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Abstract. This p-lper analyzes the average behaviour of algorithms that operate on dynamically 
varying data structures subject to insertions 1, deletions D, positive (resp. negative) queries Q’ 

(resp. 0-j under the following assumptions: if the size of the data structure is k (k E N), then the 

number of possibilities for the operations D and Q’ is a linear function of k, whereas the number 

of possibilities for the ith insertion or negative query is equal to i. This statistical model was 
introduced by Francon [6,7] and Knuth [12] and differs from the model used in previous analyses 

[2-71. Integrated costs for these dynamic structures are defined as averages of costs taken over 
the set of all their possible histories (i.e. evolutions considered up to order isomorphism) of length 
n. We show that the costs can be calculated for the data ctructures serving as implementations of 
linear lists, priority queues and dictionaries. The problem of finding the limiting distributions is 
also considered and the linear list case is treated in detail. The method uses continued fractions 

and orthogonal polynomials but in a paper in preparation, we show that the same results can be 
recovered with the help of a probabilistic model. 

Since Ijr_ c i”ioneer works in [IO-121, the analysis of dynamic algorithms has made 
great progress: it R’CS slr, hnwn in [6,7] and [3,4] that several list and tree organizatio 
can be analyzed in a dynamic context. Integrated costs for these dynamic structures 
were defined as averages of costs taken over the set of all possible evolutions of the 
structure, c Jnsidered up to order isomorphism. Using a method of continued 
fractions arid orthogonal polynomials Flajolet et al. obtained explicit expressio 
for the expected costs and in some cases for the variances but with a statistic calle 

markovian which is brieOy described in Section 3. 
[ 141 with a probabilistic analysis. Taking account of the 
and Knuth, we introduce a more natural statistic: the 
the ith insertion or negative query 
structure contains k records, the nu 
query is a linear function of k (Section 3). Since 
(i and lit), the analysis of dynamic algorithms is more difficult in t 

* A first version of this paper was presented at CAAP’88. afiially suppoded by the 
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The plan of the paper is ~3 follows: Section 2 provides the set of necessary 

definitions for dynamic data structures. Section 3 describes the two models. ?he 

integrated cost is defi ed in Section 4. In Section 5, we prove a continued fraction 

theorep_ and we use it to derive enumeration results relative to sequences of 
operations. These results are then applied in Sect- ;on 6 to provide explicit evaluations 

for tne integrated costs. Section 7 concerns the limiting distributions of ihe costs. 

Finally, Section 8 discusses some of the i plications of our work and outlines some 
of its further aspcts. 

We consider here data structures subject to the following natural operations: 
insertion (I), deletion (D) and query (0); one may distinguish between successful 
queries (0’) and unsuccessful ones (0). The data types to be studied here are: 

Linear lists (LL): sup ort Z and 6) only. 
Priority queues (PQj: support Z and D only. D is performed oniy on the key of 
minimal value. 
Dictionaries: support Z, D and Q without restriction. 

A schema is a word 0102 . . . on E {Z, D, o’, o-}* such that for all j, 
ISjan, 

I 01op.. Ojl, z lOlO2.. . OjlD. (1) 

A schema is to be interpreted as a sequence of requests (the keys operated on 
not being represented). The condition (1) is to be interpreted as follows: after the 

. 
operations olo2 . . . Oj have been performed on the structure, the resulting size is 
@j(a) = 10102 l l l Ojl, -10~02 l l l OjlD, which should always be nonnegative. 

. (i) A Linear list history is a sequence of the form 

h = oAhb2(rz). o. o,(m) (2) 

where a = 0~0~. o. o, is a schema over the alphabet {Z, D> and the rj are integers 
satisfying 

0~rj~10~02...~j-*lt if ,3,=Z. 

(ii) A priority queue history is a sequence of the form (2), the schema -0 is also 
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(iii) A dictionary history is a sequence of the form (2) but the schema 0 is over 
the alphabet (I, -} and the 5 satisfy 

Wrj<a;_,W?) 

O~~~lO~O~...Oi_ll,+(O~O~...~j-~~~- if qj=I Or Q-. 

5 is the rank (or position) of the key operated upon at step j. 

Befi .3* If OE(I, +, Q-}, the number of possibilities for 0 is the number 
of keys k for which (k) is defined. If this number is zero, is said to be impossible. 

. 

d 

e S 

In [12], Knuth considers the following operations on a data structure containing 
keys (or numbers): 
D, stands for random deletion, in the sense that if d keys are present each is 

chosen for deletion with probability l/d, 
Dq stands for priority queue deletion, i.e. deletion of the smallest key, 
IO stands for insertion of a random number by order, in the sense that t 

number is equally likely to fall into any of the d + 1 intervals dejirled by the d n 
still present as keys after previous insertions and deletions; this is to be independent 
of the history by which these d numbers were actually obtai;xd, 

I stands for insertion of a random real number from (. . . the uniform distribution) 
on the interval [0, I]. Each random number inserted is assumed to have the same 
distribution, and it is to be independent of all previously inserted numbers. Thus, if we 
look at n such random numbers (. . .) the n! possible orde gs (of these numbers) 
are equafiy likely, and the particular distribution involv has no effect on the 

behaviour of the data organization (i.e. the class of data structures together w 
associated algorithms for operating on these structures). 

Knott [ 111 has shown that I0 is a concept different from I (see also [ 13, Section 
6.2.21); thi; result has stimulated further research, notably [ 10,121, and the present 
work. 

The above assumptions can be generalized for dictionary case. Thus, the assump- 

tion about I can be modified as follows in order to take a 

istribution) on the interval 
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[5] has shown how the theoy of continued fractions and orthogonal polynomials 
remarkably fits this model; further developments appear in [l-3]; distributions of 
costs, average costs, limiting profiles (defined in [I]) have been calculated for some 
sequences of operations for various data types, including priority queues an 

lists. 
The f&.wing questions were raised in [6]: how to compute the corvesponding 

costs in Knuth’s ~.rad are the costs s::nsit,ive to the model? The first answers 
for linear lists an rity queues were given in [8,15], after reducing the calcula- 
tions in Knuth’s model to calculations in the markovian model. In this paper, we 
deveiop an algebraic method which permits us to recover all the results of [15] and 
to treat the dictionary case. The first step is to express the problem in a combinatorial 
way. Following [ 01, let us consider the sequence of operations IIIDI, the initial 

data structure being em ; let x<y<z be the three keys inserted during the 
sequence KI; let us cons er a linear list, that is x or y or z is deleted with equal 
probability; ie! w be the key inserted by the fourth Is of this sequence; then, all 
four cases w<x<y<z, x<w<y<z, x<y<w<z, x<y<z<w do occur -+uJth 
equal probability, whatever the key deleted. More generally, let us consider a 
sequence of operations 0,02.. . Oi of dictionary, the initial data structure being 
empty; any da a type may be considered, linear list, priority queue, dictionary; 
assume Oj is the ith I or Q- of the sequence; let x1 <x2 < l l l < xi _ i be the keys 
inserted and negatively searched during the sequence 0, O2 . . . Oj-1, and let w be 
the ith inserted or negatively searched key. Then, a!! the cases w < x1 < x2 <. l . < 

Xi-l, X,<W<Xf<wg*<Xi-~,...,X~<X2<“’ l < Xi-1 < w are equally likely, what- 
ever the de”leted keys . But into combinatorial words: after j operations, whose i are 
I and Q-s, thus j - i are D and QCs, the size of the data structure is k G 2i - j; the 
keys of the data structure can be considered as a subset of k distinct objects of a 
set of size i any of the (1) possible subsets being equally likely. We say that the 
number of possibilities of the ith I or Q- (in a sequence of operations ) is equal to i 
(fir Knuth’s model) whatever the size of the data when this insertion or negative 
query occurs. Qn the contrary, in the markovian model, we say that the number of 
possibilities of an IO (resp. Qi) operation is k+ 1 iff k is the size of the data structuw 
when this insertion (resp. negative query) occurs, whatever the past of the sequence 
and of the data structure. The differences between the two models appear in Tables 
1 and 2. 

Table 1 
Possibility functions in the markovian model 

_-- 

Data type Npos( 6 W Npos( Q k 1 NW O+, k) Npos( 0-v W 

Dictionary k+l k k k+il 
Priority queue I< t 1 1 
Linear list k + k 

--.__-_ ~ -- 
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Table 2 

Possibility functions in Knuth’s model 

Data type Npos( ith i or Q-) Npos(D, k) 
._-..... _ 

Dictionary i k 

Priority queue i 1 

Linear list i k 

NPOS( o+, w 

k 

os( 0, k) is the number of possi ilities of an operation 0 
data structure of size k. a 

is a finite set of histories then we can define the average cost (i.e. integrated 
cost) by 

cost(H) = 
c hccH cost(h) 

card(H) l 

In our applications the set of all possible histories of length IY, 

starting and finishing with an empty file. Computing cost ( ) -is possible for data 

representations having a “randomness” or “stationary” pr eriy which we define 

now. 
Let Sk be the set of states of size k. 

The standard probability distribution on S, is the probability distribu- 

n the set Sk by all possible histories consisting of k insertions (with 
schem-, & = 1I. . . I (k times)). 

We let p(s) denote the standard probability of the state s. 

2. A data representation is stationary if for all k, the t 
s induced over Sk by all possible histories of schema I 

IkQ+ coinlcide with the standard probability on Sk. 

itio .3. For a stationary data representatio 
COk of the operation 0 E {I, 0, Q+, 

COk = c p(s) cost02 s). 
FE& 

he level crossing 

0 performed on a file of size k i 

For stationary data representations we 
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Table 3 

Data type 

Dictionary 

Priority 

queue 

Data representation Cik CDk CN CQ, 
--- 

Sorted list $(k+2) $(k+ 1) f(k+ 1) $(k+2) 
Unsorted list 0 $(k+ 1) $(k+l) k 

Sorted list $(k+2) 0 
Unsorted list 0 - 

Binary tournament Hk + , - $ 2 H,-2+i 
*(’ ) 

Pagodas 2(1-j&) Z(HL-Z+t) 

Linear list Sorted list 
Unsorted list 

;(k+2) 
0 

$(k+ 1) 
$(k+ 1) 

Table 3 gives us the individual costs for each data representation. Here I& = 
1+1/2+~-+l/k 

onti ion t rem a 

It appears that Flajolet’s continued fraction expansion for the generating function 
H(z) of H, = card n is not true in our model since we have to work with the two 
parameters k and i. (For this reason, we used first a purely combinatorial approach 
[8,15], but the dictionary case cannot be solved in this way). 

eless if we denote by H,,+q+r [ h~p+yl the number of histories of length n = p + q + r 
with p insertions, q negative queries, Y = r, + r, where r, (resp. Q) is the number of 
deletions (resp. positive queries) and if we consider the following generating function 

(t, x, z) = c fq:g+r (px:;)( z*, 
n4.r . 

then wc can prove the following theorem. 

(t, x, z) has the following continued fraction expansion : 

1 - t - ioz - 
s2xz 

1-t-i,z_??.E 

where ik = Qd +, k), Sk = OS@, k). 
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final levels 0. The S [“I have the following regular descriptions: S[‘] = 

-+ Qi in the expressio 
the number of histories of height G h, length p + q + r, with p insertions, q negative 
queries and r deletious a .! positive queries, and 

Ihl w&d= c b%““r’ 
XV 

--..._.“._.” _._.m 

P*%r + (p+q)!zr9 

then using the morphism 

I+x, Q-+t, Q&w, Dk + dkz, 

we have 

H[“l( t x 2) = 
1 

9 9 

l-t-qoz’ 

IP’(t x 2) = 9 9 

1 ____ 

l-t-qoz- 
d,xz ’ 

I-t-q12 

etc.; in general H[“+ll( t, x, z) is obtained by substituting 

t + QhZ -b 
dh+,XZ 

l- t-q/*+1z 

for t + qI1z in H[“‘( t, x, z). The theorem follows by letting h go to infinity. Cl 

Using the more economical notation, 

(t,x,Z)=1/1--t-q,z-d,xz/.../l--t-qhz-dh+,xz/ . . . . 

we apply Theorem 5.1 to our data structures and obtain 

(a) dictionary 

(b) linear list 
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For priorit) quetm, 

verify 

and we have 

H'Q(x,z)= 
1 -JT=iE 

2xz l 

This gives us 

tained the same result with the combinatorial approach [$, 151. 

. For linear lists, 

Using the hypergeometric function 

F(a,b,z)=l+ab~+~~ja+l)b(b+l)$+=~~, 
. . 

we have 

F(a, b+l; z) 1 

F(a,b;z) =I 
I 

_a,F(a+l, b+l; z) 

@ F(a, b+l; z) 

=1/l-az/l-( -I-1)2/l-(a+l)z/l-(a+l)z/l 

-(b%-2)z/. . . 

he substitution a + 112, b + , 2 > 2x2 gives us 

F(;, 1; 2xz) 
(+,, o; 2xz) = l/l - AZ/l -2xzl.. . = LL(x, d, 

$,l;2xz) and Hi,!-=n!n? where n?=1*3+*=(2n-1). The 

preach 18, IS]. 
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then [h4 ( t, x, z) has a rational generating function 

where , and h are polyiiomiak that sat&$ the relations: 

Wt, x9 z) = (1 - l- q,,m,-,(4 x, z) -4,~~EpI,-,~4 x, 8, 

Q -1 = 0, Qo(t,x,z)=1-+-qoZ, 

Qdt, x, d = (I- t - qrAQm(t, x, z) - d,,=Q,,-At, x, z), 

deg(P,,) =deg(Q,,_,) = h with deg(t’xjz’) = i+j+Z. 

From now we put t = x = yz (i.e.) we use an auxillary variable y to mark insertions 
I and negative queries Q- and princlpar variable z for histork. So, we can write 
the above propositions only by means of y and z 

H(y,z)= c ~H$zn and H[“‘(y, z) = 
Sl(Y, z) 

nz0 i e Q/&i 4’ 

Yi 
Hk,p(.Y, Z) = C C H2.p,n 7 Zn 

nz0 i . 

where iYE ,,n is the number of histories going from level k to level p in n steps wit 

insertion? and negative queries, we have 

&,?(y, ‘) =; d 
1 

C.41 z... d,,ykz’+p 

x[Q~,(y, z)Q,Ay, z) 

where A = 
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An alternative way of looking at the relations between W(y, z) and Q&, z) is by 
means of orthogonality relations. Starting from the numbers 

(Y) 
i Y1 = n q9 n=a 9 

i 

we introduce the linear fo (P(y, 2)) over polyno 

(y, z)= i pjC.9Jzj 
j=O 

defined by 

(Y, 2)) = i PjI.Y) Z: 
j=O i 

This induces a scakar ) = (PO Q) and we have the followi 

2) be the reciprocal polynomial of 

WlQli-dy, z))=( ifOSi<k, 

l dkyk ifi=k 

roposition 5.6 gives us the following using the scalar product ( 

The proofs of these propositions follow the proofs in the markovian model [3,5]. 

5.2. to structures and ort ogonal polynomials 

ictionaries and Chark y-polynomials 
ata type, we have 

-dY, 2) = 1, 

dy,d=w-Y- -2(Y, 4, k 2 1. 

is recurrence relation tra e generating function 

(Y, 5 t) = c 
tk 

kz0 
-SY, 4 F 

. 
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whose solution is 

We can remark that Q( 1, z, 

polynomials. 
onential generating function of C 

admit 
The Charlier y-polynomials associated with dictionaries in 

I, 

c 
h-0 

k-l(y, z) k= (l+ t)’ e-j” 
. 

for exponential generating function. As for dictionar_y histories, 

ho,, z) = 1 C 

n-0 i 

thus 

and 

=c Hj, =c i!Snj 
i i 

or 

& = c -& 
iSO 2 

where St1.i are the Stirling numbers (qf the second kind ). hat$e also 
i+k k 

=expy[(l+u)(l+v)e’-u-v-l] 

and 

$g zn 
c K.p.n jp 0”; = 

1 

tLkP . . 2-(l+u)(l+v)e’+u+v 

a Computin, 0 (Q(y, z, t)) in two different ways yiel 

on one hand, an 

(~7, Z, t)) = ((I + t)‘) e-?” = 1 (z”) emmy’ 
n ;-0 
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on the other hand. S~ttkrg a = !og( 1 + t) leads to 

which is ehe “ ouble” generating function of Stir ing numbers of s 

denoted by Sta,i, 

Using Laplace transform relatively to y we obtain 

c 1 i! ssl,)yi$= 
n=o i . Is20 i 

flYi;= 1 - y(:;_l). 
The first part of eorem 5.8 is obtained y setting y = 1. Let 

On one hand, 

(Y, z, ~)Q(Y, z, 4 (y, z, My, 4,) 

= (Q(y, z, u)Q(y, z, v)Q(y, z, w ev(s”-i’)). 

A(y, z, 14, v, w) = C (Qk-AY, z)Q,-,(Y, W’> 
"?.kP 

X $ $5 [log( l-f- w exp[y(e” - l])]” exp[ -yw eYie” -I)]. 
l . . 

Using Proposition 5.6 we have 

NY, z, 24 0, 4 

= exp[ _yw e!(e” -1) P ~hdl+ w exp[yW - l)])]” 

n! 
. 

On the other hand 

=exp[-y(u+v+w e”“‘‘-“)]((l+u)Z(l+v)“(l+we~“’ -“)‘) 

=exp[-y(u+v+we?““‘-“)I C [log(l+u)(l+v) 
?I?-0 

1 x (1 + w eY”‘‘-“)I’ 2 (Z”) 
” 

[-y(u+ US_ w e-“(“‘-‘) )]h(y9 Iog( 1 + u)(l + v)( 1 + w e-“““-“)) 

[-y( u + 2, + w e?““‘-I) {y[( 1 + U)( 1 + v)( 1 -I- w e.w(e” -‘)) - 11). 
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we obtain 
. I 

n.c.0 i 
k,#,, $$ v$ 

. . . 

= exp[y[( 1+ M)( 1 -t- 2))e’ - u - 21- l]]. 

Using Laplace transform relatively to y and taking y = 1 we have, wit 

.p.n 

This treatment applies mutadis mutandis to 
results. 

5.2.2. Linear lists and Hermite y-polynomials 

For this type, we have Q_, = 1, QO(y, z) = z, 

linear lists and we mere 

Qdy, 2) = 4-,(z) - kv 

The Hermite y-polynomials associated with linear lists in Knuth’s model 

admit ftir eApuricntia1 generating function 

k 

Q(Y, z, t) = C Q&y, z) h= exp 
k =o . 

and 

(-l)‘k! 
Q~-l”, ” =~ 2ii!ik_2i!! ’ 

k-2; 
. 

As for histcJries 

h(y, t)= C 
n20 

Hence 

(2n)! 
Zn =- 

2” 
and c H2”&=-$- 

fl?O . -.z~’ 

=exp{y[uv+(u+v)t-@]; 

ani 
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where S is the 

-A.Y, 2) --yQtdy, 9, 

Q(Y, z, 0 = C -AY, zv = 1 

k?(P 1 -zt+yt~’ 

&l(l,z)=c(-l)i 
1 

o~y~o~ia~s associated with priority queues in 

Qbv,t3= C Q&y&"= ’ 
kr-0 1 -zt+yt’ 

and 

Q&,(1,2) =& \ . I- /__:y a -zi 
z . 

i 

As for hisfories 

an 

Z 
‘n 

c -2 

‘n 
-=- 

(2 1 f-j ! zz e’ ( 
n ‘-0 
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The preceding section provides expressions for the number Hk.p,n of histories of 

eve1 k and finishing at level ?- 
eve1 crossing number of operation 0 E {I, +, o-} at level 

k for all histories wi i insertions and negative queries, init al and final kvel0. 

we have the following. 

In Knuth’s model 

where 

Nu,dy, 2) = C H: t, n ; z”. + . 
n.i . . 

We are thus in possession of all the quantities needed in order to apply the 
integrated cost formula. If 

denotes th_= integrated cost of the operation 0 E { I9 ~9, C)‘, 8-1 in the course cf all 
histories of length n with i insertions and negative queries, initial and final level 0, 

then, 

K,, -C (KI;,+KD;,+KQ,‘+KQjt;‘) 

represents the integrated cost for the histories in n.o.0 - 

6.1. Integrated cost for priority queues 

For this data type we 

(Y 
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where 

&n = 1 (CL +CDk+,)NL 3,, l .- 

k 

eme .2. The generating function of the unitary costs 

C,,(x) =C (CIk +CDk+,)xk 
k 

and integrated costs 

Y" 
K(y, z j = C IL,,; zIn 

nzil . 

for pkwity queues in Knuth’s model are related by 

K(y, z) = .t'zQ(y, z)3cl,,(yz'B(y, z)‘) 

with 

1-Jl-4yz’ 
NY, z) = - 

2yzz l 

This theoren, proceeds directly from Proposition 6.1. and Theorem 5.11 with dk = 1. 

6.2. Integrated cost for linear lists 

For this data type we have also NIk,2n = NDkr,,2n. Setting 

Hk.,iY, 4 =c c Hi.p.n <” 
n i i. n! 

NOk(yy z)=CC NO:,, 5: 
n i _ .s. 

Proposition 6.1 becomes as follows. 

osi 3. 

NIk(Y, 4 = YHO.k(Y, 4 * 

k(Y, 8 = SkNo.k(Y, 2) * 4 -,,o(y, d, 

.k(Y, 2) * H,,dy, z), 

.k(h d * Hk.O(y, z), 
where 
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This result proceeds from the following lemma. 

and 

then 

The treatment for linear lists in Knuth’s model is the same as for priority cpeues 
in the markovian model (see [3,5] for detaiP + and we state merely the results. 

The generating function 

K(y,z)= c l&p 
n 2-O n! n! 

for linear lists is related to 

C,,,(X) = c (CIk +CD~+,)Xk+’ 
k 20 

bY 

1 
K(y, z) =-----zz c-11, --F- 

Ji-=-zvz ( ) l-yz * 
6.3. Integrated cost for dictionaries 

em-e .6. Setting 

?$+ KI:,+KD:,+K 

the generating functim 

is related to the exponential generating functions qf unitary costs by the relatio 

,-?“I du 

_P XJ(e’+*-lU)‘- 

with 
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Table 4 

Data type 
-.- 

Data representation Integrated cost (as n + 00) 

Dictionary Sorted list 

Unsorted list 

5 3 --p 
8 log 2 4(log 2)* 

n’+O(n) 

I 
7 19 

-- 
4 log 2 16(log 2)* 

n”+O(n) 

Linear list Sorted list 
Unsorted list 

n(n+5);‘3 

n(n+S)/e 
- 

Priority queue 
Jn 

Sorted list - nJn+O( n) 

Unsorted list 
k 

-5- 
n &+0(n) 

Binary tournament sn logn+O(n) 

Pagodas n iog n +0(n) 

Table 4 summariz es the results for the integrated (time) costs. Some technical 
aspects are omitted here. 

In this section, we study the asymptotic behaviour of linear lists in Knuth’s model. 
It is a continuation of [ 1,2]. In Section 7.1 we recall briefly some notions in order 
to apply them to linear lists (Section 7.2). 

7.1. Limiting projles 

In order to calculate the integrated costs on the histories of length 2n (i.e. the 
average cost of an operation 0 E { 1, D} for any history of length 2n), we introduce 
the average projle notion of- an operation 04 at level k on H0,0,2n, which is the 
probability to have 0 at level k in the course of history, and define it by the quantity 

where NOk,Zn is the level crossing number. 
Then we deduce the average cost of an operation 0 on all the his ories of length 

2n by the formula 

remar at for linear lists 

h,2n r= k i- 1,2rt * 
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ectively the following relations 

KLL_ 
2N - Elpg and N KLL = rr!NOy;? h.2 II 

) means linear list in Knuth’s model (resp 
in the markovian model). So, we can say that TO&~=TO~~~ for 

7.2. Limiting projles for linear lists in KmMs model 

imiting profiles for M PQ are studied in [I.] and 121. 

The average profile cf the operation 9 E (I, 0) at leved k is given by 

1 

2nJI -2(k/n)’ 

7.2. The average cost of an operation is given by the formula 

l/4 

c,",,"Lz 

I 0 
!~~~,,+CD,,,m+,)~~~d~, 4 =$* - 

Applicatiorr : for the sorted list representation, we obtain: C 

and an elementary integration gives GEILL = n/6, and the leading term of the 

asympiotic expansion of the integrated cost, is 

&,I =2nC;:L=$. 

We can remark that: 
(i) the limiting profile TI,“$” (Fig. 1) rzp_r~sents the contribution of the individual .’ \ 

costs to tl- e integrated cost C,“,,“” (see Proposition 7.1.). 

1 

4 

3 

s 

1 

KLL 
Tl $a 
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Fig. 2. 

(ii) it is easier to cakuiate the integrated costs with Proposition 7.2 (rather than 
using Theorem 6.5). 

Limiting profile jior histories of H&!& 
According to [ 1,2] (relative to PQ) and the above remarks, Fig. 2 is the Gmiting 

profile of a random history of KLL which is a parabola representing the evolution 
of (the size of) the fiie 

@(p)=p-$. 

The same curve has been obtained by Louchard [M] for priority queues in the 
markovian model by a probabilistic method. This curve reveals interesting properties 
concerning the behaviour of linear lists in Knuth’s model: 

(a) the top of the parabola tells us that, for large values of n, the size of the file 
never exceeds in. 

(b) in the first half-time there are more insertions than deletions, and the inverse 
phenomenon in the second half-time. 

(c) the size of the file passes only twice to the same value. 

(d) Idpld@)l= (1 @Y represents the individual costs C k contribution to 
Inversely, by integration of this expression we can recover 
s 7.1 and 7.2. 

e other data structures can be obtained in the same way. 
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represented by lists (whose cost is O( n’) in the markovian mode 
nuth’s model j. That means the costs may be sensitive to the model. Several works 

which concerns the probabilistic approach which permits 
rm of the limiting distribution of the costs measures and 

of course the variances. The case where the universe of keys is finite is the object 

of another study. 

The authors are grateful to h. Flajolet, P. Lescanne, AL. R&my and J.M. Steyaert 
for several diseussions on this topic. 
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