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Abstract. This paper analyzes the average behaviour of algorithms that operate on dynamically
varying data structures subject to insertions I, deletions D, positive (resp. negative) queries Q
(resp. Q7) under the following assumptions: if the size of the data structure is k (k € N), then the
number of possibilities for the operations D and Q™ is a linear function of k, whereas the number
of possibilities for the ith insertion or negative query is equal to i This statistical model was
introduced by Francon [6, 7] and Knuth [12] and differs from the model used in previous analyses
[2-7]. Integrated cos:s for these dynamic structures are defined as averages of costs taken over
the set of all their possible histories (i.e. evolutions considered up to order isomorphism) of length
n. We show that the costs can be calcuiated for the data ztructures serving as implementations of
linear lists, priority queues and dictionaries. The problem of finding the limiting distributions is
also considered and the linear list case is treated in detail. The method uses continued fractions
and orthogonal polynomials but in a paper in preparation, we show that the same results can be
recovered with the help of a probabilistic model.

1. Introduction

Since .rc pioneer works in [10-12], the analysis of dvnamic algorithms has made
great progress: it was shown in [6, 7] and [ 3, 4] that several list and tree organizations
can be analyzed in a dynamic context. Integrated costs for these dynamic structures
were defined as averages of costs taken over the set of all possible evolutions of the
structure, ¢onsidered up to order isomorphism. Using a method of continued
fractions and orthogonal polynomials Flajoiet et al. obtained explicit expressions
for the expected costs and in some cases for the variances but with a statistic called
markovian which is briefly described in Section 3. The same results were proved in
[14] with a probabilistic analysis. Taking account of the remarks made by Frangon
and Knuth, we introduce a more natural statistic: the number of possibilities for
the ith insertion or negative query is equal to i but if after some operations the
structure contains k records, the number of possibilities for a deletion or positive
query is a linear function of k (Section 3). Since we have to work with two indices
(i and k), the analysis of dynamic algorithms is more difficult in this model.
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The plan of the paper is o3 follows: Section 2 provides the set of necessary
definitions for dynamic data structures. Section 3 describes the two models. The
integrated cost is defined in Section 4. In Section 5, we prove a continued fraction
theorer. and we use it to derive enumeration results relative to sequences of
operations. These results are then applied in Sectica 6 to provide explicit evaluations
for the integrated costs. Section 7 concerns the limiting distributions of the costs.
Finally, Section 8 discusses some of the implications of our work and outlines some
of its further aspzcts.

-~

2. Data types, hisiories

We consider here data structures subject to the following natural operations:
insertion (I), deletion (D) and query (Q); one may distinguish between successful
queries (Q*) and unsuccessful ones (Q~). The data types to be studied here are:
® Linear lists (LL): support I and D only.
® Priority queues (PQ): support I and D only. D is performed only on the key of

minimal value.
® Dictionaries: support I, D and Q without restriction.

Definition 2.1. A schema is a word 0,0,...0,€{l, D, Q", Q" }* such that for all j,
Isj<sn,

l010,...0;=|0,0,...0]p. (1)

A schema is to be interpreted as a sequence of requests (the keys operated on

not being represented). The condition (1) is to be interpreted as follows: after the

operations 0,0, ...0; have been performed on the structure, the resulting size is
a;(2)=|0,0,... 0], —|0,0,... 0] p, which should always be nonnegative.

Definition 2.2. (i) A linear list history is a sequence of the form

h=0,(r)ox(r;) ... 0.(r,) 2)

where 2 =0,0,...0, is a schema over the alphabet {I, D} and the r; are integers
satisfying

h

0<r<l|0)0,...0 |, if 5,=1

(ii) A priority queue history is a sequence of the form (2), the schema (2 is also
over the alphabet {I, D}, the r, satisfy

=0 if 0, =D,

Osrislolaz.,.o"_Jl if0j=1.
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(iii) A dictionary history is a sequence of the form (2) but the schema {2 is over
the alphabet {I, D, Q*, Q} and the r; satisfy

0<r,<a, () if ;=D or Q°,
0<7r,<(0,0,...0;,4|; +|0,0:...0,_4lo- ifo,=Tor Q.

r; is the rank (or position) of the key operated upon at step j.

Definition 2.3. If Oc{I, D, Q", Q}, the number of possibilities for O is the number
of keys k for which O(k) is defined. If this number is zero, O is said to be impossible.

3. The two models

In [12], Knuth considers the following operations on a data structure containing
d keys (or numbers):

D, stands for random deletion, in the sense that if d keys are present each is
chosen for deletion with probability 1/d,

D, stands for priority queue deletion, i.e. deletion of the smallest key,

I, stands for insertion of a random number by order, in the sense that the new
number is equally likely to fall into any of the d + 1 intervals defined by the d numbers
still present as keys after previous insertions and deletions; this is to bz independent
of the history by which these d numbers were actually ohtzined,

I stands for insertion of a random real number from (. . . the uniform distribution)
on the interval [0, 1]. Each random number inserted is assumed to have the same
distribution, and it is to be independent of all previously inserted numbers. Thus, if we
look at n such random numbers (...) the n! possible orderings (of these numbers)
are equaily likely, and the particular distribution involved has nc effect on the
behaviour of the data organization (i.e. the class of data structures together with
associated algorithms for operating on these structures).

Knott [11] has shown that [, is a concept different from I (see also [13, Section
6.2.2]); this result has stimulated further research, notably [10, 12], and the present
work.

The above assumptions can be generalized for dictionary case. Thus, the assump-
tion about I, is also valid for Qp (negative query of a random number by order),
and the assumption about D, is valid for Q; (random positive query). The assump-
tion about I can be modified as follows in order to take account of Q:

I or Q~ stands for insertion or negative query of a random real pumber from
(.. .the uniform distribution) on the interval [0, 1]. Each random number inserted
or negatively searched is assumed to have the same distribution, and it is to be
independent of all previously inserted and negatively searched numbers. In this
paper, considering the Is and Qs (resp. Ios and Qq's) kind of insertion and negative
query only is called Knuth’s model (resp. markovian model). The markovian model
has been introduced and studied by combinatorial methods in [6] and [7]. Flajolet
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[5] has shown how the theov of continued fractions and orthogonal polynomials
remarkably fits this model; further developments appear in [1-3]; distributions of
costs, average costs, limiting profiles (defined in [1]) have been calculaied for some
sequences of operations for various data types, including priority queues and linear
lists.

The following questions were raised in [6]: how to compute the corresponding
costs in Knuth’s model znd are the costs sensitive to the model? The first answers
for linear lists and priority queues vrere given in [8, 15], after reducing the calcula-
tions in Knuth’s model to calculations in the markovian model. In this paper, we
develop an algebraic method which permits us to recover all the results of [15] and
to treat the dictionary case. The first step is to express the problem in a combinatorial
way. Following [10], let us consider the sequence of operations IIIDI, the initial
data structure being empty; let x <y <z be the three keys inserted during the
seauence I:1; let us consider a linear list, that is x or y or z is deleted with equal
probability; ict w be the key inserted by the fourth Is of this sequence; then, all
four cases w<x<y<z x<w<y<z x<y<w<z x<y<z<w do occur with
equal probability, whatever the key deleted. More generally, let us consider a
sequence of operaticns 0,0, ... O; of dictionary, the initial data siructure being
empty; any data type may be considered, linear list, priority queue, dictionary;
assume O; is the ith I or Q of the sequence; let x, <x,<---<x;_; be the keys
inserted and negatively searched during the sequence 0,0,...0;_,, and let w be
the ith inserted or negatively searched key. Then, al! the cases w<x, <x,<---<
Xicty Xy <W<X, <+ <Xjg,y.e, X, <X,<-+-<x;_,<w are equally likely, what-
ever the deleted keys. Put into combinatorial words: after j operations, whose i are
I and Qs, thus j—i are D and Qs, the size of the data structure is k <2i—j; the
kevs of the data structure can be considered as a subset of k distinct objects of a
set of size i any of the () possible subsets being equally likely. We say that the
number of possibilities of the ith I or Q~ (in a sequence of operations ) is equal to i
{ for Knuth’s model) whatever the size of the data when this insertion or negative
query occurs. On the contrary, in the markovian model, we say that the number of
possibilities of an I, (resp. Q) operation is k+1 iff k is the size of the data structure
when this insertion (resp. negative query) occurs, whatever the past of the sequence
and of the data structure. The differences between the two models appear in Tables
1 and 2.

Table 1
Possibility functions in the markovian model

Data type Npos(1, k) Npos(D, k) Npos(Q*,k)  Npos(Q~, k)
Dictionary k+1 k k k+1
Priority queue k+1 1

Linear list k+1 k
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Table 2
Pgssibility functions in Knuth’s model

Data type Npos(ith I or Q) Npos(D, k) Npos(Q*, k)
Dictionary i k k

Priority queue i 1

Linear list i k

Here Npos(O, k) is the number of possibilities of an operation O performed on
a data stiructure of size k.

4. Integrated costs

If H is a finite set of histories then we can define the average cost (i.e. integrated
cost) by

Y e n cost(h)
card(H)

In our applications H=H,,,=H, the set of all possible histories of length =,
starting and finishing with an empty file. Computing cost (H) is possible for data
representations having a “randomness” or “stationary” properiy which we define
now.

Let S, be the set of states of size k.

cost(H) =

Definition 4.1. The standard probability distribution on S, is the probability distribu-
tion induced on the set S; by all possible histories consisting of k insertions (with
schems 7, =1I...1 (k times)).

We let p(s) denote the standard probability of the state s.

Definition 4.2. A data representation is stationary if for all k, the three probability
distributicns induced over S, ty all possible histories of schema I**'D, I“Q~ and
I*Q" coincide with the standard probability on S;.

Definition 4.3. For a stationary data representation, we define the individual cost
CO, of the operation O {I, D, Q*, Q"} on a state of size k by the formula
CO.= Y p(s)cost(O,s).

CGSA

Definition 4.4. The level crossing number NO, , is the number of operations cf type
O performed on a file of size k in the course of all histories of Hoo,n-

For stationary data representations we have

1 .
cost(H,)=——— ¥ Y NO ,COy.
card H, 1o 0c11.0.0* .07}
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Table 3
Data type Data representation  Ci, CD, CQy CQ;:
Dictionary Sorted list Yk+2) 3k+1) Hk+1) Hk+2)
Unsorted list 0 k+1; Hk+1) k
Priority Sorted list Uk+2) 0
queue Unsorted list 0 k-1
1
Binary tournament H.,, -} 2( H, -2+ ;)
Pagod 2( 1 ! ) 2( H. -2+ —l-)
agocas K+1 KT
Linear list Sorted list Hk+2) Wk+1)
Unsorted list 0 Hk+1)

Table 3 gives us the individual costs for each data representation. Here H, =
1+1/2+- - -+1/k.

5. Continued fraction theorem and enumerations in Knuth’s model

It appears that Flajolet’s continued fraction expansion for the generating function
H(z) of H,=card H,, is not true in our model since we have to work with the two
parameters k and i. (For this reason, we used first a purely combinatorial approach
[8, 15], but the dictionary case cannot b¢ solved in this way).

Nevertheless if we denote by HY';2"4) the number of histories of length n=p+q+r
with p insertions, q negative queries, r=r,+ r, where r, (resp. r,) is the number of
deletions (resp. positive queries) and if we consider the following generating function

x?t1

H(t,x,2)= Z 4 Pi#+r_____zr,
p.ar e (p+q)!

then we can prove the following theorem.

Theorem 5.1. H(t, x, z) has the following continued fraction expansion:

1

H(t, x,z)= P
2

1-t—iyz—
. 5,X2
l—t—l,z—i—

where i, = Npos(Q™, k), s, = Npos(D, k).

Sketch of the proof. Define the alphabet X ={/, Q", Q;,Q;,Q%,...,D,,D,,...}

where O;, O e {D, Q"}, denotes the operation O performed oa a file of size j. Let
S'™1 denote the set of schemas represented by words over X having height <h,
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initial and final levels 0. The S!"! have the following regular descriptions: S° =
(QT+Q0)* SM=(Q +Qi+I1(Q™+Q7)*D)* SP'=(Q +Qi+I(Q +Q}+
I1(Q™+Q3)*D,)*D,)* and in general S™! is obtained by substituting Q™+ Q;, +
I(Q™+ Q+1)*Dy+, for Q™+ Qj in the expression of S™*). If we let H":"*9) denote
the number of histories of height <h, length p+ g+ r, with p insertions, q negative
queries and r deletious a I positive queries, and

H"(t,x,z)= § HUo 2L
z et ¥ + - e Z .
> p.a.r prare (p+qg)!

then using the morphism
I- X, Q- - t’ QZ- - qkz:o Dk - de,
we have

i

HIO](IQ X, Z)=—_—-—~9
l—t_qoz

1

H"(1,x,2)=

-1 dxz °’
—t—gaz ———————
qO l_t—qlz

etc.; in gencral H"*'I(¢, x, z) is obtained by substituting

dy, 1 X2

t+qz+——mmmmm—
1-t—¢gunz

for t+ g,z in H"I(¢, x, z). The theorem follows by letting h go to infinity. [

Using the more economical notation,

H(t,x,z)=1/1-t—qoz—d\xz/.. /1=t —quz—d,.\xz/. ..,
we apply Theorem 5.1 to our data structures and obtain

(a) dictionary

APy N1 —t=0.z—1.xz/1—t—1.z-2xz/.../1—t—kz
—(k+1)xz/...,

(b) linear list
H"™O0,x,2)=1/1-1.xz/1-2xz/.../1—kxz/...,

(c) priority qucue

H™(0,x,z)=1/1-xz/1-xz/.../1—-xz/. ..
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Remark 5.2. For priority queu:es,

H™(x, z)= 7 H3Q —z
verify

1
1-xzH"(x, 2)

HP(x, z) =

and we have

1-V1-4xz

H(x, z) =
2xz
This gives us

po_ _n! (2n
-2 (2)

We have obtained the same result with the combinatorial approach [8, 15].

Remark 5.3. For linear lists,

H"(x,z)= Y H5:
n=0
Using the hypergeometric function
2

F(a,b,z)= 1+abﬁ+a(a+1)b(b+ 1) g_'+

.
b

we have
Fla,b+1;2) 1
F(a,b; z) —1_ 7F(a+1,b+l;z)
"7 F(a,b+1;2)
=1/1-az/1-(b+1)z/1-(a+1)z/1—(a+1)z/1
—(b+2)z/...

The substitution a->1/2, b-> U, z * 2xz gives us

F(3,1;2xz2)

=1/1-1.xz/1-2xz/...= H""
F( 0: 2x2) /1—1.xz/1-2xz/ H""(x, z),

hence H""(x, z) = F(}, 1; 2xz) and H::=n!n? where n?=1-3-5--- (2n—1). The
same result has been obtained with the combinatorial approach [8, 15].

5.1. Histories of bounded height

As direct consequence of Theorem 5.1, we have the following.
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Proposition 5.4. If

(h] thpral X1
HM(,x,z)=Y HYYP Y ——— 7"
P.g.r i (p+q)!
then H'")(t, x, z) has a rational generating function

P, (1, x, z)
Qh(t, X, Z)

where P, and Q, are polyniomials that satisfy the relations:

H"(t,x,2)=

P_,=0, Py=1,

Pyit,x,2)=(1—i—q,z)P,_,(t, x, z) —d;,xzP,,_5(1, x, 2),
Q.,=0, Qu(t,x,2)=1—-1t—q,z,
Qu(t,x,2)=(1—t—qnz)Qu_ (2, x, 2) — d}x2Qy,_»(1, x, 2),
deg(P,)=deg(Qu_,)=h with deg(t'x’z")=i+j+1

From now we put ¢ = x = yz (i.e.) we use an auxillary variable y to mark insertions
I and negative queries Q~ and principal variable z for histories. So, we can write
the above propositions only by means of y and z

i yi n [h] _ Ph(ya Z)
H(y, z)= H,=— and H L Z)=——————.
(y ) ﬂéo ; i! (y ) Qh(ys Z)

Proposition 5.5. Let

i yi n
Hk,p(y, z)= Z ZHk,p,an

n=0 i

where H} ,, is the number of histories going from level k to level p in n steps with i
insertions and negative queries, we have

1
k_k+
did,...dy"z"""

X [Qu-1(y, Z)Qp—l(ys Z)H(y, z) — P, _\(y, Z)Qp*l(y’ z)]

where A =max(k, p) and p =min(k, p). In particular

Hk.[l(y’ Z) =

HO,p(ya Z)= [Qp—l(ya Z)H(y, z)—Pp—l(y9 Z)],

1
did,...dz"

1 ‘
Hio(y. 2) =E7[Qk~.(y, z2)H(y, z) = P i(p, 2)].
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An altcrnative way of looking at the relations between H(y, z) and Q4 (y, z) is by
means of orthogonality relations. Starting from the numbers

a.()=LH,%, >0,
we introduce the linear form (P(y, z)) over polynomials

k .
P(y,z)= Y pi(y)2’

j=0

defined by

k
/ i Y
{P(y,2))= _Zo P L H. S
j= i :
This induces a scalar product (P|Q)=(P- Q) and we have the following.

Proposition 5.6. Let Q.(y, z) = z**'Qu(y, 1/ 2) be the reciprocal polynoiiial of Qi(y, z)
relative to z. Then we have

0 yo=<i<k,

(Z‘IQkﬂ.(y,Z))={dld2_ dy* ifi=k

Proposition 5.6 gives us the following using the scalar product (}).

Proposition 5.7.

2 +dpyk<2" | Qe-1(3s 2) Qp-r(¥;, 2))-

zi: H’\'J"" i—!= dld2 M

The proofs of these propositions follow the proofs in the markovian model [3, 5].

5.2. Data structures and orthogonal polynomials

5.2.1. Dictionaries and Charlics y-polynomials
For this data type, we have

Q—l(y’ Z)=1, Q()(ys Z)=2“}’,
Q(y, 2)=(z—y—k)Qu_i(y, 2) —kyQi_2(y, 2), k=1.

This recurrence relation transiates over the generating function

k
Q5 0= T Qun )
k=0 H

int~ the differential equation

(1+1) % Qv 2, 1)=(z ~(1+}Q(, 2, 1)
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whose solution is
Qy,z,)=(1+r)ye™.

We can remark that Q(1, z, t) is the exponential generating function of Charlier
polynomials.

Theorem 5.8. The Charlier y-polynomials associated with dictionaries in Knuth’s model
admit

k
Z Qk—l(y, Z)i_u‘—“(l‘*‘f):e”
k=0 '

Jor exponential generating function. As for dictionary histories,

i_n

h(y,z)= Y ZH;¥—Z—-=eNe=~n
n=0 i i!'n!
thus
n 1
H,—= -
ng() n! 2—¢°
and
H,=Y H,=Y i!S,,
or
H, =y —
=

where S, ; are the Stirling numbers (of the second kind). We have also

itk K n

. ; u z

; _ o Y U ez
Eyuvz)= ¥ Y Hipn— 770"
nkp i 1: k n.

=exp y[(1+u)(1+v)e’—u—-v—1]

and
’\‘ n 1

wip PR mt 2—(1+u)(1+v) e tut v’
Proof. Computing {(Q(y, z, ¢)) in two different ways yields
k WK
4

t \ 1
<Q(y5 Z, ‘))=<Z Qk'i(ys Z)T‘>= z (Qk*l(."’a Z)io—l(ys.‘,>kl-:‘
k=0 n. k=0 .
on one hand, and

, [log(1 "
<Q(ys Z, t»:((l'l't):)e—'": z <z")e”-"[_9;gL_it_)l_

n=0 n!

, - y'[log(1+ 01"
(@i, zy=e 3 3y, LIECEOL

n=0 ¢
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on the other hand. Setting » =log(1+1) leads to
y'u"
h(y, u) = H' ___=ey(e"—n,
Onw)= 2 L HA 50

which is ihe “double” generating function of Stirling numbers of second kind
denoted by S,..,

n

,.u
hiy,u)= Y ¥ S,y prink

n=0 i

vle" 1)

Using Laplace transform relatively to y we obtain
. un ) . zn 1

'S,y —= H,y—=——"7—7".

nza:oz;: d n! néog y n! 1—-y(e"—-1)

The first part of Theorem 5.8 is obtained by setting y =1. Let

A(y, z, u, v, w) =(Q(y, z, u)Q(y, z, V) Q(y, z, wh(y, w)))
={Q(y, z, u)Q(y, z, V) Q(y, z, w e™<" ")),
On one hand,

A(ys 2, u, v, W) = Z (Qk-—l(y’ Z)Qp—l(y9 Z)Z")

nk,.p
l uk Up w n vie—1)
X nl k! p! [log(1+ w exp[y(e” —1])]" exp[—yw ¢’ 1.
Using Propuosition 5.6 we have
Ay, z, u, v, w)
i+k k w n
Py . + —
—expl-pwe ] ¥ (T wi ) u' ,llog(1+w exply(e"~DI"
n.k.p\i At S k! n!

On the other hand
A(y, z,u, v, w)
=exp[—-y(u+v+we" " "YU +u)(1+0) (1+we" ~Y)7)

=exp[-y(u+o+we ™ )] ¥ [log(1+u)(1+v)

n=0
vie' —1)\qn 1 n
x(1+we )" —(z")
n!
=exp[—y(u+ov+we" "")]h(y, log(1+u)(1+0v)(1+we*=" "))
=expl—y(u+v+we ) exp{y[(1+ u)(1+ v)(1+we” ") 1]}

Identifying the two expressions of A(y, z, u, v, w) and setting

i = iGg (1 +w e_\'(c“ ~l))
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we obtain

itk _k tn

. y u
h(v,u, v, 1)= Hi,,—/—v"—
SR ZZ ST T IRY|

=exply[(1+u)(1+v)e' —u—v-1]].

Using Laplace transform relatively to y and taking y =1 we have, with

_ i
Hk.p.n - E Hk,p"n [
i

k

u t" 1
Z Hk,p.n T vp___=

nk.p k! n! 2——(1+-u)(1+v)e'+u+v'

159

This treatment applies mutadis mutandis to linear lists and we merely state the

results.

5.2.2. Linear lists and Hermite y-polynomials

For this type, we have Q_, =1, Qo(, z) =z, Qi(y, z) = zQy_1(2) — kyQx_2(2).

Theorem 5.9. The Hermite y-polynomials associated with linear lists in Knuth’s model

admit for expuriential generating function
tk :2
Qyz, )= X Qo 2)—=eXP(zt-y—)
k=0 k' 2

and

. (_l)ik! k—2i
QL =lom om®

As for histories

mn t" t2
hos= T HyAm- L —expl )

2 Gmial O P2
Hence
1 2n
Hz,,=(22'3,)' and néo Hz"(_;n—)!zzfzz'
h(y,u,v,)= Y Hk,p,nT—iﬂ)——iu"—t—i
nk,p Bn+p-k)1'k!  n!
=exp{y[uv+(u+v)t+3i'];
anc

s H Uk "un 2
pn T U —= 5.
mkop KPTIYT a2 -2uv-2(u+v)z—2*
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Remark 5.10
. 1 1
H,=86;:,H  so H,=H7,
i Yn+1-k) Ynil-k}
H;g,l,n 8m+l kaJ,, hence Hk,ln Hkln

where & is the Kronecker symbol.

5.2.3. Priority queues and Tchebycheff v-nolynomials

For this data type Q_, =1, Qo(y, 2) =z, Qu(y, 2) = 2Qx_ (3, 2) =y Qi _2(¥, 2), k= 1.
Thus

1

k
1)= 2t = 5
Qy.z 1) kgﬂ Quan )t =17 s

Lk=i\ . ..
ok-.u,z>=z_(—1)'( i!)z"‘“'.

Theorem 5.11. The Tchebycheff y-polynomials associated with priority queues in
Knuth’s model have the following generating function:

1

”z’t—-_- o ,Z[kz——_’
Q(y, 2, 1) EOQA 13 2) p——

and

As for histories

H.y" , 1=V1-4yz°

'1...1.., A = s
W= L C 2yz
hence
H, = n! (2n)
o (n+1)\n
and
Z2n 1 ’
H",,_:_v - .
n§0 7 (2n)! Z-(e b
We have also
l(n+k) y!:(”+"')
Hyy o p*2" = < v*z"
e T R e TR

1-vV1-—4yz?

2yz7 — yuz(1 -V1 —4yz?)




Dynamic algorithms in Knuth’s model 161

6. The integraied cost theorem in Knuth’s model

The preceding section provides expressions for the number Hy ,, of histories of
length n, starting at level k and finishing at level n.

Let NO;, be the level crossing number of operation O€{l, D, Q*, Q" } at level
k for all histories with i insertions and negative queries, initial and final lavel 0. Setting

NOA(,V Z) = Z NO;&,!I % zn

we have the following.

Proposition 6.1. In Knuth’s model
NI (y, z) = yzHo 1 (y, 2) Hy+1 003, 2),
NQ«(y, z) = yzHo ik (y, 2) Hy oy, 2),
NQi (3, 2) = quzHo k(y, 2) Hi oy, 2),
NDy(y, z) = dizHy 1 (y, z) Hi -1 o(3; 2),

where

ab(y’z) ZHahn{ n.

We are thus in possession of all the quantities needed in order to apply the
integrated cost formula. If

k=0

denotes ths integrated cost of the operation O€{l, D, Q", @} in the course of all
histories of length n with i insertions and negative queries, initial and final level 0,
then,

K,=Y (KI;+KD;+KQ, +KQ,"
represents the integrated cost for the histories in H, o 0-

6.1. Integrcted cost for priority queues

For this data type we have NI, ,,- NDy,,,,. Setting
i Yi
K(y,z)= ¥ YK, —z
n=0 i§
we have

K(y,2)= Y, Kv,,){—

n=0
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where
K5, =Y (Cly +CDy4 )N 5.
k

Theorem 6.2. The generating function of the unitary costs

Cip(x) =§ (CI, +CDy)x*

and integrated costs

n

N Y .V_ 2n
K(yazf_ L K2nn!z

n=0
for psicrity queues in Knuth’s model are related by
K(y,z)= .VZZB()’s Z)3C||)(y223(y, z)*)
with

1-v1 —4yz*

Py

B(y, z)= 2yz

This theorer:: proceeds directly from Proposition 6.1. and Theorem 5.11 with d;, = 1.

6.2. Integrated cost for linear lists
For this data type we have also NI;,, =ND,,,,,. Setting
' . yi Z"
Hk.p(ya Z) =Z Z Hk.[’.n E-’E

n i

and
) izn
NO.(y, 2) =% ¥ NOj, L=

n i i!.’!!

Proposition 6.1 becomes as follows.

Propesition 6.3.
NIi(y, 2) = yHo k (¥, 2) * Hyiy 0(y, 2),
NDw«(y, z) = siHo i (y, 2) * H, . oy, 2),
NQ«(y, 2) = quHo 1 (¥, 2) * Hio(y, 2),
NQ&{(¥, z) = yHo i (y, 2) * Hyo(y, 2),

where

(A* B)(y,z)= J A(y, z-1)B(y, 1) dt

[}]

is the (Laplace) convolution.
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This result proceeds from the following lemma.

Lemma 6.4. If

n n

A2)= Y a,(y)= and B(y,z)=Y buiy) =

z
n=0 . n=q n!

then

n+1

(Ax B)(y, 2)= n%() .§u a(y)bn- ) (n+ 1)!.

The treatment for linear lists in Knuth’s model is the same as for priority queues
in the markovian model (see [3, 5] for detaiis} and we state merely the results.

Theorem 6.5. The generating function

yll ZH

K(.V, Z)= Z K.'Zn_' '
n.n.

n=0
Jor linear lists is related to
Cip(x)= Y (Cl, +CDk+1)ka

k=0

by

1 yz
K(y,z)=——=—=C\p| ™.
(», 2) ’_—1—2yz |l)(1__yz>
6.3. Integrated cost for dictionaries
Theorem 6.6. Setting
X, =KI,+KD;+KO; +KQ,'

the generating function

K'z"
K(z)= Y Y—
n=0i i NI
is related to the exponential generating functions of unitary costs by the relation
(e’/2-1)?
K(y,z)=ye" ™" J [(e° —u—1)Cip(yu) +2Co (yu) +2uCo(yu)]
0
e“\’ll du

X\/(e:+1-u)3—4e’

with
Xk
Cip(x) =E (Cl, +CDyyy)
k k!

k k

X X
— and Cy(x)=)CQui 7.
" k!

Co (X)Z%CQA X
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Table 4
Data type i Data representation Integrated cost (as n - 0)
icti Sorted list < > 3 >’+0()
, - |n” n
Dictionary orted lis Slog2 4(log2)’
Unsorted list ( i 19 )’42+0(n)
nsortec s 4log2 16(log2)?/
Linear list Sorted list n(n+5)/3
Unsorted list n(n+5)/6
Vu
Priority queue Sorted list Tﬂ nvn+0(n)
v
Unsorted list —2: nvn+0{n)
Binary tournament 3nlog n+0(n)
Pagodas niog n+0(n)

Table 4 summarizes the results for the integrated (time) costs. Some technical
aspects are omitted here.

7. Limiting distributions

In this section, we study the asymptotic behaviour of linear lists in Knuth’s model.
It is a continuation of [1, 2]. In Section 7.1 we recall briefly some notions in order
to apply thern to linear lists (Section 7.2).

7.1. Limiting profiles

In order to caiculate the integrated costs on the histories of length 2n (i.e. the
average cost of an operation O € {I, D} for any history of length 2n), we introduce
the average profile notion of an operation 1 at level k on Hy,,,, which is the
probability to have G at level k in the course of history, and define it by the quantity

Tok,n = NOk,Zn/anZVI

where NO,,, is the level crossing number.

Then we deduce the average cost of an operation O on all the histories of length
2n by the formula

C2n = Z Z COkTOk,Zn

Oell, D} k=0
where CO, is the unitary cost. We can remark that for linear lists
le,Zn =NDyi20-

Consequently, it suffices to calculate Tl, ,,, for this data type.
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N
N

In [8, 15] we proved respectively the following relations
HE'M=ntHY™? and NORL:=n!NOYRR

where KLL (resp. MPQ) means linear list in Knuth’s model (resp. priority queue
in the markovian model). So, we can say that TO}, = TOY32 for Oe{I, D}.

7.2. Limiting profiles for linear lists in Knuth’s model

Limiting profiles for MPQ are studied in [1] and [2]. We state merely the results.

1
Tlize = TD{ 2=~ :
k2 ML o n1=2(k/n)

Propesition 7.2. The average cost of an operation is given by the formula

1/4
C.‘2(nLL = [ (Cllnd) + CDan;—H) ﬁ d¢s ‘b =
JO Vi @

Application: for the sorted list representation, we obtain: Cl,,, =CD», 4. =n¢ +1

and an elementary integration gives Chr-=~n/6, and the leading term of the
asympiotic expansion of the integrated cost is
2
Kee M
2n T .

K_‘z,, = 2nC

We can remark that:

(i) the limiting profile TI %" (Fig. 1) represents the contribution of the individual
costs to tt.e integrated cost Ca" (see Proposition 7.1.).

é KLL
Tly
4
@
3 10
4 e
i e
]
2 '
8 8
i e
/ : ")
1 L2g>
cns 041 0158 02 025 ¢
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Fig. i. Geomerrical interpretations: ——, limit distribution (1 - 4) sooo, curve for 1 = §00

L -- -, curve
for n = 1600.
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(i) it is easier to caiculate the integrated costs with Proposition 7.2 (rather than
using Theorem 6.5).

Limiting profile for histories of H o5,

According to [1, 2] (relative to MPQ) and the above remarks, Fig. 2 is the limiting
profile of a random history of KLL which is a parabola representing the evolution
of (the size of) the file

D(p)=p—p’.
The same curve has been obtained by Louchard [14] fer priority queues in the
markovian model by a probabilistic method. This curve reveals interesting properties
concerning the behaviour of linear lists in Knuth’s model:

(a) the top of the parabola tells us that, for large values of n, the size of the file
never exceeds 3n.

(b) in the first half-time there are more insertions than deletions, and the inverse
phenomenon in the second half-time.

(c) the size of the file passes only twice to the same value.

(d) |du/d®d)|=(1-4D) " represents the individual costs CO, contribution to
the integrated cost CX". Inversely, by integration of this expressior: we can recover
the results of Propositions 7.1 and 7.2.

Limiting profiles for the other data structures can be obtained in the same way.

8. Conclusion
We have developed an algebraic methed in order to analyze dynam.c algorithms

in Knuih’s model. Our results prove that for dictionaries and lincar lists the integrated
costs are of the same kind in the two models but this is not truc for pricrity gueues
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represented by lists (whose cost is O(n”) in the markovian model and O(n*?) in
Knuth’s model). That means the costs may be sensitive to the model. Several works
are in preparation, one of which concerns the probabilistic approach which permits
us to find the explicit form of the limiting distribution of the costs measures and
of course the variances. The case where the universe of keys is finite is the object
of another study.

Acknowledgment

The authors are grateful to Ph. Flajolet, P. Lescanne, J.L. Rémy and J.M. Steyaert
for several discussions on this topic.

References

[1] L. Chéno, Profils limites d’histoires sur les dictionnaires et les files de priorité. Application aux
files binomiales. Thése de 3é cycle, Université d’Orsay, 1981.

{21 L. Chéno, Ph. Flajolet, J. Francon, C. Puech and J. Vuiilemin, Finite files, limiting profiles and
variance analysis, in: Proc. 18th Allerton Conf. on Com. Control and Computing (1980).

[31 Ph. Flajolet, J. Francon and J. Vuillemin, Sequence of operations analysis for dynamic data
structures, J. Algorithms 1 (1980) 111-141.

[4] Ph. Flajolet, C. Puech and J. Vuillemin, The analysis of simple lists structures, Inform. Sci. 38 (1986)

121-146.

[5] Ph. Flajolet, Analyse d'algorithmes de manipulation d’arbres et de fichiers, B.U.R.O. Cahier (1981)
34-35.

[6] J. Frangon, Combinatoire des structures de données, These de doc. d’Etat, Université de Strasbourg,
1979.

[7]1 1. Francon, Histoires de fichiers, RAIRO Inform. Théor. 12 (1978) 49-62.
[8] J. Fraicon, B. Randrianarimanana and R. Schott, Analysis of dynamic data structures in D.E.
Knuth's modei, Rapport C.R.I.N., 1986 (submitted).
[9] J. Frangon, B. Randrianarimanana and R. Schott, Analysis of dynamic algorithms in D.E. Knuth’s
model, in: Proc CAAP"88, Lecture Notes in Computer Science 299 (Springer, Berlin, 1988) 72-88.
[10] A. Jenassen and D.E. Knuth, A trivial algorithm whose analysis isn't, J. Compur System Sci. 16
(197:) 30i-332.
[11]1 G.D. Knott, Deletion in binary storage trees, Report Stan-CS, May 1975, 75-491.
[12] D.E. Knuth, Deletions that preserve randomness, Trans. Software Eng. (1977) 351-359.
[13]1 D.E. Knuth, The Art of Computer Programming: Sorting and Searching, Vol. 5 (Addison-Wesley,
Reading, MA, 1975).
[14] G. Loushard, Randoia walks, Gaussian processes and list structures, Theoret. Comput. Sci. 53 (1987)
99-124.
[15] B. Randrisnarimanana, Analyse des structures de données dynamiques dans le modele de D.E.
Knuth, Thése de 3éme cvcle, Université Nancy 1, 1986.



