Double closure repair of mitral paravalvular leak by way of right thoracotomy

Shinsuke Kotani, MD, Koji Hattori, MD, Yasuyuki Kato, MD, and Toshihiko Shibata, MD, Osaka, Japan

Paravalvular leak (PVL) occurs in up to 12.5% of mitral valve replacements (MVRs) and sometimes recurs. Although various techniques to repair such leaks have been described, surgical intervention for patients undergoing multiple repeat surgery poses a formidable challenge. For the purposes of good exposure and durable repair of mitral PVL, we describe a double closure technique with pledgeted sutures and a pericardial patch using right thoracotomy. This technique might provide greater durability of the repair site and good exposure of the mitral valve.

TECHNIQUE

The patient is placed in the supine position. A right anterolateral thoracotomy is performed through the fourth intercostal space. Cardiopulmonary bypass is established by arterial cannulation by way of the right femoral artery and venous cannulation by way of the right femoral vein and superior vena cava. The perfusion temperature is stabilized at 25°C. Ventricular fibrillation is induced by hypothermia. A left atrial vent is inserted through the right superior pulmonary vein. The left atrium is opened from the right side to expose the mitral valve. First, to close the leak directly, pledget-supported braided polyester sutures are placed through the atrial wall to a sewing ring with a pledget on the atrial side (Figure 1, A). The sutures are brought directly to the pericardial patch and tied together (Figure 1, B). Second, to reinforce the repair site, both ends of the sutures are passed through the left atrium and the patch using a continuous suture technique. The repair site, including the pledgets, is covered with the pericardial patch (Figure 1, C). The stitches should not be placed too deeply to avoid damage to the underlying circumflex coronary artery. After defibrillation with an external paddle, disappearance of the leak is confirmed by direct vision.

We performed this operation for 2 patients with mitral PVL after multiple MVRs. The first patient was an 81-year-old man who underwent MVR for rheumatic mitral regurgitation at age 54 years, and repeat MVR for PVL and aortic valve replacement for rheumatic aortic regurgitation at age 78 years with bioprosthetic valves. He was referred for congestive heart failure and hemolytic anemia. Transeophageal echocardiography revealed PVL at the 9-o’clock position of the mitral prosthetic valve. The leak was repaired with 4 pledgeted mattress sutures and a pericardial patch. The second patient was a 69-year-old man who underwent aortic valve replacement and MVR for rheumatic valve disease at age 47 years. He underwent a second aortic valve replacement and MVR with mechanical valves for PVLs at age 61 years. He had congestive heart failure and had PVLs at the 2- and 8-o’clock positions of the mitral prosthetic valve. The PVLs were repaired in similar manners. Eight pledgeted mattress sutures were placed from the 2- to 8-o’clock positions to seal both leaks. The pericardial patch covered the closure site, including all the pledgets. Both patients were doing well without PVL or mitral regurgitation after 2 years postoperatively.

DISCUSSION

We prefer a right thoracotomy approach with cardiopulmonary bypass on ventricular fibrillation for patients...
undergoing multiple redo mitral valve surgery. A right tho-
racotomy requires minimal retraction and dissection of the
heart and provides good exposure of the mitral valve.
Cardiopulmonary bypass on ventricular fibrillation can de-
crease the manipulation of the aorta without aortic cannula-
ion and cross-clamps. The disadvantage of this approach is
the increased risk of cerebral vascular insufficiency. Fem-
oral arterial cannulation can cause stroke if the aorta has
atherosclerotic changes. When the femoral artery is un-
available, arterial cannulation can be achieved using the
right subclavian artery. Because air embolism is also a cause
of stroke, vent placement across the aortic root and carbon
dioxide flooding of the thoracic cavity are recommended to
remove air from the heart. The repeat leak incidence after
surgical treatment of mitral PVL has been reported to be
22%. For PVL repair without repeat replacement, the
leak size and location should be defined accurately by pre-
operative transesophageal echocardiography. In the present
cases, we decided that their PVLs could be treated using this
technique because of the small leak size and number. If the
size is large or multiple leaks are present, repeat MVR
might be adequate for PVL treatment. A durable repair
technique is also necessary for PVL closure. We present
a double-closure technique for mitral PVL repair with
both pledgeted sutures and a pericardial patch that might
provide greater durability. Even if the mitral annulus be-
comes detached from the sewing ring, the patch will prevent
recurrence of the leak. This technique provides an easy ap-
proach to the mitral valve, with durable repair of the leak
and is 1 of the feasible options for patients undergoing sur-
gery for mitral PVL.

References
leakage after mitral valve replacement: improved long-term survival with aggres-
3. AI Hales Z. An additional maneuver to repair mitral paravalvular leak. Eur J Car-
4. Ryomoto M, Mitsuino M, Fukui S, Miyamoto Y. Repair of perivalvular leakage with-

Transaortic balloon-expandable aortic valve implantation

Gino Gerosa, MD,a Assunta Fabozzo, MD,a Roberto Bianco, MD,a Giuseppe Tarantini, MD,b and
Augusto D’Onofrio, MD,a Padova, Italy

In patients with severe symptomatic aortic valve stenosis
who are inoperable or at high risk for surgical aortic valve
replacement, transcatheter aortic valve implantation (TAVI)
represents an alternative therapeutic strategy. Currently, there are 2 commercially available devices: the self-
expandable CoreValve revamping system (Medtronic Inc,
Minneapolis, Minn) and the balloon-expandable Sapien
XT valve (Edwards Lifesciences, Irvine, Calif). For the lat-
ter, a transapical approach is the first choice in case of un-
available femoral access. However, in patients with severe
left ventricular (LV) dysfunction, a surgical approach of
the apex can potentially further worsen heart contractility,
and the presence of an LV aneurysm with mural thrombi
contraindicates the procedure. Bleiziffer and colleagues
reported that 1 year after transapical TAVI, a new apical
hypoco- or akinesia was present in up to 37% of patients,
and that because of the apical scar, a significant reduction
of the LV ejection fraction was found in 13% of patients.
In these patients with “no access,” a subclavian/axillary
approach has been described, but it is not feasible in case
a 29-mm device is necessary or both subclavian arteries
are heavily calcified or extremely tortuous. A transaortic
implantation has been described using the CoreValve re-
vamping system. We describe the technique for 29-mm Sa-
pien XT implantation via a transaortic access.

CLINICAL SUMMARY
A 70-year-old man with severe symptomatic aortic valve
stenosis was admitted to the University of Padova for acute
pulmonary edema. His aortic valve area was 0.74 cm², peak
and mean gradients were 38 and 21 mm Hg, respectively,
LV ejection fraction was 22%, and end-diastolic volume in-
dex was 118 mL/m². In this patient, the nature of LV dys-
function was related to the chronic occlusion of the right
coronary artery with a consequent akinesia of the

From the Divisions of Cardiac Surgery,a and Cardiology,b University of Padova, Italy.
Disclosures: Authors have nothing to disclose with regard to commercial support.
Received for publication June 17, 2011; revisions received Nov 17, 2011; accepted
for publication Dec 6, 2011; available ahead of print Dec 19, 2011.
Address for reprints: Augusto D’Onofrio, MD, Division of Cardiac Surgery, Univer-
sity of Padova, via Giustiniani 2, CAP 35128, Padova, Italy (E-mail: adonofrio@
hotmail.it).
J Thorac Cardiovasc Surg 2012;143:1453-5
0022-5223/$36.00
Copyright © 2012 by The American Association for Thoracic Surgery