D_{r+2}^{r+2}$. Inductively, we obtain $z_j \in D_{r+1+j}^{r+1+j}$ for $2 \leq j \leq r$. This implies our assertion.

(3, 4) We have our assertion, similar to (2).

(5) Since $c_{q+j} = 1$ and $a_{q+j} = 0$ for $1 \le j \le r - q$, we have the assertion.

Let X be a set of vertices. We identify X with the induced subgraph on X .

DEFINITION 2.2. Let X, $Y \subset \Gamma$ and p, q be positive integers. A nonempty set X is the *(p, q)-subgraph with respect to Y* if the following conditions hold: (1) $k_X(z) \geq p$ for any $z \in X$;

(2) $\partial_{\Gamma}(x, y) \leq q$ for any $x \in X$ and $y \in Y$.

LEMMA 2.3. Let w, $z \in \Gamma$ and Λ be an $(a, r + 1)$ -subgraph with respect to $\{w\}$. Then: (1) *if* $z \in \Lambda \cap \Gamma_s(w)$ *for some* $1 \le s \le r$ *, there exists* $x \in \Lambda_1(z) \cap \Gamma_{s+1}(w)$; (2) $\Lambda \cap \Gamma_{r+1}(w) \neq \emptyset$.

PROOF. (1) Suppose that $\Lambda_1(z) \cap \Gamma_{s+1}(w) = \emptyset$. We have $\Lambda_1(z) \subset \Gamma_s(w) \cup \Gamma_{s-1}(w)$. Thus

$$
2 \leq a \leq k_{\Lambda}(z) \leq a_{s}+c_{s}=1.
$$

This is a contradiction.

(2) Let $m = \max\{j \mid \Lambda \cap \Gamma_i(w) \neq \emptyset\}$. We have $1 \leq m \leq r+1$ from our assumption. From the maximality of m, we have $z \in \Lambda \cap \Gamma_m(w)$ and $\Lambda \cap \Gamma_{m+1}(w) = \emptyset$. Suppose that $m \le r$. Then we have a contradiction from (1). Thus $m = r + 1$.

LEMMA 2.4. *Let* α , β be adjacent vertices in Γ . Let Λ be an $(a + 1, r + 1)$ -subgraph *with respect to* $\{\alpha\}$ *such that* α , $\beta \in \Lambda$. If $\partial_{\Gamma}(\alpha, x) = \partial_{\Lambda}(\alpha, x)$ for any $x \in \Lambda$, then $\partial_{\Gamma}(\beta, x) = \partial_{\Lambda}(\beta, x)$ for any $x \in \Lambda$.

PROOF. Consider the (α, β) -diagram. Let

$$
L = \bigcup_{i=0}^{r+1} D_{i+1}^i, \qquad R = \bigcup_{i=0}^r D_i^{i+1}.
$$

From our assumption, we have $D^i \cap \Lambda = \emptyset$ for $i \ge r + 2$. Thus $\Lambda \subset L \cup R \cup D^{r+1}_{r+1}$. Take any $x \in \Lambda$. Note that $\partial_{\Gamma}(\alpha, x) = \partial_{\Lambda}(\alpha, x)$ iff $p[\alpha, x] \subset \Lambda$. Thus it is sufficient to show that $p[\beta, x] \subset \Lambda$. If $x \in L$, then

$$
p[\beta, x] = {\beta} \cup p[\alpha, x] \subset \Lambda.
$$

If $x \in R$, then

$$
p[\beta, x] \subset p[\alpha, x] \subset \Lambda.
$$

Assume that $x \in D_{r+1}^{r+1}$ and set $\{y\} = \Gamma_1(x) \cap D_r^{r+1}$. We show that $y \in \Lambda$. If $y \notin \Lambda$, then $\Lambda_1(x) \subset D_{r+1}^{r+1} \cup D_{r+1}^r$. Thus we have

$$
a+1 \leq k_1(x) \leq e(x, D_{r+1}^{r+1} \cup D_{r+1}^r) = a.
$$

This is a contradiction. Thus we obtain $y \in \Lambda$. Since $y \in R \cap \Lambda$, we have

$$
p[\beta, x] = p[\beta, y] \cup \{x\} \subset \Lambda.
$$

This is the desired result. \Box

3. PAIRS OF WALKS

Let m and n be positive integers and $X = (x_1, \ldots, x_m)$ and $Y = (y_1, \ldots, y_n)$ be sequences of vertices of Γ . The *distance matrix* $M[x_1, \ldots, x_m; y_1, \ldots, y_n]$ on X and Y is an $m \times n$ matrix the (i, j) th entry of which is $\partial_{\Gamma}(x_i, y_j)$. Let

$$
J = {r+1 \choose r+1} \cdot r+1,
$$

\n
$$
E_1 = {r \choose r+1} \cdot r+1, \qquad E_2 = {r+1 \choose r+1} \cdot r+1,
$$

\n
$$
E_3 = {r+1 \choose r} \cdot r+1 \qquad \text{and} \qquad E_4 = {r+1 \choose r+1} \cdot r+1.
$$

Let s, t and *l* be non-negative integers. Let

$$
X: x_0 \sim x_1 \sim \cdots \sim x_{2l}, \qquad Y: y_0 \sim y_1 \sim \cdots \sim y_{l+s}
$$

and

$$
W: w_0 \sim w_1 \sim \cdots \sim w_t
$$

be walks of length *21, I + s* and *t,* respectively.

In this paper, walks are ordered, i.e. the following are considered to be different:

 $W: w_0 \sim w_1 \sim \cdots \sim w_t$ and $W': w_t \sim w_{t-1} \sim \cdots \sim w_0$.

DEFINITION 3.1. A pair of walks (X, Y) is of *type C of size* (l, s) if the following conditions hold:

 (1) $0 \leq s \leq l$; (2) $F_i = M[x_i, x_{i+1}; y_{i-i-1}, y_{i-i}] \in \{J, E_1, E_4\}$ for $0 \le i \le l - 1$; (3) $F_{i+i} = M[x_{i+i}, x_{i+i+1}; y_i, y_{i+1}] \in \{J, E_2, E_3\}$ for $0 \le i \le l - 1$; (4) $S_i = M[x_i, x_{i+1}; y_{i+i}, y_{i+i+1}] \in \{J, E_2, E_3\}$ for $0 \le i \le s - 1$; (5) $S_{2l-i} = M[x_{2l-i-1}, x_{2l-i}, y_{l+i}, y_{l+i+1}] \in \{J, E_1, E_4\}$ for $0 \le i \le s - 1$.

DEFINITION 3.2. A pair of walks (X, Y) is of *type C^{*} of size* (l, s) if the following conditions hold:

 (1) $0 \le s < l \le r$; (2) $\partial_{\Gamma}(y_l, x_{l-i}) = \partial_{\Gamma}(y_l, x_{l+i}) = r + 1 - l + j$ for $0 \le j \le l$; (3) $\partial_{\Gamma}(x_i, y_j) = r + 1 - j$ for $0 \le j \le l$; (4) $\partial_{\Gamma}(x_i, y_{i+j}) = r + 1 - l + j$ for $0 \le j \le s$; (5) $\partial_{r}(x_i, y_i) \leq r + 1$ for any *i*, *j*.

REMARK. The above definitions give us the following entries of the distance.matrix on X and Y :

where $\bullet = r+1$, $\bigcirc = r+1-l$ and $\Diamond = r+1-l+s$.

For the rest of this paper we use the notation (X, Y) for a pair of walks (X, Y) .

LEMMA 3.3. *Let* (X, Y) *be of type* C^* *of size* (l, s) *. Then the following hold:* (1) $\partial_{\Gamma}(y_{l-i}, x_{l-j}) = r + 1 - l + i + j$ for $0 \le i \le l$ and $0 \le j \le l - i$; (2) $\partial_{\Gamma}(y_{l-i}, x_{l+j}) = r + 1 - l + i + j$ for $0 \le i \le l$ and $0 \le j \le l - i$; (3) $\partial_{\Gamma}(y_{i+i}, x_{i-j}) = r + 1 - l + i + j$ for $0 \le i \le s$ and $0 \le j \le l - i$; (4) $\partial_{\Gamma}(y_{l+i}, x_{l+i}) = r + 1 - l + i + j$ for $0 \le i \le s$ and $0 \le j \le l - i$; (5) $F_i = M[x_i, x_{i+1}; y_{i-i-1}, y_{i-i}] = E_4$ for $0 \le i \le l-1$; (6) $F_{i+i} = M[x_{i+i}, x_{i+i+1}; y_i; y_{i+1}] = E_2$ for $0 \le i \le l-1$; (7) $S_i = M[x_i, x_{i+1}; y_{i+i}, y_{i+i+1}] = E_3$ for $0 \le i \le s - 1$; (8) $S_{2i-i} = M[x_{2i-i-1}, x_{2i-i}, y_{i+i}, y_{i+i+1}] = E_1$ for $0 \le i \le s - 1$.

PROOF. (1) We prove the assertion by induction on i. The case $i = 0$ follows from

Definition 3.2(2). Let $1 \le h \le l$ and set $q = r + 1 - l + h$. We have $x_l \in \Gamma_q(y_{l-h})$ from Definition 3.2(3). From the inductive assumption, we have $\partial_{\Gamma}(y_{t-h+1}, x_{t-i})=q-1+i$ for $0 \le j \le l-h+1$. Thus we have $\partial_{\Gamma}(y_{l-h}, x_{l-j}) = q + j$ for $0 \le j \le l-h$ from Lemma 2.1(4). This is the desired result.

(2-4) We have our assertions, similar to (1).

(5) Let $0 \le i \le l-1$ and consider the (x_i, x_{i+1}) -diagram. We have $y_{l-i} \in D_r^{r+1}$ and $y_{t-i-1} \in \Gamma_{r+1}(x_{i+1})$ from (1). Since $\partial_{\Gamma}(y_{t-i-1}, x_i) \leq r+1$ from Definition 3.2(5), we obtain $y_{i-i-1} \in D_{i+1}^{r+1}$. This is the desired result.

 $(6-8)$ We have our assertions, similar to (5).

COROLLARY 3.4. *If* (X, Y) is of type C^* of size (l, s) , then (X, Y) is of type C of size *(l, s).*

PROOF. This is a direct consequence of Lemma 3.3. \Box

DEFINITION 3.5. Let *u*, γ_1 , γ_2 , δ_1 , δ_2 be mutually distinct vertices in Γ . The quintuple $(u, \gamma_1, \gamma_2, \delta_1, \delta_2)$ is a *basis* if the following conditions hold: (1) γ_1 , γ_2 , δ_1 , $\delta_2 \in \Gamma_{r+1}(u)$. (2) $\gamma_1 \sim \gamma_2$ and $\delta_1 \sim \delta_2$. (3) Let $P_1 = p[u, v_1] \cap p[u, \delta_1] = \{u = u_0 \sim u_1 \sim \cdots \sim u_l\},$

$$
P_2 = p[u, \gamma_1] \cap p[u, \delta_2] = \{u = v_0 \sim v_1 \sim \cdots \sim v_h\}.
$$

Then $P_1 \cap P_2 = \{u\}$ and $l + h = r + 1$.

The following lemma shows that we obtain two pairs of paths of type C^* from a basis.

LEMMA 3.6. *Let* $(u, \gamma_1, \gamma_2, \delta_1, \delta_2)$ *be a basis. Set*

$$
p[u, \gamma_1] = \{u = u_0, u_1, \dots, u_l = \beta_h, \beta_{h-1}, \beta_{h-2}, \dots, \beta_0 = \gamma_1\},
$$

\n
$$
p[u, \delta_1] = \{u = u_0, u_1, \dots, u_l = \beta_h, \beta_{h+1}, \beta_{h+2}, \dots, \beta_{2h} = \delta_1\}
$$

\n
$$
p[u, \gamma_2] = \{u = v_0, v_1, \dots, v_h = x_l, x_{l-1}, x_{l-2}, \dots, x_0 = \gamma_2\},
$$

\n
$$
p[u, \delta_2] = \{u = v_0, v_1, \dots, v_h = x_l, x_{l+1}, x_{l+2}, \dots, x_{2l} = \delta_2\},
$$

\n
$$
U: u_l \sim u_{l-1} \sim \dots \sim u_0, \qquad B: \beta_0 \sim \beta_1 \sim \dots \sim \beta_{2h},
$$

\n
$$
V: v_h \sim v_{h-1} \sim \dots \sim v_0 \qquad and \qquad X: x_0 \sim x_1 \sim \dots \sim x_{2l}.
$$

Then:

(1) *(X, U) is of type C* of size (l,* 0); (2) *(B, V) is of type C* of size (h, 0).*

PROOF. Consider the distance matrices on X and U (resp. B and V). It is easy to check the conditions of Definition 3.2.

LEMMA 3.7. Let α and β be adjacent vertices in Γ . Let Λ be an $(a, r + 1)$ -subgraph *with respect to* $\{\alpha,\beta\}$ *. If* $x \in \Lambda \cap \Gamma_{r+1}(\alpha)$, *then there exists a vertex* $z \in \Lambda_1(x)$ *with* $M[z, x; \alpha, \beta] \in \{J, E_1, E_4\}.$

Proof. Since $2 \le a \le k_A(x)$, we have $z_1, z_2 \in \Lambda_1(x)$. Consider the (α, β) -diagram. Note that $(D_{r+2}^{r+2} \cup D_{r+1}^{r+2} \cup D_{r+2}^{r+1}) \cap \Lambda = \emptyset$ and $x \in D_{r+1}^{r+1} \cup D_r^{r+1}$ from our assumption. First, we assume that $x \in D_r^{r+1}$. Since $e(x, D_{r-1}' \cup D_{r+1}') = c_r + a_r = 1$ and $\Lambda \cap D_{r+1}^{r+2} =$ \emptyset , at least one of z_1 and z_2 is in D_{r+1}^{r+1} . So we have $z \in D_{r+1}^{r+1} \cap \Lambda_1(x)$. Then it

is easy to show that $M[z, x; \alpha, \beta] = E_4$. Second, we assume that $x \in D_{r+1}^{r+1}$. If $z_i \in D_{r+1}^{r+1}$ for some $i \in \{1, 2\}$, then we have $z = z_i \in \Lambda_1(x)$ with $M[z, x; \alpha, \beta] = J$. Suppose that $z_i \notin D_{r+1}^{r+1}$ for $i = 1,2$. Since $e(x, D_{r+1}^r) = e(x, D_r^{r+1}) = 1$ and $D_{r+2}^{r+2} \cap \Lambda = \emptyset$, we may assume that $z_1 \in D_{r+1}^r$ and $z_2 \in D_r^{r+1}$. Thus we have $z_1 \in \Lambda_1(x)$ with $M[z_1, x; \alpha, \beta] = E_1$: Hence we have our assertion. \Box

Next, we obtain a sufficient condition to yield a pair of walks of type C.

DEFINITION 3.8. A pair of walks (X, Y) is *partially of type C of size* (l, s) if the following conditions hold:

(1) Let $Y': y_0 \sim y_1 \sim \cdots \sim y_l$. Then (X, Y') is of type C^* of size $(l, 0)$.

(2) There exist $(a, r + 1)$ -subgraphs Λ , Λ' with respect to $\{y_i, y_{i+1}, \ldots, y_{i+s}\}\$ such that $x_0 \in \Lambda$ and $x_{2l} \in \Lambda'$, where Λ and Λ' need not to be different.

We construct a pair of walks of type C from the one which is partially of type C. Let (X, Y) be partially of type C of size (l, s) . We may assume that $0 \leq s$. Let $\alpha_{i+s} = x_i$ for $0 \le i \le 2l$ and Λ and Λ' be the subgraphs as in Definition 3.8(2). Since $\partial_{\Gamma}(y_i, \alpha_s)$ $r + 1$, we obtain

$$
\alpha_{s-1} \in \Lambda_1(\alpha_s) \qquad \text{with } M[\alpha_{s-1}, \alpha_s; y_i, y_{i+1}] \in \{J, E_1, E_4\}
$$

from Lemma 3.7. Hence we have $\partial_{\Gamma}(\alpha_{s-1}, y_{t+1}) = r + 1$. Inductively, we can take

$$
\alpha_{s-j} \in \Lambda_1(\alpha_{s-j+1})
$$
 with $M[\alpha_{s-j}, \alpha_{s-j+1}; y_{l+j-1}, y_{l+j}] \in \{J, E_1, E_4\}$

for $2 \leq j \leq s$. Similarly, we obtain

 $\alpha_{2l+s+i} \in \Lambda'_1(\alpha_{2l+s+i-1})$ with $M[\alpha_{2l+i}, \alpha_{2l+i-1}; y_{l+i-1}, y_{l+i}] \in \{J, E_1, E_4\}$ for $1 \leq j \leq s$. Note that

M[x, y, z, w] $\in \{J, E_1, E_4\}$ iff *M[y, x, z, w]* $\in \{J, E_2, E_3\}.$

Let $m = l + s$ and X^* : $\alpha_0 \sim \alpha_1 \sim \cdots \sim \alpha_{2m}$ be a walk of length 2*m*.

PROPOSITION 3.9. *Let* (X, Y) be partially of type C of size (l, s) , $m = l + s$ and X^* be *a* walk of length 2m defined above. Then (X^*, Y) is of type C of size $(m, 0)$.

PROOF. This is a direct consequence of definition of X^* and Lemma 3.3.

where \bullet = r + 1 and \bigcirc = r + 1 - l.

DEFINITION 3.10. A pair of walks (X, W) is *partially of type C^{*} of size (l, t, f)* if the following conditions hold:

(1) $\partial_{r}(w_0, x_i) = r + 1$. (2) $\partial_{\Gamma}(w_i, x_{i+i}) = \partial_{\Gamma}(w_i, x_{i-i}) = r + 1 - l + j$ for $0 \le j \le l$. (3) $\partial_{\mathbf{r}}(w_i, x_i) \leq r + 1$ for any *i*, *j*. (4) There exists an integer f with $0 \le f \le t$ and $l + f \le r$ which satisfies $\partial_{\Gamma}(x_l, w_{l-1}) =$ $r+1-l-j$ for $0 \le j \le f$, $\partial_{\Gamma}(x_i, w_{i-f-1}) = r+2-l-f$ and $\partial_{\Gamma}(w_0, w_{i-f}) = t-f$. (5) There exist $(a, r + 1)$ -subgraphs Λ , Λ' with respect to $\{w_0, w_1, \ldots, w_t\}$ such that $x_0 \in \Lambda$ and $x_{2l} \in \Lambda'$, where Λ and Λ' need not to be different.

We can make up a pair of walks of type C^* from the one partially of type C^* . To show this, we investigate (X, W) which is partially of type C^* .

LEMMA 3.11. Let (X, W) be partially of type C^* of size (l, t, f) . Then the following *hold:*

 (1) $l + 2f \le t$;

(2) $\partial_{\Gamma}(x_i, w_{t-f+j}) = r + 1 - l - f + j$ for $0 \le j \le f$;

(3) $\partial_{\Gamma}(x_i, w_{i-f-j}) = r + 1 - l - f + j$ for $0 \le j \le l + f$;

(4) $\partial_{\Gamma}(x_{l+i}, w_{i-j}) = r + 1 - l - f + i$ for $0 \le i \le l$;

(5) $\partial_{\Gamma}(x_{l-i}, w_{i-j}) = r + 1 - l - f + i$ for $0 \le i \le l$.

Proof. (1) We have

$$
r+1 = \partial_{\Gamma}(w_0, x_i) \leq \partial_{\Gamma}(w_0, w_{t-f}) + \partial_{\Gamma}(w_{t-f}, x_i) = (t-f) + (r+1-l-f)
$$

from Definition 3.10(1), (4). The assertion follows.

(2) The assertion follows from Definition 3.10(4).

(3) Since $\partial_{\Gamma}(w_0, w_{t-f}) = t - f$, we have $w_{t-f} \sim w_{t-f-1} \sim \cdots \sim w_0$ is a path of length $t-f$. Hence the assertion follows from Lemma 2.1(5).

(4) From Definition 3.10(2), we have $\partial_{\Gamma}(w_i, x_{i+i}) = r + 1 - l + i$. Thus

 $r + 1 - l + i = \partial_{\Gamma}(w_i, x_{i+i}) \leq \partial_{\Gamma}(w_i, w_{i-f}) + \partial_{\Gamma}(w_{i-f}, x_{i+i}) \leq f + \partial_{\Gamma}(w_{i-f}, x_{i+i}).$

On the other hand, we obtain

$$
\partial_{\Gamma}(w_{t-f}, x_{t+i}) \leq \partial_{\Gamma}(w_{t-f}, x_t) + \partial_{\Gamma}(x_t, x_{t+i}) \leq (r+1-l-f) + i
$$

from (2). Hence the assertion follows.

(5) We have our assertion, similar to (4). \Box

Let $\delta_i = w_{i-l-2f+j}$ for $0 \le j \le l+2f$ and W^* : $\delta_0 \sim \delta_1 \sim \cdots \sim \delta_{l+2f}$. For the case $f = 0$, we set $\eta_i = x_i$ for $0 \le i \le 2l$ and $X^* = X$. For the case $f \ge 1$, we set $\eta_{f+i} = x_i$ for $0 \le i \le 2l$ and $m = l + f$. Then we have

$$
\partial_{\Gamma}(\eta_f, \delta_m) = \partial_{\Gamma}(x_0, w_{t-f}) = r + 1 - f \leq r
$$

from Lemma 3.11(5). Let Λ and Λ' be subgraphs as in Definition 3.10(5). Since $\eta_f \in \Lambda \cap \Gamma_{r+1-f}(\delta_m)$, we obtain $\eta_{f-1} \in \Lambda_1(\eta_f) \cap \Gamma_{r+2-f}(\delta_m)$ from Lemma 2.3(1). Inductively, we have $\eta_{f-j} \in \Lambda_1(\eta_{f-j+1}) \cap \Gamma_{r+1-f+j}(\delta_m)$ for $2 \le j \le f$. Similarly, we have $\eta_{2l+f+j} \in \Lambda'_1(\eta_{2l+j-1}) \cap \Gamma'_{r+1-f+j}(\delta_m)$ for $1 \leq j \leq f$. Let $X^* : \eta_0 \sim \eta_1 \sim \cdots \sim \eta_{2m}$ be a walk of length 2m.

PROPOSITION 3.12. *Let* (X, W) *be partially of type C* of size* (l, t, f) *. Let* X^* *and W* be walks which are defined above. Then* (X^*, W^*) *is of type* C^* *of size* (m, f) where $m=l+f$.

Proof. This is a direct consequence of Lemma 3.11 and the definition of X^* and W*. \Box

where $\bullet = r+1$, $\bigcirc = r+1-l$, $\bigcirc = r+1-l-f$ and $* = r+2-l-f$.

4. A FAMILY OF MINIMAL CIRCUITS

In this section, we construct a nice family of minimal circuits from a pair of walks of type C and we show that it gives us a lot of information about distance relations of their neighbors.

In this paper, we define a *minimal circuit* as a circuit of length $g = 2r + 3$. Let x, $z \in \Gamma$ with $\partial_{\Gamma}(x, z) = r + 1$. Set $H(x, z) = A(x, z)$. It is clear that $p[x, z] \cup p[x, w]$ forms a minimal circuit when $w \in H(x, z)$.

LEMMA 4.1. *Let* α , β , γ , $x_r \in \Gamma$ with $\alpha \sim \beta$, $\partial_{\Gamma}(\gamma, x_r) = r + 1$ and $p[\gamma, x_r] = {\gamma \sim x_0 \sim \Gamma}$ $x_1 \sim \cdots \sim x_r$. Let $\xi \in H(\gamma, x_r)$ and $p[\gamma, \xi] = \{y_i\}$, then in the (α, β) -diagram the *following hold:* (1) if $\gamma \in D_{r+1}^{r+1}$ and $x_j \in D_{r+j}^{r+1+j}$ for $0 \le j \le r$, then $y_j \in D_{r+1+j}^{r+1+j}$ for $0 \le j \le r$; (2) *if* $\gamma \in D_{r+1}^{r+1}$ and $x_j \in D_{r+1+j}^{r+1}$ for $0 \le j \le r$, then $y_j \in D_{r+1+j}^{r+1}$ for $0 \le j \le r$; (3) *if* $\gamma \in D_{r+1}^r$ and $x_j \in D_{r+1+j}^{r+1}$ for $0 \leq j \leq r$, then $y_j \in D_{r+1+j}^{r+1}$ for $0 \leq j \leq r$.

PROOF. (1) It is easy to see that $\xi \in D_{2r+1}^{2r+2} \cup D_{2r+1}^{2r+1}$ and $y_i \in D_{r+1+j}^{r+1+j}$ for $0 \le j \le r$ from Lemma 2.1(1).

(2) Let $\{\delta\} = \Gamma_1(\beta) \cap \Gamma_r(x_0)$ and consider the (β, δ) -diagram. It is clear that $x_0 \in D_r^{r+1}$ and $\gamma \in D_{r+1}^{r+1}$. From our assumption and Lemma 2.1(3), we have $x_i \in D_{r+i}^{r+1+j}$ for $1 \le j \le r$. We obtain the locations of the y_i's in the (β, δ) -diagram from (1). In particular, we have $\partial_{\Gamma}(\beta, y_i) = r + 1 + j$ for $1 \le j \le r$. Since $y_0 = \gamma \in \Gamma_{r+1}(\alpha)$, we obtain $\partial_{\Gamma}(\alpha, y_i) = r + 1 + j$ for $1 \le j \le r$ from Lemma 2.1(2). This is the desired result.

(3) We have our assertion, similar to (2). \Box

PROPOSITION 4.2. Let (X, Y) be of type C of size (l, s) and $v \in \Gamma_1(y_{l+s})$. If $\partial_{\Gamma}(x_s, v) = r + 2$, then $\partial_{\Gamma}(x_{2l-s}, v) = r + 2$.

Proof. First, we assume that $s \ge 1$. Let $m = l + s$, $v_1^0 = v \in \Gamma_{r+2}(x_s)$ and take $v_i^0 \in \Gamma_{r+1+i}(x_s) \cap \Gamma_1(v_{i-1}^0)$ for $2 \le i \le r$. Then we have $\partial_{\Gamma}(y_{m-1}, v_i^0) = r+1$. Take $\xi_0 \in H(y_{m-1}, v_r^0)$ and let $p[y_{m-1}, \xi_0] = \{v_i^1\}_r$.

SUBLEMMA 4.3. $\partial_r(x_{s-1}, v_i^1) = r + 1 + i$ for $0 \le i \le r$.

PROOF. Note that $\partial_{\Gamma}(x_s, v_i^0) = r + 1 + i$ for $0 \le i \le r$ and

$$
S_{s-1} = M[x_{s-1}, x_s; y_{m-1}, y_m] \in \{J, E_2, E_3\}.
$$

Consider the (x_s, x_{s-1}) -diagram. Suppose that $S_{s-1} = J$. We have $v_i^0 \in D_{r+1+i}^{r+1+i}$ for $0 \le i \le r$ from Lemma 2.1(2). Note that $v_0^1 = y_{m-1} \in D_{r+1}^{r+1}$, $\xi_0 \in H(y_{m-1}, v_r^0)$ and $p[y_{m-1}, \xi_0] = \{v_i^1\}$. We have $v_i^1 \in D_{r+1+i}^{r+1+i}$ for $0 \le i \le r$ from Lemma 4.1(2). Hence the assertion follows. Suppose that $S_{s-q} = E_2$. In the same manner, we have our assertion from Lemmas 2.1(3) and 4.1(1). Suppose that $S_{s-q}=E_3$. Similarly, we have the assertion from Lemmas $2.1(2)$ and $4.1(3)$. Thus we obtain the desired result.

Now consider the distance of y_{m-2} and v_r^1 from x_{s-1} : we have $\partial_{\Gamma}(y_{m-1}, v_r^1) = r + 1$. Hence, inductively, the following results hold:

SUBLEMMA 4.4. *Take* $\xi_i \in H(y_{m-i-1}, y_r^i)$ and let $p[y_{m-i-1}, \xi_i] = \{v_i^{i+1}\}\text{ for } 1 \le i \le n$ $m - 1$. Then: (1) $\partial_{\Gamma}(x_{s-f}, v_i') = r + 1 + i$ for $0 \le f \le s$, $0 \le i \le r$; (2) $\partial_{\Gamma}(x_i, v_i^{s+f}) = r + 1 + i$ for $0 \le f \le l, 0 \le i \le r;$ (3) $\partial_{\Gamma}(x_{i+j}, v_i^{i+s-f}) = r + 1 + i$ for $0 \leq f \leq l, 0 \leq i \leq r$; (4) $\partial_{\Gamma}(x_{2i-6}, v_i^{s-f}) = r + 1 + i$ for $0 \le f \le s$, $0 \le i \le r$.

PROOF. We have our assertions, similar to Sublemma 4.3.

Hence, we have $\partial_{\Gamma}(x_{2l-s}, v) = \partial_{\Gamma}(x_{2l-s}, v_0^0) = r + 1$, by sublemma 4.4.

Second, we treat the case $s = 0$. In this case, we also obtain the same results in Sublemma 4.4(2)(3). Hence we obtain the desired result. \Box

 \blacksquare

COROLLARY 4.5. Let $(u, \gamma_1, \gamma_2, \delta_1, \delta_2)$ *be a basis and* $z \in \Gamma_1(u)$. If $\partial_{\Gamma}(\gamma_2, z) = r + 2$, *then* $\partial_{\Gamma}(\delta_2, z) = r + 2$.

PROOF. From Lemma 3.6, we have a pair of paths (X, U) of type C^* of size $(l, 0)$.

Then (X, U) is of type C of size $(l, 0)$ from Corollary 3.4. The assertion follows from Proposition 4.2. \Box

COROLLARY 4.6. *Let* (X, W) be partially of type C^* of size (l, t, f) and $\xi \in \Gamma_1(w_t)$. If $\partial_{\Gamma}(x_0, \xi) = r + 2$, then $\partial_{\Gamma}(x_2, \xi) = r + 2$.

PROOF. From Proposition 3.12, (X^*, W^*) is of type C^* of size (m, f) , where $m = l + f$, $X^* : \eta_0 \sim \eta_1 \sim \cdots \sim \eta_{2m}$ and $W^* : \delta_0 \sim \delta_1 \sim \cdots \sim \delta_{l+2r} = w_r$. Note that $x_0 = \eta_r$ and $x_{2l} = \eta_{2m-l}$. Hence our assertion follows from Proposition 4.2.

5. PROOF OF THE THEOREM

Our purpose in this section is to prove Theorem 1.1.

Let Γ be a distance-regular graph with $r = l(1, 0, k - 1) \ge 2$, $c_{2r+1} = 1$ and $a_{r+1} = a \ge$ 2. Fix a vertex $u \in \Gamma$. Let $G = G[u]$ be the subgraph induced by $\Gamma_{r+1}(u)$. Set $G = G_0 \cup G_1 \cup \cdots \cup G_e$, where the G_i 's are connected components of G. It is clear that each G_i is a connected regular graph of valency a. Next we define a graph Ω as follows:

DEFINITION 5.1. (1) The vertex set of Ω is $\{G_i | 0 \leq j \leq e\}$.

(2) G_q and G_t are adjacent in Ω if $q \neq t$ and there exist $x_1, x_2 \in G_q$ and $y_1, y_2 \in G_t$ with (u, x_1, x_2, y_1, y_2) as a basis.

When G_q and G_t are adjacent in Ω , we write $G_q \approx G_t$. Set $\Omega = \Omega_0 \cup \Omega_1 \cup \cdots \cup \Omega_n$ where Ω_i 's are connected components of Ω . Let

$$
\Psi = \bigcup_{G_q \in \Omega_0} G_q, \qquad \Delta = \bigcup_{x \in \Psi} p[u, x].
$$

In order to prove Theorem 1.1, it is sufficient to show that the graph Δ is a regular graph of valency $a + 1$, diameter $r + 1$ and girth $2r + 3$.

LEMMA 5.2. (1) $g(\Delta) = g(\Gamma) = 2r + 3$. (2) $\partial_{\Gamma}(u, x) = \partial_{\Delta}(u, x)$ for any $x \in \Delta$. (3) $\Gamma_i(u) \cap \Delta = \emptyset$ *for any j* $\geq r + 2$. $(4) d_{\Delta}(u) = r + 1.$ (5) $k_A(w) = a + 1$ for any $w \in \Psi$. (6) $k_{\Delta}(u) \ge a+1$. (7) $k_A(x) \ge a + 1$ for any $x \in \Delta$.

PROOF. (1)-(4). The assertions follow from the definition of Δ .

(5) Let $w \in \Psi$. Note that $\Psi \subset \Gamma_{r+1}(u)$. We have $C(u, w) \subset p[u, w] \subset \Delta$, $A(u, w) \subset \Psi$ $\Psi \subset \Delta$ and $B(u, w) \cap \Delta = \emptyset$ since (3). It follows that

$$
|k_{\Delta}(w)| = |\Delta_1(w)| = |C(u,w)| + |A(u,w)| = c_{r+1} + a_{r+1} = 1 + a.
$$

(6) Take $w \in \Psi$. Let $\{x_1, x_2, ..., x_a\} = \Psi_1(w)$, $p[u, w] = \{w_j\}$ and $p[u, x_i] = \{z_j\}_{j \in I}$. Since $g(\Gamma) = 2r + 3$, $w_1 \neq z_1^i$ and $z_1^i \neq z_1^q$ for $1 \leq i, q \leq a$ and $i \neq q$. Note that $w_1 \in$ $p[u, w] \subset \Delta$ and $z_1^i \in p[u, x_i] \subset \Delta$. Thus we have

$$
k_{\Delta}(u) \geq \#\{w_1\} + \#\{z_1^1, z_1^2, \ldots, z_1^a\} = 1 + a.
$$

(7) Take $x \in \Delta$. Let $h = \partial_{\Gamma}(u, x)$. Then we have $h \le r + 1$ from (3). We may assume that $1 \le h \le r$ from (5) and (6). Since $x \in \Delta$, there exists $w_{r+1} \in \Psi$ with $x \in p[u, w_{r+1}] =$ $\{w_j\}_{j}$. Note that $x = w_h$. Take $z_{r+1} \in A(u, w_{r+1})$ and let $p[u, z_{r+1}] = \{z_j\}_{j}$. Set $l = r + 1 - h$. Then we have $\partial_{\Gamma}(x, z_i) = r + 1$. Now we show that $A(z_i, x) \subset \Delta$. Take any $y \in A(z_l, x)$:

If $y = w_{h+1}$, then we have $y = w_{h+1} \in p[u, w_{r+1}] \subset \Delta$. Hence we may assume that $y \neq w_{h+1}$. Let $p[z_l, y] = \{y_l\}$. Note that $y_1 \neq z_{l+1}$ because $g(\Gamma) = 2r + 3$. Now consider the (u, w_1) -diagram:

Since z_{r+1} , w_{r+1} , y_h , $y_{h+1} \in \Gamma_{r+1}(u)$, we have z_{r+1} , $w_{r+1} \in G_q$ and y_h , $y_{h+1} \in G_f$ for some q, f. Note that $G_q \in \Omega_0$ and $(u, z_{r+1}, w_{r+1}, y_h, y_{h+1})$ is a basis. If $G_q = G_f$, then $y_{h+1} \in G_q \subset \Psi$. If $G_q \neq G_f$, then we have $G_q \approx G_f$. Also we have $y_{h+1} \in G_f \subset \Psi$. Hence $y \in p[u, y_{h+1}] \subset \Delta$. Thus we have $A(z_i, x) \subset \Delta$, whence

$$
k_{\Delta}(x) \geq \# \{w_{h-1}\} + \# A(z_l, x) = 1 + a.
$$

PROPOSITION 5.3. *Let* $z \in \Delta$. *Then the following hold*: (1) $\Gamma_i(z) \cap \Delta = \emptyset$ for any $j \ge r + 2$; (2) $\partial_{\Gamma}(z, x) = \partial_{\Delta}(z, x)$ for any $x \in \Delta$; (3) $d_{\Delta}(z) = r + 1$; (4) $k_{\Delta}(x) = a + 1$ *for any* $x \in \Delta_{r+1}(z)$.

We prove our assertion by induction on $h = \partial_{\Gamma}(u, z)$. For the case $h = 0$, our assertion follows from Lemma 5.2. Let $0 \le t < r + 1$. In the proof of the following lemmas we assume that our assertion is true for any $h \leq t$ and we show that our assertion is true for $h = t + 1$. Take any $w \in \Delta_{t+1}(u)$ and set $p[u, w] = \{w_i\}_i$.

LEMMA 5.4. *Let* $G_q \in \Omega_0$. *In the* (w_i, w) -diagram, exactly one of the following holds: (1) $G_q \cap (D_{r+1}^{r+1} \cup D_r^{r+1}) = \emptyset;$ (2) $G_q \cap D_{r+2}^{r+1} = \emptyset$.

PROOF. From the inductive assumption, we have $\Gamma_i(w_i) \cap \Delta = \emptyset$ for $i \ge r + 2$. Hence we obtain $D_f^i \cap \Delta = \emptyset$ for any $i \ge r + 2$ and Δ is an $(a + 1, r + 1)$ -subgraph with respect to $\{w_i\}$ from Lemma 5.2(7).

Suppose that both of (1) and (2) hold. Then we have a contradiction, from Lemma $2.3(2)$.

Suppose that neither (1) nor (2) holds. Take $\alpha \in G_q \cap D_{r+2}^{r+1}$ and $\beta \in G_q \cap (D_{r+1}^{r+1} \cup$ D_{r}^{r+1}). Since G_q is connected, there exists a path in G_q connecting them:

$$
\alpha = x_0 \sim x_1 \sim \cdots \sim x_p = \beta.
$$

Without loss of generality, we may assume that $x_i \notin D_{r+2}^{r+1}$ for $j \neq 0$. Let $l=$ $\max\{j \mid x_j \in D_{r+2-j}^{r+1-j}\}.$ Then $x_0 \in D_{r+2}^{r+1}$, $x_{2l} \in D_{r+1}^{r+1}$ and x_i , $x_{2l-i} \in D_{r+2-j}^{r+1-j}$ for $1 \leq j \leq l$. Set $X: x_0 \sim x_1 \sim \cdots \sim x_{2l}$ and $W: w_0 \sim w_1 \sim \cdots \sim w_r$. Now we show that (X, W) is partially of type C^{*}. Since $x_i \in G_q \subset \Gamma_{r+1}(u)$ and $u = w_0$, we have $\partial_{\Gamma}(w_0, x_i) = r + 1$. We have $\partial_{\Gamma}(w_i, x_{i+i}) = \partial_{\Gamma}(w_i, x_{i-i}) = r + 1 - l + j$ for $1 \le j \le l$ from the locations of the x_i 's in the (w_i, w) -diagram. Since w_i , $x_i \in \Delta$, we obtain $\partial_{\Gamma}(w_i, x_i) = \partial_{\Delta}(w_i, x_i) \leq d_{\Delta}(w_i)$ $r + 1$ for any *i, j* from the inductive assumption. Let $f = \max\{i \mid w_{t-i} \in p[x_t, w_t]\}$ and $\Lambda = \Lambda' = G_q$. It is easy to see that they satisfy the conditions of Definition 3.10(4), (5). Hence we have that (X, W) is partially of type C^* of size (l, t, f) .

Note that $\partial_{\Gamma}(w, x_0) = r + 2$ and $\partial_{\Gamma}(w, x_{2l}) \neq r + 2$. This contradicts Corollary 4.6. Hence we obtain the desired result.

Now we say that G_q is *of type* (1) (resp. *of type* (2)) with respect to w, if G_q satisfies the condition of the case (1) (resp. (2)) in Lemma 5.4.

LEMMA 5.5. $\Gamma_{r+2}(w) \cap \Psi = \varnothing$.

PROOF. Let $W: w_0 \sim w_1 \sim \cdots \sim w_r$ be a path of length t. Since $w \in \Delta$, we have $y \in \Psi$ with $w \in p[u, y]$. Let $G_h \in \Omega_0$ such that $y \in G_h$. Consider the (w_t, w) -diagram. Then we have $y \in D^{r+1-i}_{r-t}$. It is easy to see that G_h is of type (2) with respect to w. Suppose that there exists $x \in \Gamma_{r+2}(w) \cap \Psi$. Let $G_q \in \Omega_0$ such that $x \in G_q$. Since $x \in D^{r+1}_{r+2}$, G_q is of type (1) with respect to w. Since Ω_0 is connected, there exists a path in Ω_0 connecting G_a and G_h :

$$
G_q = H_0 \approx H_1 \approx \cdots \approx H_p = G_h,
$$

where each $H_i \in \Omega_0$. Now we have that H_s is of type (1) and H_{s+1} is of type (2) for some $0 \le s \le p$. Since $H_s \approx H_{s+1}$, there exist $\gamma_1, \gamma_2 \in H_s$ and $\delta_1, \delta_2 \in H_{s+1}$ with $(u, \gamma_1, \gamma_2, \delta_1, \delta_2)$ as a basis. Thus we obtain a pair of paths (X, U) of type C^* of size *(l,* 0) from Lemma 3.6. Set

$$
Q: u_1 \sim \cdots \sim u_1 \sim u \sim w_1 \sim \cdots \sim w_t
$$

to be a walk of length $q = l + t$. Then we have that (X, Q) is partially of type C of size (l, t) with $\Lambda = H_s$, $\Lambda' = H_{s+1}$. From Proposition 3.9 we obtain that X^* : $\alpha_0 \sim \cdots \sim \alpha_{2d}$ is a walk of length 2q such that (X^*, Q) is of type C of size $(q, 0)$. Since $M[\alpha_0, \alpha_1; w_{t-1}, w_t] \in \{J, E_1, E_4\}$, we have that $\partial_{\Gamma}(\alpha_0, w_t) = r + 1$. Since $\alpha_0 \in \Lambda = H_s$ and H_s is of type (1) with respect to w, we have that $\alpha_0 \in D_{r+2}^{r+1}$. Hence we have that $\partial_{\Gamma}(\alpha_0, w) = r + 2$. On the other hand, we have that $\partial_{\Gamma}(\alpha_{2q}, w_t) = r + 1$ from $M[\alpha_{2q-1}, \alpha_{2q}; w_{t-1}, w_t] \in \{J, E_2, E_3\}$. Since $\alpha_{2q} \in \Lambda' = H_{s+1}$ and H_{s+1} is of type (2) with

respect to w, we have that $\alpha_{2q} \in D_r^{r+1} \cup D_{r+1}^{r+1}$. Thus we have that $\partial_{\Gamma}(\alpha_{2q}, w) \neq r + 2$. This contradicts Proposition 4.2. Hence the lemma is proved. \Box

PROOF OF PROPOSITION 5.3. (1) Consider the (w_t, w) -diagram. From the inductive assumption, $D^i \cap \Delta = \emptyset$ for $i \ge r + 2$, it is sufficient to show that $D^{r+1}_{r+2} \cap \Delta = \emptyset$. Suppose that $Z = D_{r+2}^{r+1} \cap \Delta \neq \emptyset$. Take any $x \in Z$. We have

$$
a+1 \le k_{\Delta}(x) = |\Delta_1(x)| = |D_{r+2}^{r+1} \cap \Delta_1(x)| + |D_{r+1}^{r} \cap \Delta_1(x)| \le |Z_1(x)| + 1.
$$

Since $\partial_{\Gamma}(u, x) \leq d_{\Delta}(u) = r + 1$, we have that Z is an $(a, r + 1)$ -subgraph with respect to $\{u\}$. From Lemma 2.3(2), we have that

 $\varnothing \neq Z \cap \Gamma_{r+1}(u) = D_{r+2}^{r+1} \cap \Delta \cap \Gamma_{r+1}(u) \subset D_{r+2}^{r+1} \cap \Psi \subset \Gamma_{r+2}(w) \cap \Psi.$

This contradicts Lemma 5.5.

(2) Since Δ is an $(a + 1, r + 1)$ -subgraph with respect to $\{w_t\}$, our assertion follows from Lemma 2.4.

 (3) This follows from (1) , (2) and Lemma 2.3 (2) .

(4) Let $x \in \Delta_{r+1}(w)$. Note that $\partial_{\Gamma}(w, x) = r+1$ from (2). We have $B(w, x) \cap \Delta = \phi$ from (1). Hence $\Delta_1(x) \subset C(w, x) \cup A(w, x)$. This implies that

$$
k_{\Delta}(x) \leq C(w, x) + |A(w, x)| = c_{r+1} + a_{r+1} = 1 + a.
$$

Hence our assertion follows from Lemma 5.2(7). \Box

PROOF OF THEOREM 1.1. Note that $g(\Delta)=2r+3$ from Lemma 5.2(1). Take any $x \in \Delta$. We have $d_{\Delta}(x) = r + 1$ from Proposition 5.3(3). Thus we have $z \in \Delta_{r+1}(x)$. This implies that $x \in \Delta_{r+1}(z)$. Thus we have that $k_{\Delta}(x) = a + 1$ from Proposition 5.3(4). This implies that Δ is a regular graph of valency $k_{\Delta} = a + 1$, diameter $d_{\Delta} = r + 1$ and girth $g(\Delta) = 2r + 3$. Thus we obtain the desired result.

This completes the proof of Theorem 1.1. \Box

REFERENCES

- 1. E. Bannai and T. Ito, *Algebraic Combinatorics 1,* Benjamin-Cummings, California, 1984.
- 2. A. Boshier and K. Nomura, A remark on the intersection arrays of distance-regular graphs, *J. Combin. Theory, Ser. B, 44* (1988), 147-153.
- 3. A. E. Brouwer, A. M. Cohen and A. Neumaier, *Distance-regular Graphs,* Spriinger-Verlag, Berlin, 1989.
- 4. A. Hiraki, A constant bound on the number of columns $(1, k-2, 1)$ in the intersection array of a distance-regular graphs, *Graphs Combin.,* to appear.
- 5. A. Hiraki, Circuit chasing technique for a distance-regular graph with $c_{2r+1} = 1$, *Kyushu J. Math.*, 49 (1995), 197-219.
- 6. A. Hiraki, Distance-regular subgraphs in a distance-regular graph, II, *Europ. J. Combin.,* to appear.

Received 31 May 1994 and accepted in revised form 27 February 1995

AKIRA HIRAKI *Department of Mathematics. Osaka University, Toyonaka, Osaka 560, Japan*

$$
\overline{}
$$