Interpolation Theory and Shell Problems

C. BAIIOCCHI
Dip. di Matematica "Guido Castelnuovo"
Università di Roma "La Sapienza", Italy

C. LOVADINA*
Dipartimento di Ingegneria Meccanica e Strutturale
Università di Trento, Via Mesiano 77, 1-38050, Italy
lovadina@ing.unitn.it

(Received and accepted December 1999)

Communicated by F. Brezzi

Abstract—The shell problem and its asymptotic are investigated. A connection between the asymptotic behavior of the shell energy and real interpolation theory is established. Although only the Koiter shells have been considered, the same procedure can be used for other models, such as Naghdi's one, for example. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords—Interpolation theory, Shells, Energy estimates.

1. INTRODUCTION

When a shell problem with thickness ε (cf. [1]) is considered, one is led to solve the following:

$$\text{find } u_\varepsilon \in \mathcal{U} \text{ such that}$$

$$\varepsilon a^m(u_\varepsilon, v) + \varepsilon^3 a^b(u_\varepsilon, v) = \langle f, v \rangle \quad \forall v \in \mathcal{U}. \quad (1)$$

Above $a^m(\cdot, \cdot)$ is the membrane bilinear form, $a^b(\cdot, \cdot)$ the bending bilinear form, and \mathcal{U} is the admissible displacement space, which also takes into account the kinematical boundary conditions imposed to the structure. The different scaling of the forms involved (the first proportional to ε and the second proportional to ε^3) causes great difficulties in studying the asymptotic behavior of the solution as $\varepsilon \to 0$. The purpose of this note is to investigate such behaviors by using the real interpolation theory, anticipating the results proved in a forthcoming paper by the authors (cf. [2]). Referring to problem (1), we consider first the scaled problem:

$$\text{find } u_\varepsilon(\beta) \in \mathcal{U} \text{ such that}$$

$$\varepsilon a^m(u_\varepsilon(\beta), v) + \varepsilon^3 a^b(u_\varepsilon(\beta), v) = \varepsilon^\beta \langle f, v \rangle \quad \forall v \in \mathcal{U}, \quad (2)$$

*Author to whom all correspondence should be addressed.
where β is a real parameter. Then, we will address our attention to the scaled elastic energy of order β, namely

$$E(\varepsilon, u_\varepsilon(\beta); \beta) := \varepsilon^{1-\beta} a^m(u_\varepsilon(\beta), u_\varepsilon(\beta)) + \varepsilon^{3-\beta} a^b(u_\varepsilon(\beta), u_\varepsilon(\beta))$$

$$= E_m(\varepsilon, u_\varepsilon(\beta); \beta) + E_b(\varepsilon, u_\varepsilon(\beta); \beta).$$

(3)

We will establish a strict connection between the regularity of f (measured by a real interpolation technique), and the asymptotic behavior of $E(\varepsilon, u_\varepsilon(\beta); \beta)$. Moreover, we will investigate the features of the function

$$R(\varepsilon) = \frac{E_b(\varepsilon, u_\varepsilon(\beta); \beta)}{E(\varepsilon, u_\varepsilon(\beta); \beta)},$$

(4)

which gives the percentage of the total elastic energy that is stored in the bending part.

2. THE SHELL PROBLEM

As it is well known, the Koiter problem for a shell of thickness ε (cf. [1]) reads as follows:

$$\text{find } u_\varepsilon \in \mathcal{U} \text{ such that}$$

$$\varepsilon a^m(u_\varepsilon, v) + \varepsilon^3 a^b(u_\varepsilon, v) = (f, v) \quad \forall v \in \mathcal{U},$$

(5)

where \mathcal{U} is the space of admissible displacements, and $a^m(\cdot, \cdot)$ is related to the elastic membrane energy, while $a^b(\cdot, \cdot)$ to the elastic bending energy. Finally, $f \in \mathcal{U}'$, the topological dual space of \mathcal{U}. In this note, we will not detail the precise structure of the bilinear forms involved in (5), for which we refer to [1], for instance. We only recall that $a^m(\cdot, \cdot)$ and $a^b(\cdot, \cdot)$ are both continuous on \mathcal{U}, and the sum $a^m(\cdot, \cdot) + a^b(\cdot, \cdot)$ is coercive on \mathcal{U}. It follows that $a^b(\cdot, \cdot)$ is also coercive on the (inextensional displacement) space \mathcal{U}_1, defined by

$$U_1 = \{v \in \mathcal{U}, a^m(v, w) = 0, \forall w \in \mathcal{U}\}.$$

(6)

Thanks to the continuity of the form $a^m(\cdot, \cdot)$ on \mathcal{U}, U_1 is a closed subspace of \mathcal{U}. Thus, U_1 is a Hilbert space. Furthermore, from our assumptions, it easily follows that problem (5) has a unique solution. In the sequel, we will need to consider the space $U^0 \subset U'$, the polar set of U_1, i.e.,

$$U^0 = \{f \in U': (f, v) = 0, \forall v \in U_1\}.$$

(7)

The orthogonal space of U_1 in \mathcal{U} is given by

$$V := \{u \in \mathcal{U} : a^b(u, v) = 0, \forall v \in U_1\},$$

(8)

when \mathcal{U} is equipped with the inner product $(a^m(u, v) + a^b(u, v))$. Clearly, V is a Hilbert space, with the norm inherited by \mathcal{U}. Thus, we have

$$\mathcal{U} = U_1 \bigoplus V.$$

(9)

We also need the following space:

$$W = \text{the completion of } V \text{ with the norm } a^m(v, v)^{1/2} := \|v\|_W.$$

(10)

Note that on V, $\|v\|_W$ is indeed a norm, not only a seminorm. Notice also that if $f \in U^0$ (cf. (7)), then the Koiter problem (5) can be equivalently formulated as follows:

$$\text{find } u_\varepsilon \in V \text{ such that}$$

$$\varepsilon a^m(u_\varepsilon, v) + \varepsilon^3 a^b(u_\varepsilon, v) = (f, v) \quad \forall v \in V,$$

(11)
where V is defined by (8). As a consequence, in the sequel, we will refer to problem (5) if $f \not\in \mathcal{U}_1^0$, and to problem (11) if $f \in \mathcal{U}_1^0$. We now introduce the scaled problem for each real β and $f \in \mathcal{V}'$:

\[
\text{find } u_{\varepsilon}(\beta) \in V \text{ such that }
\varepsilon a^n(u_{\varepsilon}(\beta), v) + \varepsilon^3 a^b(u_{\varepsilon}(\beta), v) = \varepsilon^\beta \langle f, v \rangle \quad \forall v \in V,
\]

and we consider the scaled energy function of order β defined by

\[
E(\varepsilon, u_{\varepsilon}(\beta); \beta) = \varepsilon^{1-\beta} a^n(u_{\varepsilon}(\beta), u_{\varepsilon}(\beta)) + \varepsilon^{3-\beta} a^b(u_{\varepsilon}(\beta), u_{\varepsilon}(\beta)) = E_m(\varepsilon, u_{\varepsilon}(\beta); \beta) + E_b(\varepsilon, u_{\varepsilon}(\beta); \beta).
\]

Above, the space V is either N (if $f \not\in \mathcal{U}_1^0$), or V (if $f \in \mathcal{U}_1^0$). We will see in the next section that the behavior of the scaled energy is strictly linked to the regularity of the datum $f \in \mathcal{V}'$.

3. REGULARITY OF f AND THE SCALED ENERGY FUNCTION

In this section, we collect the results concerning the connection between the regularity of the datum f and the asymptotic behavior of the scaled energy function. We remark that the theorems in the first two subsections are indeed well known (cf. [3,4]).

3.1. The Case $f \not\in \mathcal{U}_1^0$

This is certainly the easiest situation to deal with. In fact, it is well known that the following result holds true (cf. [3]).

Theorem 3.1. Fix $f \not\in \mathcal{U}_1^0$ and consider problem (12). Then the following hold.

- If $\beta > 3$, then $\lim_{\varepsilon \to 0} E(\varepsilon, u_{\varepsilon}(\beta); \beta) = 0$.
- If $\beta = 3$, then $\lim_{\varepsilon \to 0} E(\varepsilon, u_{\varepsilon}(\beta); \beta) = L_b$, where $L_b = \langle f, u_0 \rangle$ and $u_0 \in \mathcal{U}_1$ is the solution of the bending-type problem

\[
\text{find } u_0 \in \mathcal{U}_1 \text{ such that }
\varepsilon a^b(u_0, v_0) = \langle f, v_0 \rangle \quad \forall v_0 \in \mathcal{U}_1.
\]

- If $\beta < 3$, then $\lim_{\varepsilon \to 0} E(\varepsilon, u_{\varepsilon}(\beta); \beta) = +\infty$.

3.2. The Case $f \in \mathcal{U}_1^0$ and $f \in \mathcal{W}'$

As already noticed, for this case we refer to problem (11). We have the following (cf. [4]).

Theorem 3.2. Fix $f \in \mathcal{U}_1^0$ and suppose, moreover, that $f \in \mathcal{W}'$, where \mathcal{W}' is the dual space of \mathcal{W} (cf. (10)). Consider problem (12). Then the following hold.

- If $\beta > 1$, then $\lim_{\varepsilon \to 0} E(\varepsilon, u_{\varepsilon}(\beta); \beta) = 0$.
- If $\beta = 1$, then $\lim_{\varepsilon \to 0} E(\varepsilon, u_{\varepsilon}(\beta); \beta) = L_m$, where $L_m = \langle f, u_0 \rangle$ and $u_0 \in W$ is the solution of the membrane-type problem

\[
\text{find } u_0 \in W \text{ such that }
\varepsilon a^m(u_0, v_0) = \langle f, v_0 \rangle \quad \forall v_0 \in W.
\]

- If $\beta < 1$, then $\lim_{\varepsilon \to 0} E(\varepsilon, u_{\varepsilon}(\beta); \beta) = +\infty$.

3.3. The Case $f \in \mathcal{U}_1^0$ and $f \not\in \mathcal{W}'$

These are surely the most subtle cases to treat. Since $f \in \mathcal{U}_1^0$, we will refer to problem (11). For such situations, we are not able to establish results as sharp as the ones detailed in Theorems 3.1 and 3.2. Nonetheless, the behavior of the scaled energy functional can be partially characterized by the regularity of the datum f, regularity which, in turn, can be measured by some interpolation spaces between \mathcal{W}' and \mathcal{V}'. For the notation and results in interpolation theory, we refer to [5,6]. We have the following theorem (cf. [2]).
THEOREM 3.3. Fix \(f \in \mathcal{U}_\theta^0 \). Suppose, moreover, that \(f \not\in W' \). Consider problem (12). Then we have the following.

1. Let \(f \in (W', V')_{0,2} \), with \(0 < \theta < 1 \). Set \(\alpha = \inf \{ 2 \theta + 1 : f \in (W', V')_{0,2}, 0 < \theta < 1 \} \).
 - If \(\beta > \alpha \), then \(\lim_{\varepsilon \to 0} E(\varepsilon, u_\varepsilon(\beta); \beta) = 0 \).
 - If \(1 \leq \beta < \alpha \), then \(\limsup_{\varepsilon \to 0} E(\varepsilon, u_\varepsilon(\beta); \beta) = +\infty \).
 - If \(\beta < 1 \), then \(\lim_{\varepsilon \to 0} E(\varepsilon, u_\varepsilon(\beta); \beta) = +\infty \).

2. Let \(f \not\in (W', V')_{0,2} \) for any \(0 < \theta < 1 \).
 - If \(\beta > 3 \), then \(\lim_{\varepsilon \to 0} E(\varepsilon, u_\varepsilon(\beta); \beta) = 0 \).
 - If \(1 \leq \beta < 3 \), then \(\limsup_{\varepsilon \to 0} E(\varepsilon, u_\varepsilon(\beta); \beta) = +\infty \).
 - If \(\beta < 1 \), then \(\lim_{\varepsilon \to 0} E(\varepsilon, u_\varepsilon(\beta); \beta) = +\infty \).

REMARK 3.1. Referring to Part 1 (respectively, to Part 2) of the above theorem, we see that the exponent \(\alpha \) (respectively, the exponent \(3 \)) is critical, since it provides the scaling above which the scaled energy function tends to zero. However, in general, we are not able to study the exact asymptotic behavior of \(E(\varepsilon, u_\varepsilon(\alpha); \alpha) \) (respectively, \(E(\varepsilon, u_\varepsilon(3); 3) \)).

4. ON THE ASYMPTOTIC RATIO BETWEEN THE BENDING AND THE TOTAL ELASTIC ENERGY

In this section, we will see that if one can properly choose the exponent in the scaled problem (12), then one can get precise information on the asymptotic ratio between the bending energy and the total elastic energy. We begin with defining the function \(R(\varepsilon) \) as (cf. also (13))

\[
R(\varepsilon) = \frac{\varepsilon b(\varepsilon, u_\varepsilon(\beta); \beta)}{E(\varepsilon, u_\varepsilon(\beta); \beta)},
\]

and we notice that, by bilinearity, \(R(\varepsilon) \) does not depend on \(\beta \). We have the following theorem, whose proof is detailed in [2].

THEOREM 4.1. Consider the problem

\[
\text{find } u_\varepsilon(\beta) \in V \text{ such that } \quad \varepsilon a^0(\varepsilon, u_\varepsilon(\beta), v) + \varepsilon^3 a^b(\varepsilon, u_\varepsilon(\beta), v) = \varepsilon^\beta (f, v) \quad \forall v \in V,
\]

where the space \(V \) is either \(\mathcal{U} \) (if \(f \not\in \mathcal{U}^0_\theta \)), or \(\mathcal{V} \) (if \(f \in \mathcal{U}^0_\theta \)). Suppose that there is an exponent \(\beta = \beta^* \) such that there exist

\[
+\infty > \lim_{\varepsilon \to 0} E(\varepsilon, u_\varepsilon(\beta^*); \beta^*) > 0, \quad \lim_{\varepsilon \to 0} E_b(\varepsilon, u_\varepsilon(\beta^*); \beta^*) \geq 0.
\]

Then it holds that

\[
\lim_{\varepsilon \to 0} R(\varepsilon) = \frac{\beta^* - 1}{2}.
\]

REMARK 4.1. We remark that Theorem 4.1 answers in a positive way a question raised by Sanchez-Palencia on the relationship between \(\beta^* \) and \(R(\varepsilon) \). Moreover, it has been proved (cf. [7,8]) that if there exists a \(\beta^* \) satisfying (18), then such an exponent is unique and \(1 \leq \beta^* \leq 3 \). We also note the following.

- In the hypotheses of Theorem 3.1, \(\beta^* \) does exist and \(\beta^* = 3 \). It follows that \(\lim_{\varepsilon \to 0} R(\varepsilon) = 1 \), i.e., asymptotically the energy goes entirely in bending.
- In the hypotheses of Theorem 3.2, \(\beta^* \) does exist and \(\beta^* = 1 \). It follows that \(\lim_{\varepsilon \to 0} R(\varepsilon) = 0 \), i.e., asymptotically the energy goes entirely in membrane.
- In the hypotheses of Theorem 3.3, we are not able to prove that, in general, \(\beta^* \) exists. However, if it exists, then the following hold.
 - If we are in the framework of Part 1 of Theorem 3.3, then \(\beta^* = \inf \{ 2 \theta + 1 : f \in (W', V')_{0,2}, 0 < \theta < 1 \} \) and \(\lim_{\varepsilon \to 0} R(\varepsilon) = \inf \{ \theta : f \in (W', V')_{0,2}, 0 < \theta < 1 \} \).
 - If we are in the framework of Part 2 of Theorem 3.3, then \(\beta^* = 3 \) and \(\lim_{\varepsilon \to 0} R(\varepsilon) = 1 \).
REFERENCES