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1. Introduction

This paper will assume familiarity with the standard notation and concepts of Nevanlinna theory as set out in [14]
and [18]. Our primary concern is the homogeneous linear differential equation

y(k) +
k−2∑
j=0

A j y( j) = 0, (1)

where k � 2 and A0, . . . , Ak−2 are entire functions. It is well known [17] that every solution of (1) is entire. Recent years
have seen extensive research (see, for example, [1,3–8,18–20,24,25]) involving the connection between the order of growth
ρ(A j) of the coefficients A j and the exponent of convergence λ( f ) of the zeros of a solution f , these being defined [14] by

ρ(A j) = lim sup
r→∞

log+ T (r, A j)

log r
, λ( f ) = lim sup

r→∞
log+ N(r,1/ f )

log r
.

In particular it was shown in [3,24,25] that, if k = 2 and A0 is transcendental of order at most 1/2, then (1) cannot
have two linearly independent solutions f1 and f2, each with λ( f j) finite, and a comparable result was proved for higher
order equations in [20]. On the other hand, it is possible to have one solution f of (1) with no zeros at all, even for
coefficients of very small growth. To see this set f = eB where B is an entire function. Then f solves (1) with k = 2 and
−A0 = f ′′/ f = B ′′ + (B ′)2, as well as similar equations of higher order obtained by computing f (k)/ f in terms of B . Our
main result shows, however, that small perturbations of such equations lead to solutions whose zeros must have infinite
exponent of convergence.

Theorem 1.1. Let k � 2 and let A0, . . . , Ak−2 be entire functions of finite order with the following property. There exists a set E1 ⊆
[1,∞), of infinite logarithmic measure, such that, with A = A0 ,
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log r +
∑

1� j�k−2

log+ M(r, A j) = o
(

inf|z|=r
log+∣∣A(z)

∣∣) (2)

as r → ∞ with r ∈ E1 . Assume that (1) has a solution f with λ( f ) < ∞ and

lim
r→∞, r∈E1

n(r,1/ f ) log r

T (r, A)
= 0. (3)

Let h and B j (for 1 � j � k − 2) be entire functions such that h �≡ 0 and

log+ M
(
r,h′) +

∑
1� j�k−2

log+ M(r, B j) = o
(

inf|z|=r
log+∣∣A(z)

∣∣) (4)

as r → ∞ with r ∈ E1 . Then, with

B = A + h, (5)

the differential equation

y(k) +
∑

1� j�k−2

B j y( j) + B y = 0 (6)

cannot have a solution g with λ(g) < ∞.

For a related result involving the effect of perturbation on the oscillation of solutions see [7, Theorem 3.1]. In Section 2
it will be deduced from well-known minimum modulus results that (2), (3) and (4) are satisfied if either of the following
two hypotheses hold:

(a) The function A is transcendental of order 0, while h and the A j and B j (for 1 � j � k − 2) are polynomials, and f has
finitely many zeros.

(b) The function A has order ρ(A) < 1/2, while h and the A j and B j (again for 1 � j � k − 2) have order less than ρ(A),
and λ( f ) < ρ(A).

In particular Theorem 1.1 improves a result of the first author: it was proved in [1] that, if k = 2 and (1) has a solution
f with λ( f ) < ρ(A0) < 1/2, while h �≡ 0 but ρ(h) < ρ(A0), then Eq. (6) cannot have a solution g with λ(g) < ρ(A0).

Our remaining results concern the zero sequence of a Bank–Laine function of finite order. An entire function E is called
a Bank–Laine function if E(z) = 0 implies E ′(z) = ±1: such functions arise precisely as products of linearly independent
solutions of the second order equation

w ′′(z) + A(z)w(z) = 0, (7)

with A entire and the normalisation that the solutions have Wronskian equal to 1 [5]. Here E and A are connected by the
Bank–Laine formula [3]

4A =
(

E ′

E

)2

− 2
E ′′

E
− 1

E2
, (8)

which was introduced in [3] and has inspired much subsequent research: see [18,20] for references. It is conjectured that if
the zeros of E have finite exponent of convergence then ρ(A) is infinite or a positive integer.

Now Shen [26] has shown that in general a Bank–Laine function E may have an arbitrary zero sequence (zn), provided
of course that zn tends to infinity without repetition. On the other hand, if it is assumed that E has finite order then it
is possible to prove that certain zero sequences cannot arise for E [11,21]. The following theorem was proved by ElZaidi
[12,13].

Theorem 1.2. (See [12,13].) Let E be a Bank–Laine function of finite order, with zero sequence (zn). Then there exists M > 0 such that
|zm − zn| � exp(−|zn|M) for m �= n and n large.

Thus the zeros of a Bank–Laine function of finite order cannot be too close together. See [2] for a related result. It is
clear from ElZaidi’s proof that any M greater than the order ρ(E) of E will suffice in Theorem 1.2. It seems natural to
conjecture that Theorem 1.2 holds with the positive constant M depending only on the exponent of convergence of the
zero-sequence (zn). Although we have not been able to prove this in general, it is certainly true if the zeros are all real, as
the following theorem shows.
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Theorem 1.3. Let E be a Bank–Laine function of finite order having only real zeros (an), and denote by λ their exponent of convergence.
Let λ < μ < ∞. Then for all large n and for all m �= n we have

|am − an| � exp
(−|an|μ

)
. (9)

We remark that results on the zero distribution of Bank–Laine functions with real zeros appear in [11,21].
To motivate the next result we observe that Bank–Laine functions of exponential type with sparsely distributed zeros

were constructed by Langley [21] using a variational method. It is then natural to ask whether a similar construction could
be employed to produce a Bank–Laine function of finite order whose zeros occur in sparsely distributed small discs, with
at least two zeros in each disc. The next theorem proves a lower bound for the radius of any such discs, depending on the
exponent of convergence of the zeros, and lends some support to the conjecture stated following Theorem 1.2.

Theorem 1.4. Let E be a Bank–Laine function of finite order, and let λ = λ(E) be the exponent of convergence of the zeros of E. Let
ε > 0 and assume that all but finitely many zeros of E lie in the union of the discs

Dm = B
(
am,exp

(−|am|λ+ε
))

, (10)

where am tends to infinity with

|am − an| � ε|an| for m �= n. (11)

Then for large m the function E has at most one zero in Dm.

Here B(a, r) denotes the open disc of centre a and radius r, and S(a, r) will be used to denote the corresponding
boundary circle.

The hypothesis that E has finite order is not redundant in Theorems 1.3 and 1.4, because of the result of Shen [26]
already mentioned.

2. Application of minimum modulus theorems

The upper logarithmic density of a set E ⊆ [1,∞) is defined [15, p. 331] using the characteristic function χ(t) of E by

log dens(E) = lim sup
r→∞

1

log r

( r∫
1

χ(t)dt

t

)
, χ(t) =

{
1 if t ∈ E,

0 if t /∈ E .

The lower logarithmic density is defined analogously, but with lim sup replaced by lim inf. The classical cosπρ theorem [15,
p. 331] states that if A is a transcendental entire function of order ρ < α < 1 then

inf|z|=r
log

∣∣A(z)
∣∣ � cosπα log M(r, A)

on a set E1 of lower logarithmic density at least 1 − ρ/α. We will also require the following modified cosπρ theorem
[9,10].

Theorem 2.1. (See [9,10].) Suppose that A is a transcendental entire function with ρ(A) = ρ < 1
2 . If σ < ρ , then the set

E1 =
{

r � 1: inf|z|=r
log

∣∣A(z)
∣∣ > rσ

}
(12)

has positive upper logarithmic density.

The standard example cos
√

z shows that we cannot take ρ = 1
2 in Theorem 2.1.

The choice α = 1/4 in the cosπρ theorem then makes it immediately clear that under the hypothesis (a) following the
statement of Theorem 1.1, the conditions (2), (3) and (4) are satisfied.

Suppose next that hypothesis (b) holds. Pick τ ,σ such that

max
{
λ( f ),ρ(h)

}
< τ < σ < ρ(A) <

1

2
(13)

and

max
{
ρ(A j),ρ(B j)

}
< τ for 1 � j � k − 2.
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This time applying Theorem 2.1 gives a set E1 as in (12) of positive upper logarithmic density and so infinite logarithmic
measure, and for r ∈ E1 conditions (2) and (4) are satisfied, using the well-known fact that ρ(h′) = ρ(h) [16]. Moreover,
since (13) and standard inequalities yield

n(r,1/ f ) log r = O
(
N(2r,1/ f ) log r

) = o
(
rτ

)
,

condition (3) also holds for r ∈ E1.

3. Results needed for the proof of Theorem 1.1

We need the following definition and lemma [18, pp. 84–87] for our main results.

Definition 3.1. (See [18].) Let B(zn, rn) be open discs in the complex plane. We say that the countable union
⋃

B(zn, rn) is
an R-set if the centres zn tend to infinity with n and the sum

∑
rn of the radii rn is finite.

Lemma 3.1. (See [18].) Suppose that f �≡ 0 is a meromorphic function of finite order in the plane, and let j ∈ N. Then there exists a
positive integer N such that

f ( j)(z)

f (z)
= O

(|z|N)
holds for large z outside of an R-set.

We require next a special case of a theorem from [20], which gives a local representation for the logarithmic derivative
of a solution of (1) with few zeros.

Theorem 3.1. (See [20].) Let k � 2 and let A0, . . . , Ak−2 be entire functions of finite order, with A = A0 transcendental. Let E1 be a
subset of [1,∞), of infinite logarithmic measure, and with the following property. For each r ∈ E1 there exists an arc ar of the circle
S(0, r), such that

lim
r→∞, r∈E1

min{log |A(z)|: z ∈ ar}
log r

= +∞, (14)

and, if k � 3,

lim
r→∞,r∈E1

max

{
log+ |A j(z)|

log |A(z)| : z ∈ ar

}
= 0, (15)

for j = 1, . . . ,k − 2. Let f be a solution of (1) with λ( f ) < ∞. Then there exists a set E2 ⊆ [1,∞) of finite measure, such that for large
r ∈ E0 = E1 \ E2 the following is true. We have

f ′(z)

f (z)
= cr A(z)1/k −

(
k − 1

2k

)
A′(z)

A(z)
+ O

(
r−2) for all z ∈ ar . (16)

Here the constant cr satisfies ck
r = −1 and may depend on r but not, for a given r ∈ E0 , on z. The branch of A1/k in (16) is analytic

on ar (including in the case where ar is the whole circle S(0, r)).

We will employ the following well-known representation for higher order logarithmic derivatives [14, p. 73].

Lemma 3.2. (See [14].) Let f be an analytic function, and let F = f ′/ f . Then for k ∈ N we have

f (k)

f
= F k + k(k − 1)

2
F k−2 F ′ + Pk−2(F ),

where Pk−2 is a differential polynomial with constant coefficients, which vanishes identically for k � 2 and has degree at most k − 2
when k > 2.

4. Proof of Theorem 1.1

Let Eqs. (1) and (6) and their coefficients, as well as the set E1, be as in the statement of the theorem. Suppose that (1)
has a solution f with λ( f ) < ∞ and satisfying (3), and that (6) has a solution g with λ(g) < ∞. We set

f = PeU , g = Q eV , (17)
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where P , Q , U and V are entire functions which satisfy ρ(P ) = λ( f ) < ∞ and ρ(Q ) = λ(g) < ∞. Let

F = f ′

f
= P ′

P
+ U ′, G = g′

g
= Q ′

Q
+ V ′. (18)

It is clear from (2), (4) and the inequality

M(r,h) � rM
(
r,h′) + ∣∣h(0)

∣∣
that

log+∣∣h(z)
∣∣ + log+∣∣h′(z)

∣∣ = o
(
log

∣∣A(z)
∣∣) for |z| = r ∈ E1. (19)

Let E2 ⊆ [1,∞) be a set of finite measure so that, for some M1 ∈ N, and for j = 1, . . . ,k,∣∣∣∣ A′(z)

A(z)

∣∣∣∣ +
∣∣∣∣ P ( j)(z)

P (z)

∣∣∣∣ +
∣∣∣∣ Q ( j)(z)

Q (z)

∣∣∣∣ � rM1 for |z| = r ∈ [1,∞) \ E2. (20)

Such E2 and M1 exist by Lemma 3.1.
The next step is to estimate f ′/ f and g′/g in terms of A. We apply Theorem 3.1 to (1) and (6), choosing ar to be the

whole circle |z| = r ∈ E1. This is possible since (2), (4), (5) and (19) imply that (14) and (15) hold, and also that (14) and (15)
are satisfied with A, A j replaced by B , B j . Hence for large r ∈ E0 = E1\E3, where E2 ⊂ E3 and E3 has finite measure, the
following is true. We have, by (16),

f ′(z)

f (z)
= c A(z)1/k −

(
k − 1

2k

)
A′(z)

A(z)
+ O

(
r−2), |z| = r, ck = −1, (21)

and

g′(z)

g(z)
= d B(z)1/k −

(
k − 1

2k

)
B ′(z)

B(z)
+ O

(
r−2), |z| = r, dk = −1. (22)

Next, we apply the binomial theorem to expand B1/k and B ′/B in terms of A1/k and A′/A. Using (5) and (19), we get for
|z| = r ∈ E0, on suppressing the variable z for brevity,

B1/k = (A + h)1/k = A1/k
(

1 + h

A

)1/k

= A1/k
(

1 + O

( |h|
|A|

))
(23)

and

B ′

B
= A′ + h′

A + h
= A′ + h′

A(1 + h/A)
= A′

A

(
1 + O

( |h|
|A|

))
+ O

( |h′|
|A|

)
. (24)

Using (19), (20), (22), (23) and (24), we deduce that, for |z| = r ∈ E0,

g′(z)

g(z)
= dA(z)1/k −

(
k − 1

2k

)
A′(z)

A(z)
+ O

(
r−2), dk = −1. (25)

We recall from Theorem 3.1 that c and d may depend on r but, for a given r, do not depend on z. The following two lemmas
are then the key to the proof of Theorem 1.1.

Lemma 4.1. Suppose that c, d are as in (21) and (25) respectively. Then c = d for all large r ∈ E0 .

Proof. We may write d = ωc where ωk = 1. Multiplying (21) by ω and subtracting (25) we get

ω

(
f ′(z)

f (z)
+

(
k − 1

2k

)
A′(z)

A(z)

)
= g′(z)

g(z)
+

(
k − 1

2k

)
A′(z)

A(z)
+ O

(
r−2).

Integrating around |z| = rn , where rn → ∞ with rn ∈ E0, we then find that

ω

[
n

(
rn,

1

f

)
+

(
k − 1

2k

)
n

(
rn,

1

A

)]
+ o(1) = n

(
rn,

1

g

)
+

(
k − 1

2k

)
n

(
rn,

1

A

)
. (26)

But the right-hand side of (26) must be positive since

n

(
rn,

1
)

� 0 and n

(
rn,

1
)

> 0,

g A
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using the fact that (2) gives

log r = o
(
T (r, A)

) = o
(
T (r,1/A)

) = o
(
N(r,1/A)

) = o
(
n(r,1/A) log r

)
for r ∈ E0. Applying the same considerations to the left-hand side of (26) and recalling that ωk = 1, we deduce that ω = 1
and c = d. �
Lemma 4.2. The quotient f /g is non-constant.

Proof. Assume the contrary. Then f solves both equations (1) and (6), so that∑
1� j�k−2

(B j − A j) f ( j) + hf = 0. (27)

Hence we must have k � 3 and B j − A j �≡ 0 for at least one j � 1, since h �≡ 0. Let q be the largest integer such that
Bq − Aq �≡ 0. Then Lemma 3.2, (18) and (27) give

(Bq − Aq)

(
F q + q(q − 1)

2
F q−2 F ′ + Pq−2(F )

)
+ · · · + h = 0,

from which we deduce, using (2), (4), (18), (21), the fact that F has finite order [8], and the notation

S(r) = log r + T (r,h) +
∑

1� j�k−2

(
T (r, A j) + T (r, B j)

)
, (28)

that

m(r, A) � O
(
m(r, F ) + log r

) = O
(

S(r)
) = o

(
inf|z|=r

log
∣∣A(z)

∣∣) = o
(
T (r, A)

)
as r → ∞ with r ∈ E0, which is an obvious contradiction. �

To complete the proof of Theorem 1.1, we can now use (21), (25) and Lemma 4.1 to get, as r → ∞ with r ∈ E0,

f ′(z)

f (z)
= g′(z)

g(z)
+ O

(
r−2), |z| = r,

and hence

n

(
r,

1

f

)
= n

(
r,

1

g

)
for large r ∈ E0. (29)

Using (18) and (20) we obtain∣∣U ′(z) − V ′(z)
∣∣ � 3rM1

for |z| = r and large r ∈ E0, and since U and V are entire we deduce that Q 0 = U ′ − V ′ is a polynomial. Thus (18) becomes

F = G + M, M = P ′

P
− Q ′

Q
+ Q 0, (30)

in which M does not vanish identically, since f /g is non-constant by Lemma 4.2. Combining (6) and (18) with Lemma 3.2
and its notation, we obtain

−A − h = Gk + k(k − 1)

2
Gk−2G ′ + Pk−2(G) +

∑
1� j�k−2

B j

[
G j + j( j − 1)

2
G j−2G ′ + P j−2(G)

]
. (31)

Similarly, using (1), (30) and Lemma 3.2 leads to

−A = f (k)

f
+

∑
1� j�k−2

A j
f ( j)

f

= F k + k(k − 1)

2
F k−2 F ′ + Pk−2(F ) +

∑
1� j�k−2

A j

[
F j + j( j − 1)

2
F j−2 F ′ + P j−2(F )

]

= (G + M)k + k(k − 1)

2
(G + M)k−2(G ′ + M ′) + Pk−2(G + M)

+
∑

A j

[
(G + M) j + j( j − 1)

2
(G + M) j−2(G ′ + M ′) + P j−2(G + M)

]
.

1� j�k−2
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On subtracting (31) we then get

h = kMGk−1 + Sk−2(G, M)

where Sk−2(G, M) is a differential polynomial in G and M , of total degree at most k − 2 in G and its derivatives, and with
coefficients which are linear combinations of those A j and B j with 1 � j � k − 2. This gives

kG = 1

MGk−2

[
h − Sk−2(G, M)

]
.

Since G and M have finite order, we deduce using (2), (3), (4), (18), (20), (25), (28), (29) and (30) that

m(r, A) � C0
(
m(r, G) + log r

)
� C1

(
m(r, M) + m

(
r,

1

M

))
+ C1 S(r)

� C2T (r, M) + C1 S(r) + O (1)

� C2N(r, M) + C3 S(r)

� C2

(
N

(
r,

1

f

)
+ N

(
r,

1

g

))
+ C3 S(r)

� C2

(
n

(
r,

1

f

)
+ n

(
r,

1

g

))
log r + C3 S(r)

� 2C2n

(
r,

1

f

)
log r + C3 S(r)

= o
(
T (r, A)

)
= o

(
m(r, A)

)
for large r ∈ E0, where the C j denote positive constants. This is evidently a contradiction, and Theorem 1.1 is proved.

5. Proof of Theorem 1.3

We require the following result from [21].

Theorem 5.1. (See [21].) Let F = W eQ be a Bank–Laine function, with Q a polynomial of positive degree N and W an entire function
of order ρ(W ) < N. Let θ1 < θ2 and c > 0 and suppose that |Re(Q (z))| > c|z|N as z → ∞ in the sector S given by θ1 � arg z � θ2 .
Then F has finitely many zeros in S.

We now prove Theorem 1.3. We may assume that the sequence (an) is infinite, since otherwise there is nothing to prove.
By hypothesis there is a Bank–Laine function E of finite order with zero sequence (an). Thus we can write

E = W eP , P = Q + iR, (32)

where W is a real entire function of order λ and Q and R are polynomials with real coefficients. Since E is a Bank–Laine
function and R(an) is real, we must have

E ′(an) = W ′(an)eQ (an)+iR(an) = ±1 and eiR(an) = ±1.

It follows that F = W eQ is a Bank–Laine function.

Lemma 5.1. Let deg Q = N. Then we have N � λ.

Proof. Suppose that this is not the case. Since Q is a real polynomial there exists c > 0 such that |Re(Q (z))| > c|z|N for
large z near the real axis. Hence we may apply Theorem 5.1 twice, first in a sector |arg z| < ε, and subsequently in a
sector |arg z − π | < ε, to conclude that F has finitely many zeros on the real axis, and so has E . This contradiction proves
Lemma 5.1. �

Hence we have log M(r, F ) = o(rμ) as r → ∞. Now let an , am be zeros of E with an large and |an − am| � 1. Let

g(z) = F (z)
.

(z − am)(z − an)
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Then g is entire and for |z| = 2|an| we have

|z − am| � |z − an| − 1 � |an| − 1 � 1.

It follows that∣∣g(z)
∣∣ � M

(
2|an|, F

)
� exp

(|an|μ
)

for |z| � 2|an|. Now Cauchy’s integral formula gives

1 = ∣∣F ′(an)
∣∣ = ∣∣(an − am)g(an)

∣∣ =
∣∣∣∣ 1

2π i

∫
|z−an|=1

g(z)

(
an − am

z − an

)
dz

∣∣∣∣ � exp
(|an|μ

)|an − am|,

which implies (9) and completes the proof of Theorem 1.3.

6. Nehari’s univalence criterion

For the proof of Theorem 1.4, we require the following disconjugacy result, which is a standard consequence of a well-
known univalence criterion of Nehari [17,22,23].

Lemma 6.1. Let a ∈ C and r ∈ (0,∞) and let the function A be analytic on B(a, r) with |A(z)| � r−2 there. Then each non-trivial
solution of (7) has at most one zero in B(a, r).

We include the standard proof for completeness. Let f be a non-trivial solution of (7) in B(a, r), and choose a second
solution g such that f and g are linearly independent. Then F = f /g is locally univalent in B(a, r). Let G(z) = F (a + rz) on
B(0,1). Then the Schwarzian derivatives of F and G satisfy, for z ∈ B(0,1),

SG = G ′′′

G ′ − 3

2

(
G ′′

G ′

)2

,
(
1 − |z|2)2∣∣SG(z)

∣∣ �
∣∣SG(z)

∣∣ = r2
∣∣S F (a + rz)

∣∣ = 2r2
∣∣A(a + rz)

∣∣ � 2.

Hence G is univalent on B(0,1) by Nehari’s criterion [17,22,23], and f has at most one zero in B(a, r).

7. Proof of Theorem 1.4

Let the Bank–Laine function E and the sequence (am) be as in the statement of Theorem 1.4. Then there exists an
entire function A such that E is the product of linearly independent solutions of (7). Since the zeros of E have exponent of
convergence λ we may write E = ΠeP , where Π is an entire function of order ρ(Π) = λ and P is a polynomial of degree N .
Let δ be small and positive, and assume that m is large and that E has at least two zeros in Dm .

Suppose first that there exists ζ ∈ D ′
m = B(am,2|am|−N ) such that∣∣eP (ζ )

∣∣ < exp
(−|am|λ+δ

)
.

Then for all z ∈ D ′
m we have

∣∣eP (z)
∣∣ �

∣∣eP (ζ )
∣∣ exp

( z∫
ζ

∣∣P ′(t)
∣∣ |dt|

)
� 2 exp

(−|am|λ+δ
)

and, since Π has order λ,

∣∣E(z)
∣∣ �

∣∣eP (z)
∣∣exp

(|am|λ+o(1)
)
� exp

(
−1

2
|am|λ+δ

)
.

Since m is large we have Dm ⊆ B(am, |am|−N ), and Cauchy’s estimate for derivatives then gives E ′(z) = o(1) for all z ∈ Dm .
But this contradicts the assumption that the Bank–Laine function E has zeros in Dm , at each of which we have E ′(z) = ±1.

Hence we have∣∣eP (z)
∣∣ � exp

(−|am|λ+δ
)

for all z ∈ D ′
m. (33)

We use (33) and the Bank–Laine formula (8) to estimate A on Dm . Since E has no zeros in D ′
m \ Dm , the Poisson–Jensen

formula and standard estimates for logarithmic derivatives (see Lemma 3.1) give a positive real number M1, independent
of m, such that∣∣∣∣ E ′(z)

∣∣∣∣ +
∣∣∣∣ E ′′(z)

∣∣∣∣ � |am|M1 and
∣∣log

∣∣Π(z)
∣∣∣∣ � |am|λ+δ
E(z) E(z)
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for all z ∈ S(am, |am|−N). Combining these estimates with (8) and (33) then gives∣∣A(z)
∣∣ � exp

(|am|λ+2δ
)

for all z ∈ S(am, |am|−N) and hence for all z ∈ Dm , by the maximum principle. Since δ may be chosen arbitrarily small, it
follows from Lemma 6.1 that no non-trivial solution of (7) has more than one zero in Dm .

Since we are assuming that E has at least two zeros in Dm we conclude that E has precisely two zeros a and b in Dm ,
with E ′(a) = 1 and E ′(b) = −1. Hence we must have N > λ, because if this is not the case then E has order λ and we
obtain

2 = ∣∣E ′(a) − E ′(b)
∣∣ =

∣∣∣∣∣
a∫

b

E ′′(t)dt

∣∣∣∣∣ � |a − b|exp
(|am|λ+o(1)

) = o(1),

a contradiction. Set E(z) = (z − a)(z − b)h(z). Then

1 = E ′(a) = (a − b)h(a), −1 = E ′(b) = (b − a)h(b), h(a) = h(b). (34)

Since a and b are the only zeros of E in B(am, ε|am|/2) by (11), and since N > λ and δ is small, simple estimates
give

Π ′(z)

Π(z)
= O

(|am|λ+δ−1) and
E ′(z)

E(z)
= Π ′(z)

Π(z)
+ P ′(z) ∼ P ′(z)

for z ∈ S(am, δ|am|). This yields

h′(z)

h(z)
= E ′(z)

E(z)
− 1

z − a
− 1

z − b
∼ P ′(z)

for z ∈ S(am, δ|am|) and hence for z ∈ Dm , by the maximum principle. Combining this with (34) then gives

1 = h(a)

h(b)
= exp

( a∫
b

h′(t)
h(t)

dt

)
= exp

( a∫
b

P ′(t)
(
1 + o(1)

)
dt

)
= exp

( a∫
b

P ′(a)
(
1 + o(1)

)
dt

)

= exp
(
(a − b)P ′(a)

(
1 + o(1)

)) �= 1,

and this contradiction proves the theorem.
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