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A generalized version of Jacobi’s generating function for the Jaucbi polynomials has been
presented by Srivastava and Singhal. The approach by Foata and Leroux to combinatorially
prove the classical generating function is extended to cover (anG even to generalize) this result.

1. Imtroduction

The study of combinatorial structures related to the classical Jacobi polyao-
mials P{™ #)(x) was initiated by Foata and Leroux in [6], where they introdtced
the model of “Jacobi-endofunctions” in order to give a completely combinatorial
proof of Jacobi’s generating function:

Zo P&P)(x)" =2+ . R'.(1—t+R)*-(1+t+R)*,
where R = (1 - 2xt + )%

Many proofs of this result are known, see e.g. Section 4.4 in [19], Chapter 16 in
[13], or Askey’s article [1]. But once you have learned to see the combinatorial
pattern behind this identity, it appears that the Foata—-Leroux proof certainly
ranks among the most elementary (and elegant!) approaches. The present article
is devoted tc an extension of the Foata—-Leroux technique which will lead to a

combinatorial proof of the following beautiful result due to Srivastava and
Singhal [14] (see also p. 82 and Chapter 7 in [16]):

2 PEinboim () = (1+ §)' - {1+ n)'*P

n=0

([1+AE+un—(Q-A-p)in]™
where «, B, A, u are complex parameters and where &, n are functions (of x and
t) implicitly defined by
E=ix+1)-¢-A+E- A+t
n=3(x-1)-t-Q+E-Q+q)'™
{All series and functions should be regarded as formal power series.}
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The most prominent special cases of this result are:
(1) A=p =1, where it simplifies to

S PEmB-m(e)® =1+ 3(x + 1)e]* - [1+ 3(x — ).

n=0

which is—up to a trivial modification of the variables—the generating function for
the so-called Lagrange-polynomials, see p. 267 in [4] and p. 25 in [16]. Bergeron
has already proposed a combinatorial model for these polynomials, see [2], but in
his proof the generating function requires a cancellation-by-involution-type
argument. It is interesting to note that his proof is not a special case of the one
given below.

(2) A=u=0, where the implicit system for § and 7 leads to quadratic
equation

z C[x+ 1) (x-1

(1 (B0 14 (5216
STUT\TT AT TT)E)

where = (x + 1/2)tE. The explicit solution for & and 7 thus obtainable gives
back—after some simple transformations—the classicai formula stated in the
beginning.

Some other interesting particuiar cases, such as A=1, u=b+1 or A=-b,
p =b + 1, are mentioned in [16], see e.g. p. 90.

Following a practice introduced in [6], see also [12, 17, 18], I will rewrite the
Srivastava-Singhal result somewhat in order to get expressions which are easier
to handle from the combinatorial point of view. In the statement above, the
variable x will bc replaced by (X + Y)/(X—-Y), where X and Y are new
variables, and ¢ will be replaced by X — Y. The generating function will be written
as an exponential series (i.e. P{™#) will be multipled by n!), and finz:tv A (u resp.)
will be replaced by —A (—u resp). What we will prove combinatorially then reads
as follows:

Let #*f)(X, Y) denote the nth (homogeneous) Jacobi-polynomial, which is
related to the classical Jacobi-polynomial P{*P)(x) as follows:

+
PeP(X, Y)=nl-\L-Y)"- Pf,""”(X Y) , orf

X-Y

« 1 apyfXt1l x-1
PPty = 0P (5 5

Theorem.

1 ,
Z - @(a-&-ln,ﬂ*-pn)(‘X, Y) - (1 + g)l-i-a(l + n)H-ﬂ

n=0M:

X[1=AE—pun—(1+ A+ p)én]™
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where & = E(X, Y) and 1 = n(X, Y) are implicitly defined by

E=X-(1+&"™ 1+
n=Y (L+5"- 1+

For the proof given below we will assume that A and u are (arbitrary)
nonnegative integers.

As indicated above, the general idea of proof is very much the same as the one
employed by Foata and Leroux. The combinatorial model will be more general,
but fortunately it still falls into the class of “incomplete Jacobi-configurations”, a
concept introduced and extensively studied by Leroux and myself in [12]. (Only
one of the results of this article will be used here without proof.)

I decided to present this work in the language of “species of structures”, as
proposed by Joyal in [8], and developed fruitfully by himself and his colleagues at
the Université du Québec at Montréal. Among them I would like to mention J.
and G. Labelle, P. Leroux, H. Décoste, and F. Bergeron, who initiated me into
this theory, which provides a clean and transparent way to represent com-
binatorial facts and constructions which might get burie. under heavy notation
and/or epic descriptions otherwise. It would certainly be helpful if the reader of
this article had a basic knowledge of Joyal’s theory, Chapter 1, 2, 5, 6 from [8], or
the nice introductory article [11] by J. Labelle, or the introductory part from G.
Labelle’s elegant treatment of Lagrange-inversion [9] should provide an ap-
propriate background. The last mentioned article is of particular interest, since
one of the basic facts used here is also at the heart of Labelle’s combinatorial
Lagrange-iriversion. I take the opportunity to clarify one particular aspect of this,
which, in my opinion, remained obscure in [9], [8], and [6]. This will be done in
the next section, which deals with a much more general situation than the one
encountered in the proof of the Srivastava-Singhal result. Section 3 treats the
“unweighted” case (i.e. o =pf=0) of the latter, whereas in Section 4 some
auxiliary species are introduced, which are needed for the general case. In
Section 5 all this wili be pieced together in exactly iie same way as Foata and
Leroux did in [6] for the case A= g =0. Finally I will state a multivariable
generalization of the Srivastava-Singhal generating function which—
combinatorially—results from the multi-sorted analogue of the bi-sorted situation
considered in this articie (plus some simple transformations of the parameters).

The present article can be read independently from [17] and [18], although a
certain familiarity with the concept of ‘‘Jacobi-endofunctions™ is assumed—the
reader may look at [6] or the introductory parts of [12]. Note, however, that in
[18] a different generalization of Jacobi’s generating function is presented, where
the overall scheme of proof aiso follows the Foata-Leroux way.

Some notational remarks

The cardinality of a set E will always be written #E. The notation [a - - - b]
refers to the set of integers {a,a+1,a+2,...,b}, provided that a<b. For
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a>b this set is empty, by convention. As far as species are concerned, an
equality ‘A = B’ always means A is isomorphic to B’, and not just equipotence.

2. Endofunctions, trees and contractions

The following combinatorial fact is well known and variations of it have often
been described and used in the literature (see e.g. [3] p. 69, [5] Ch. 6, [7] p. 175):

“Endofunctions are permutations of rooted trees”.

To make this intuitive statement precise, one may employ one of the various
models that have been proposed for the treatment of (labelled) structures, e.g.
Joyal’s theory of species of structures. Naturally, the fact stated above is among
the first examples one encounters in introductory texts and lectures presenting
this theory, e.g. in [8] this occurs as “example 12”, which says:

F =S(A),

where the following {ordinary) species show up:

F: the species of endofunctions,

S: the species of permutations,

A: the species of rooted trees (‘“‘arborescences”).
When it comes to less simple situations—e.g. considering endofunctions with
additional properties, and to more sophicated applications, such as Lagrange-
inversion—it turns out that this statement has to be revised somewhat. Indeed,
for his treatment of Lagrange-inversion G. Labelle empleys “R-enriched species”
{where R is some suitable ordinary species) such as:

Fg: the species of R-enriched endofunctions,

Ap: the species of R-enriched rooted trees,

Cr: the species of R-enriched contractions,
where “contraction” means: endofunction with a single periodic point, which we
also call “root”. (In the sequel I will write “R-endofunction” instead of
“R-enriched endofunction” etc. for short). Though A and C are isomorphic, the
R-species Ag and Cp usually are not (and may not even be equipotent). The
reason for this is simple enough to explain: for a rooted tree the root does not
belong to its own fiber (=preimage, if edges are directed towards the root),
whereas for a contraction it does. Thus, as soon as we put a restriction on the
fibers of our structures, e.g. by requiring R-structures on fibers, we have to

distinguish carefully between R-rooted trees and R-contractions. But there is a
simple relation between Ag and Cp:

CR =X- R'(AR),

where X denotes the singleton species, and R’ signals the derivative of R. See [9]
or [8] for a more detailed explication. Concerning the decomposition of
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R-endofunctions we have (as stated correctly by Labelle and Joyal):
FR = S (CR).

From the proofs of this identity, as given in [5] and [9], it is not quite clear what
the isomorphism underlying “=" really looks like—both authors rely on
“obvious” drawings. That there is an ambiguity iwrking behind these all-too-
obvious sketches came to my mind when reading through the article [6], where a
similar situation arises, but now in the context of bi-sorted species. To make the
point clear, let us look at the following example where, as in [6], we consider
two-colored (“black™ and “white”, say) endofunctions with tae property:

(*) each point has at most cae preimage colored black and at most one
preimage colored white.

Here are three contractions of the required type:

o—=>6—> °
e T
A
—@
How should one piece them together in order to obtain a (*)-endofunction if it is
specified that the three components shail be permuted as follows:

is certainly not correct, since the result is not of the required type! What has to be

done instead is O @—> -—9
<

<
In order to be able to preserve the (*)-structures on fibers it is necessary to map
the proper preimages of roots onto the root of the ‘next’ contraction—as one does
with each root itseif!
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In the remainder of this section I will fix some notation concerning bi-sorted
species and their generating functions. For notational convenience only bi-sorted
species will be dealt with, though everything—including the specializations
considered in the following sections—generalizes to multi-sorted species without
any problems.

Let now R denote some bi-sorted species. 1 will write R(X, Y) in order to
indicate that there are now two sorts of points around: X-points and Y-points. R
is then a functor which associates with each pair (U, V) of finite sets the set
R[U, V] of R-structures on (U, V). Throughout this article U (V resp.) will
denote the set of X-points (Y-points resp.). The symbols x and y will act
correspondingly as variables for our generating functions, e.g. in

X i
RGsy)= 5 #RIL--8, 11115
i.j=0 !
1
= "20;;; Rn(x’ y)!

where

Rany)= 5 (GJ#RIL--- i) i+1- - nley

Osisn

= > {#R[u, vx*%*V, U0V =[1---n]}

is a homogeneous polynomial of degree n, representing those R-structures living
on n points.

Using R one may now define the bi-sorted species Fr(X, Y), Ag(X, Y), and
Cr(X, Y) as usual. It will help to introduce the following auxiliary species;

*Ar =*Ar(X, Y): X-rooted R-trees,
*Cr =%*Cr(X, Y): X-rooted R-contractions,

and similarly for YA, and YCx. Besides the obvious identities
Ar=%Ap+YAr and Cr=*Cp+YCg

we have the following fundamental isomorphisms:
¥Agr =X -R(*Ag, YAp), YAr =Y - R(*Ag, YAg),
*Cr=X-(DxR)(*Ag, YAz),  “Cr=Y-(DyR)(*4g, YAg),

where Dy (Dy resp.) indicates the derivative w.r.t. X-points (Y-points resp.).
Note that, as a solution of the implicit system given by the first of these two lines,
(¥Ar, YAR) is uniquely determined—see [8} and [10). [We should assume that
R[0, 0} #8, since otherwise the concept of R-contractions and R-trees is not of
much interest. ]

The discussion from the first part of this section results in:
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Proposition 1. For any bi-sorted species R(X,Y), there is an isomorphism
between the species of R-endofunctions and the species of permutatiors of
R-contractions, i.e. Fr = S{(Cg\.

As to generating functions, this proposition has the following consequence:

Corollary 1. For any bi-sported species R(X, Y), the generating function for the
species of R-endofunctions is given by

e, )= [1-x- (2 R) 4 ), ks y) - - (5 R) s ), ks )|

where h(x, y) and k(x, y) are functions implicitly defined by

h(x, y)=x - R(h(x, y), k(x, )),
k(x,y)=y - R(h(x, y), k(x, y))-

The situation as given by the system for h(x,y) and k(x,y) calls for
Lagrange-inversion, of course. But for the purpose of this article it is not
necessary to enter further into this subject. This is in contrast to the original
approach by Srivastava and Singhal, who used Lagrange-inversion (together with
the Rodriguez-formula for the Jacobi polynomials) in order to prove their result.

3. A special case: Jacobi-endofunctions

In this section we will consider R-endofunctions for a particular class of
bi-sorted species R. For integers A=0 iet I, (I resp.) denote the (ordinary)
species of injective mappings into [0- - - A] ([1-- - A] resp.). The corresponding
generating functions are given by

L(x)=(1+x)'** and I}(x)=(1+x).
Let now A, u =0 be integers and define a bi-sorted species I (X, Y) by

L (X, Y)= L(X) - L(Y).

In the sequel I will simply write A, , (F, , etc.) instead of A, , (F;, etc.). In this
situation we get the following generating functions:

XAy u(x, y) =x - (L +%A, 0, Y- (1 + YA, (x, YD),

YAvu(x, ) = (pix) - ¥As (%, )

XCoult ) =2 (L+2)- A +%A, ,(x, Y)*- (1+ YA, u(x, Y)Y,
=(L+4) - %A, u(x, y) - [1+%4; (x, )

and -vnilarly for YC; .(x, y).
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From Corollary 1 we get in this particular case:

Corollary 2. The species of I, ,-endofunctions has the generating function

(1 + EA n(x’ y)) (1 + ’h n(xn y))

F, (x .V)—
o —-A- Eau(x:y) 7204 (x,}’)-‘l+.‘.+#) §Au(v," ‘o

\./

-
-
o
<

'

where &, ,, M, are implicitly defined by

Bl ) =5 - (1+ B 9))'*2 - (14 1o, y)),
M6 ) =y - (L+ Eue YD) (L4 10,0, y))-

Looking now at the combinatorial picture one realizes thatinthecase A=pu =0
the restriction imposed on I o-endofunctions is exactly condition (*) from the
previous section: I o-endofunctions are precisely the Jacobi-endofunctions of
Foata-Leroux! From their work we know:

Proposition 2.

Foolx, y) =2 = 9"0 2, ).

n=0N

As to the case A, u >0, it helps to look at I, ,-endofunctions in a slightly
different (but isomorphic!) way. For disjoint finite sets U, V the set F, [U, V] is
the set of all pairs (f, g) s.th.

- feF[U, V],

- guiU—[0-+-2], gv:V—>[0---p),

where g, (gv resp.) is the restriction of g to U (to V resp.),
- gv (gv resp.) is injective on f~'(z)NU (on f~%z)NV resp.) for all
zeUUV.
Writing f; (fv resp.) for the part of f defined on U (V resp.), we may regard
(fu, 8uv) ((fv, gv) resp.) as an injective mapping from U to (UUV)X[0--- ]
(from V to (UUV) X [0- - - u] resp.), or—if we decide to identify (U U V) x {0}
with U UV itself—as an injective mapping @, from U to (UU V) U ((UU V) x
[1---A]) (py from V to (UUVYU(UUV)X[1---pu])). These objects are
incomplete Jacobi-endofunctions in the sense of [12], and {rom their Proposition
23 {putting A=U, B=V, C=(UUV)X[1:--1). D=(UUV)x[l---py],
E=0, =0, p=0] we get

Proposition 3. (F,,,)a(x, y) = Z23")(x, y) (n=0).

Corollacy 3. For integers A, u =0, the generating function for I, ,-endofunctions is
given by

Fpux, y) = 2 @“" Y ).

ILESE
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This corollary, together with Co-ollary 2, yields the Srivastava-Singhal result in
the case @ = =0. The case where «, B are treated as parameters will be dealt
with in the following section.

4. An extension of the foregoing: counting “pure” cycles

The work done in the previous section did not use Proposition 2.3 of [12] in its
full generality. What is necessary in order to get the complete Srivastava—Singhal
result is: leaving A, B, C, D, E as they are, but treating « and § as arbitrary
parameters. What this amounts to combinatorially is: associating with each pair
(@u, @v) of injective functions, as described above, a weight or valuation

wa.ﬁ(¢lh ‘pV) = (1 + a,)cyc(cpu) . (1 + ﬁ)cyl?('?v).

Here cyc(@y) (cyc{@y) resp.) means the number of cycles which the injective
function @y (@y resp.) has within U (V resp.)—I will call them pure-X-cycles
(pure-Y-cycles resp.). We then have the foll;wing result;

Propesition 4.

Pranbrun(x, y) =3 {Wa,s(Pu> PvIX*Y*Y; (@u, @v) € Fy[U, V], UUV
= [1 et n]}s (n B0)

As a consequence, if we denote by F{%f the w,g-wcighted species of
I, ,~endofunctions, then

Corollary 4.

1
FE&P(x, y) = §0 = Pletinbrun)(y, y).

If we go now back to the original description of I, ,-endofunctions, then we
find that for any (f, g) € F, ,[U, V] we count via the valuation w, g the number of
f-components such that all the f-periodic clements of this component are
contained in U (or in V) and are all mapped onto 0 by g. In this sense we may
speak of prre-X-cycles (or pure-Y-cycles) of (f, g). We are leg to introduce some
auxiliary species:

II,,.(X, Y)=II(X) 'In(Y)1 IA—.M(X» Y)=L(X) 'I;(Y)
AL X Y)=X -1} (A "As),  ALUX, Y)=Y I3 ,(FA,, YALL)
*F:. (X, Y): I, ,-endofunctions, where all cycles are pure-X-cycles,

XC.u(X, Y): I, ,~contractions, where the root is a pure-X-cycle,
and similarly for YF, , and ¥C, ,.
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As before, we have
*Fu=5(*Cy,) and YF,,=5("C,,),

but, as *C, , (¥C,, resp.) and A}, (Aj; , resp.) are isomorphic, we get

Proposition 5. For integers A, =0
XF;.,“ = S(Az“) and YF;_“ = S(A;,p).

But now, since

AL y)=x - (L+%A, 0%, ) (1 + YA, x, )T
=%A,.x, ) - [1+ %A, ,(x, ]!
Ar x y) =y - (1 +%A5,(x, y))' M- A+ YA, (x, y))*

= YAA,n(x’ .Y) ¢ [1 + YAl.n(x’ )’)]_1
we arrive at

Corollary 5. The generating functions for pure-X-(-Y resp.)-1, ,-endofunctions are
given by '

XFA,u = l + xAl.u(x! y) and YFA.M(x’ y) = 1 + YAl.u(x’ y)

Remark. This last result can be obtained directly in a rather simple way by
making two observations:
(1) *F, ,~L(A%,), where L denotes the ordinary species of linear lists, and
where ‘=’ means equipotence, but not necessarily isomorphism.
(2) L(A},)=1+%A,,, a fact which is easily visualized (rather than requiring
an elaborate proof):

N NS NSNS A SN

(] o 0 & O O L
1 2,0 1 +
WA LN \ /1 cLa)
@ [ ] @ °© o o @
i
II e~X o~Y
A 4
° \;/o O\o‘ I. o\;; o\o‘; o\?; o\?; o\o’; .\.l ;
@ (o4 o e, o (¢ ®
2 2 2,0
BYWAREN! N/ AW X
@ <= ® <= @ < ° o o X € AAp
0 0 0 ’

Note that by the definition of A} , none of the indicated arrows comes from an
X-point which carries a g-value equal to 0, whereas the label 0 attached to the
points of the last line indicates that the g-value of these points is et to 0.
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The drawback of this proof is the inherent non-natucalness of (1), where we
have an underlying bijection which transforms the linear list of roots into a
permutation of recurrent elements by making use (e.g. via left-to-right-maxima-
decomposition) of an assumed total order of the elements of the base set.

5. Proof and extensior of the Srivastava—Singhal result

Using results from the previous sections it is now an easy task to finish the
proof of the theorem, as stated in Section 1. The basic idea goes back to
Foata—Leroux, and it works here in exactly the same way as it dic¢ in [6].

We first note that F; , is the product of three species:

. ¢ Y .m
FA-“ = Fln“ Flo" FA,“’

where "F, , takes care of all those I, ,-endofunctions having no ‘pure’ cycles at
all. If we put our standard valuation w, g on each of these species, then we get on
the generating function level: '

FEP(x, y) =*F&P(x, y) - YFEP(x, y) - "FP(x, y)
=[*Fy, (e, Y - [F (%, 1P - [F u(x, ¥)]
= [XFA,n(x’ 2) [YFA.u(xr }’)]p : [XFA.n(x’ y): YFA.u(xr y) - "F (%, y)}
= [XFA.n(x’ 2] ik [YFA.u(x’ Y)]B - F,, u(x, y).

Here we have made use of a general principle for the enumeration of
‘““exponential structures’, which in our situation says:

XFEP)(x, y) = exp(*G%P(x, y)) = exp[(1 + @)*G, u(x, Y)] = [*Fy, u(x, y)]"**

where *G, g denotes the species of connected *F, g-structures. The Srivastava—
Singhal result now follows from Corollaries 2, 4, and 5 together with the above
decomposition identity.

At this point one might be tempted to employ the combinatorial machinery
developed so far in similar situations, e.g. for the extensions of the theorem as
giver by Srivastava and Singhal in [15]. There are also numerous generating
functions of the same kind to be found in [16] which, at least to a large extent,
can be attacked by the same or similar combinatorial methods—but this will be
done elsewhere. Here I content myself to present a multivariable generalization
of the Srivastava—-Singhal result—which simply comes out of our combinatorial
set-up if considering the muiti-sorted situation. Since really no new proof is
necessary, I will state it as

Corollary 6. Let k=1 and let (ay, . . . , ax), (A1, . . ., &) denote two k-tuples of
(complex) parameters. Then

2 H(“‘”'Z"f) 'X?‘/na!=U(1+§.-)""[l*?a,-&]_l

[T m=0 i J S,
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where the E; are determined by the implicit system

E=x-(1+§)-[Ia+&* (A<sj<k).

[In I; and [I; the indices i, j are running from 1 to k.]
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