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A generaked version of Jacobi’s generating function for the Jac.obi polynomials has been 
presented by Srivastava and Singhal. The approach by Foata aekd Leroux to combinatorially 
prove the classical generating function is extended to cover (and even to generalize) this result. 

I. Introduction 

The study of combinatorial structures related to the classical Jacobi poly;lo- 
mials Pias @) (x) was initiated by Foata and Leroux in [6], where they introduced 
the model of “Jacobi-endofunctions” in order to give a completely combinatorial 
proof of Jacobi’s generating function: 

c p~d9(x)tn = y+8 . ~-1 . (1-t+R)-“=(1+t+R)-@, 
na0 

where R = (1 - 2xt + t)!. 

Many proofs of this result are known, see e.g. Section 4.4 in [19], Chapter 16 in 
[13], or Askey’s article [l]. But once you have learned to see the combinatorial 
pattern behind this identity, it appears that the Foata-Leroux proof certainly 
ranks among the most elementary (and elegant!) approaches. 
is devoted to an extension of the Foata-Leroux technique h will lead to a 
combinatorial proof of the following beautiful result due to Srivastava a 
Singhal [14] (see also p. 82 and Chapter 7 in 1163): 

c p~~-wm)(X)l~ +l+#+".Q * Q)"B 
of 

#I*0 

l [l+ng+p?p(l-A- 

where cw, @, A, p are co ere E, s (o 
t) implicitly defined by 

&j = 4(x -t- 1) ’ d * ( + gy-” l (1 -I- 

?j = f(x - 1) l t l (1 + 5)“‘” l (1 + 
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The most prominent special cases of this result are: 
(1) A = p = 1, where it simplifies to 

c p(*-nJ-(x)s” = [l + 4(x + l)t]” . [I + 4(x - n l)t 
n20 

which is-up to a trivial modification of the variables-the ge erating function for 
the so-called Lagrange-polynomials, see p. 267 in [4] and p. 25 in [16]. Bergeron 
has already proposed a combinatorial model for these polynomials, see [a], but in 
his proof the generating function requires a cancellation-by-involution-type 
argument. It is interesting to note that his proof is not a special case of the one 
given below. 

(2) A = p= 0, where the implicit system for E and g leads to quadratic 
equation 

where f = (X + l/2)& The explicit solution for f and q thus obtainable gives 
back-after some simple transformations-the classical formula stated in the 
beginning. 

Some other interesting particular cases, such as A = 1, p = 6 + 1 or A = -6, 
p = 6 + 1, are mentioned in [16], see e.g. p. 90. 

Following a practice introduced in 161, see also [12, 17, 181, I will rewrite the 
Srivastava-Singhal result somewhat in order to get expressions which are easier 
to handle from the combinatorial point of view. In the statement above, the 
variable x will be replaced by (X + Y)/(X - Y), where A? and Y are new 
variables, and t will be replaced by X - Y. The generating function will be written 
as an exponential series (i.e. Pn (apB) will be multipled by n!), and fina4y A (p resp.) 
will be replaced by -A (-p resp). What we will prove combinatorially then reads 
as follows: 

Let 9$anB)(X, Y) denote the nth (homogeneous) Jacobi-polynomial, which is 
related to the classical Jacobi-polynomial Pi**@)(x) as follows: 

X+Y 
iP$@)(X, Y) = n! l (AT - Y)” l Plp*s) ry , 

( > 
or - 

P(*qx) n 
=_L.gpb.S) E!+E_!. 

n! ( 2 2 1 
‘ 
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where f = 5(X, Y) mad q = q(X, are implicitly ned by 

For the proof given below we will assume that A and p are (a 
nonnegative integers. 

As indicated above, the general idea of proof is very much the same as the one 
employed by Foata and Leroux. The combinatorial model will be more general, 
but fortunately it still falls into the class of “incomplete Jacobi_confi~ratio&‘, a 
concept introduced and extensively studied by Leroux and myself in [12]. (Only 
one of the results of this article will be used here without proof.) 

I decided to present this work in the language of “species of structures99, as 
proposed by Joyal in [S], and developed fruitfully by himself and his colleagues at 
the Universite du Quebec at Montreal. Among them I would like to mention J. 
and 6. Labelle, P. Leroux, H. D&oste, and F. Bergeron, who initiated me into 
this theory, which provides a clean and transparent way to represent com- 
binatorial facts and constructions which might get buries under heavy notation 
and/or epic descriptions otherwise. It would certainly be helpful if the reader of 
this article had a basic knowledge of Joyal’s theory, Chapter 1,2,5,6 from 
the nice introductory article [ll] by I. Labelle, or the introductory part from 
Labelle’s elegant treatment of Lagrange-inversion [9] should provide an 
propriate background. The last mentioned article is of particular interest, since 
one of the basic facts used here is also at the heart of Labelle’s combinatorial 
Lagrange-inversion, I take the opportunity to clarify one particular aspect of this, 
which, in my opinion, remained obscure in [9], [S], and [6]. This will be done in 
the next section, which deals with a much more general situation than the one 
encountered in the proof of the Srivastava-Singhal result. Section 3 treats the 
“unweighted” case (i.e. or = 18 = 0) of the latter, whereas in Section 4 some 
auxiliary species are introduced, which are needed for the general case. 
Section 5 all this will be pieced together in exactly tile aslane way as Fodta and 
Leroux did in [6] for the case A = p = 0. 
generahzation of the Sriv 
combinatorially-results from t 
considered in this article (plus 

The present article ca 
certain familiarity with 
reader may look at [6] or the int 
[18] a different generalization of 
the overall scheme of 

The cardinality of a set will always be wetter 
refers to khe set of integers (a, 6~ + 1, a + 2, . . s , b}, provided that a G b. 



224 V. Strehl 

a > 6 this set is empty, by convention. As far as species are con 

equality “A = ’ always means ‘A is isomorphic to B’, and not just e 

e following combinatorial fact is well known and variations of it have often 
been described and used in the literature (see e.g. [3] p. 69, [S] Ch. 6, [7] p. 17§): 

“Endofunctions are permutations of rooted trees”. 

To make this intuitive statement precise, one may employ one of the various 
models that have been proposed for the treatment of (labelled) structures, e.g. 
Joyal’s theory of species of structures. Naturally, the fact stated above is among 
the first examples one encounters in introductory texts and lectures presenting 
this theory, e.g. in [S] this occurs as “example 12”, lvhich says: 

F = S(A), 

where the following (ordinary) species show up: 
F: the species of endofunctions, 
S: the species of permutations, 
A: the species of rooted trees (“arborescences”). 

When it comes to less simple situations-e.g. considering endofunctions with 
additional properties, and to more sophicated applications, such as Lagrange- 
inversion-it turns out that this statement has to be revised somewhat. Indeed, 
for his treatment of Lagrange-inversion G. Labelle emplays “R-enriched species” 

is some suitable ordinary species) such as: 
species of R-enriched endofunctions, 

AR: the species of R-enriched rooted trees, 
CR: the species of R-enriched contractions, 

where “contraction” means: endofunction with a single periodic point, which we 
also call “root”. n the sequel I will write “R-endofunction” instead of 

-enriched endofunction” etc. for short). Though A and C are isomorphic, the 
-species AR and CR usually are not (and may not even be equipotent). The 

reason for this is simple enough to explain: for a rooted tree the root does not 
ng to its own fiber (=preimage, if edges are directed towards the root), 

as for a contraction it does. on as we put a restriction on the 
ers of our structures, e.g. by -structures on fibers, we have to 

carefully between -rooted trees and -contractions. 
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-endofunctions we have (as state oyal): 

From the proofs of this identity, as given in [S] and [9], it is not quite clear 
the isomorphism underlying “=” really looks like-hot 
“obvious” drawings. That there is an ambiguity iu 

obvious sketches came to my mind when reading th 
similar situation arises, but now in 

point clear, let us look at the f01 

two-colored (“black” and “white”, say) endofunct 

(*) each point has at most one preimage colored bl 
preimage wlored white. 

and at most one 

Here are three contractions of the required type: 

How should one piece them together in order to obtain a (*)-endofunction if it is 
specified that the three wmponents shall be permuted as follows: 

The “obvious” idea of putting 

is certainly not wire 
done instead is* 
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In the remainder of this section I will fix some notation concerning bi-sorted 
species and their generating functions. For notational convenience 
species will be dealt with, though everything-lnckding the 
considered in the following secttonwenerakes to multi-sorted s 
any problems, 

Let now R denote some bi-sorted species. I will write R(X, Y) in order to 
. indicate that there are now two sorts of points arou X-points and Y-points. R 

l then a frpnctor which associates with each pair V) of finite sets the set 
[U, V] of R-structures on (UP V). Throughout this article U (V resp.) will 

denote the set of X-points (Y-points resp.). The symbols x and y will act 
correspondingly as variables for our generating functions, e.g. in 

= c {SrR[u, ~)tr*~y*~; U ty v = [I l . . ~1) 

is a homogeneous polynomial of degree n, representing those R-structures king 
on n points. 

Using R one may now define the bi-sorted species FR(X, Y), A&X, Y), and 
C&(X, Y) as usual. t will help to introduce the following auxiliary species; 

*Ai3 = xAR(X, Y): X-rooted R-trees, 

xcR = xc, Y): X-rooted R-contractions, 

and similarly for yA,a and yCR. Besides the obvious identities 

and CR = *CR + ‘CR 

fundamental isontorphisms: 
. 

We should assume that 
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R-contractions, i.e. 

As to generating functions, this proposition has the following consequence: 

For any b&ported species R(X, Y), the generating fimction for the 
species of R-endofunctions is given by 

where h(x, y) and k(x, y) are fimctions implicitly wned by 

h(x,y)=x W&Y), k(x,y)b 

k@,y)=y l W&Y), ~(x,Y))= 

The situation as given by the system for h(x, y) and k(x, y) calls for 
Lagrange-inversion, of course. But for the purpose of this article it is not 
necessary to enter further into this subject. This is in contrast to the original 
approach by Srivastava and Singhal, who used Lagrange-inversion (together with 
the #&odriguez-formula for the Jacobi polynomials) in order to prove their result. 

3,AspecMcase: 

In this section we will consider R-endofunctions for a particular class of 
bi-sorted species R. For integers ii a0 let IA (Zl resp.) denote the (o 
species of injective mappings into [0 l . l A] ([1 l l l A] resp.). The corresponding 
generating functions are given by 

IA(X) = (1 + x)l+A and I:(x) = (1 + x)? 

Let now A, p 3 0 be integers and define a bi-sorted species IA+(X, Y) by 

&4(X, r) = 6,(X) l Jm- 

In the sequel I will simply write AA,, ( 
situation we get the following generating 

1.&9 y)=x '0 + 

*&,,SX,Y)=(Y/~ •xA,,(~~~) 
1+Cc 

9 
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From Corollary 1 we get in this particular case: 

2. The species of IA,,- endofinctions has the generating function 

&& Y) = 
Cl+ EA.& Y)) ’ (1 + rla,& Y)) 

1 - A l WX, Y) - Y l ?h,& Y) - cl+ A + P) * En,&, y) * qA,p(X, y) 

where EA,~, VA,~ are implicitly defined by 

S&G Y) =X . (I+ 5a.& Y))“” ’ (I+ %I.& Y))‘+‘, 

t7A,r(X9 Y) =Y . (I+ 5A.& Y))‘+A ’ (I+ V&,(X, Yw+“. 

Looking now at the combinatorial picture one realizes that in the case A = p = 0 
the restriction imposed on I&,- endofunctions is exactly condition (*) from the 
previous section: &,,-endofunctions are precisely the Jacobi-endofunctions of 
Foata-Leroux! From their work we know: 

As to the case A, p > 0, it helps to look at IA+-endofunctions in a slightly 
different (but isomorphic!) way. For disjoint finite sets U, V the set F’JU, V] is 
the set of all pairs (f, g) s.th. 

- f E f;[U, VI, 
- g”:U+[o*4], g,:V+[O.*q4], 

where g, (gV resp.) is the restriction of g to U (to V resp.), 
- gff (gV resp.) is injective on f-‘(z) fI U (on f”(z) n V resp.) for all 

ZEUCJV. 
Writing fu (fv resp.) for the part of f defined on U (V resp.), we may regard 

(fw gv) (dfv, 8Y) resp.) as an injective mapping from U to (U CI V) X [0 - l l A] 

(from Vto(ULJV)X[O-•0 p] resp.), or-if we decide to identify (U c1 V) x (0) 
with U U V itself-as an injective mapping qv from U to (U KJ V) C! ((U CJ V) x 
[1 * ’ l A]) (tpv from V to (U CJ V) KJ ((U CJ V) x [l - s m ~1)). These objects are 
incomplete Jacobi-endofunctions in the sense of [El, and ,&orn their proposition 
2.3 Iputting A = u, B=V, C=(ucIv)x[1~*~A], D=(uUv)x[l~~*~], 
E=8, cu=O, fi=O] we get 

(&b,)Yl(& y) = **qx, y) (n xq. 

. For integers A, j4 3 0, the ge~e~~ti~g function for IA,,-endofimctions ir 
given by 
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This corollary, together with Cazollary 2, yields the 
the case Q! = p = 0. e case where a, /3 are treated 
with in the following section. 

The work done in the previous section did not use reposition 2.3 of [12] in ia 
nerality. What is necessary in order to get the Sriva&ava-Singhal 

result is: leaving A, B, C, D, E as they are, but treating Q! and /3 as arbitrary 
parameters. What this amounts to combinatorially is: associating with each pair 
(pU, qV) of injective functions, as described above, a weight or valuation 

BV~,fl((p~, py) = (1 + ,)cVtiVU) l (1 + /3)“y”“‘. 

Here cyc(gpv) (cyc(qV) resp.) means the number of cycles which the injective 
function QI~ (pV resp.) has within U (V resp.)-1 will call them pure-X-cycles 
(pure-Y-cycles resp.). We then have the folkwing result; 

Proposition 4. 

= I1 9 l l n]}, (n 20). 

As a consequence, if we denote by Fiy;fl) the w,,rwcighted species of 
IA,iendofunctions, then 

Fgp(x, y) = 2 t #na+kl.@+qx, y). 
ndO n! 
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AS before, we have 

xQ4 = sixCA,$ and yfi,p = S(‘G J, , 

ut, a~ xCA,P (yCA,r re (A& resp.) are isomorphic, we get 

9 For integers it, c( 2 0 

xFA,, = S(AzJ and yFi,r = S(AiJ. 

ut now, since 

AZ&, y) = x . (I+ xA~,p(~, y))” . (I+ yA~,r(~, Y))~+” 

= xA,,,(~, y) l [I + xA~,,&, Y)]” 

A;&, y) = y l (I+ xA~,p(~, y))“” l (11+ yh,p(~s y))” 

= yA&, y) l [I+ yap,,&, Y)]” 
*we arrive at 

5. The generating functions for pure-X-(-Y resp. )-I~,Pendofinctions are 

xFA#&= , I+ xA& Y) and y&4(x, Y) = 1 + yAA,p(x, Y)* 

. This last result can be obtained directly in a rather simple w&y by 
making two observations: 

xv ,U A,P = L(A&J, where L denotes the ordinary species of linear 
where ‘a’ means equipotence, but not necessarily isomorphism. 
L(A,+,) = 1 -I- xAl cc, 
an eliborate proob: 

a fact which is easily visualized (rather than 

lists, and 

requiring 
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The drawback of this proof is t 
have an underlyi bijection whit 
permutation of recurrent elemen 
decomposition) of an assumed 

ss of (l), where we 

Using results from the previous sections it is now an easy task to finish the 
proof of the theorem, as stated in Section 1. The basic idea goes back to 
Foata-Leroux, and it works here in exactly the same way as it did in [6]. 

We tit note that FA,p is the product of three species: 

where mFA,r takes care of all those I,,,,-endofunctions hav~g no ‘pure’ Cycles at 
ail. If we put our standard valuation W, p , on each of these species, then we get on 
the generating function level: 

. 

Fi$@)(x, y) = xFf;p’(x, y ) 9 yF~~~~‘(~, Y) l mF!i:$%~ Y) 

= [xF,,,(x, y)]“” l [y&p(~, Y)]“’ * [“f?dX, Y)] 

= [xFA,,(x, y)]” 9 [yFA,p(x, y)]’ l [x&,(x, y) l yfi,&, Y) ’ “FL&, y)] 

= [xFA,,(x, y)]” 0 [yF~,rc(x, Y)]’ l h,& Y)- 

Here we have made use of a general principle for the enumeration of 
“exponential structures”, which in our situation says: 

xF~~;p’(n, y) = exp(XGiy??)(x, y)) = exp[(l + 4xG&&, u)] = r”I’n,&, Y)]“” 

where xc, B denotes the species of connected xFa g-structures. The Srivastava- 
Singhal result now follows from Corollaries 2, 4, and 5 together with the above 
decomposition identity. 

At this point one might be tempted to employ the combinatorial machinery 
developed so far in similar situations, e.g. for the extensi 
given by Srivastava and Singhal in [ 151. There are also 

can be attacked 
done elsewhere. 

( fex) parameters. 
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where the Ej are determined by the implicit system 

gj 'Xj . (I + Ej) l n (I -D- gi)"i (1Si 6 k). 
i 

i the indices i, j are cunning from 1 to k.] 
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