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1. Introduction

Metallic particles are widely used in metallurgy [1–3], electronics
[4–6], optoelectronics [7–9], catalysis [10–15], biosensors [16, 17],
Surface Enhanced Raman Scattering (SERS) [18–22], and biomedical
applications [23–28]. In principle, three different approaches can be
used to generate finely dispersedmetals [29]. The ‘phase breakdown’
. This is an open access article under
(or ‘top down’) involves the use of external energy to divide the liquid or
solid bulk metal into small entities with high specific surface area. In the
first case, the molten metal is dispersed through various means (pneu-
matic, spinning disk [30, 31]) into small droplets which are then rapidly
cooled. Depending on the nature of the metal, this process is conducted
in air or controlled atmosphere (inert, reducing). The resulting particles
are typically spherical/spheroidal, very large (tens to hundreds of micro-
meters), and have very broad size distributions. Consequently, their use is
limited mostly to metallurgical applications. When the metal is in solid
form, the external energy necessary for size reduction is supplied via
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milling processes [32] involving the action (impact, shear) of small ob-
jects (usually spheres) made out of hard materials. Although soft
metals are not suitable for this process, some (i.e. silver) become
brittle at very low temperature and can be eventually crushed (cryo-
genic milling [33, 34]). The size reduction can be conducted in vari-
ous types of equipment (ball mill, attritor, etc.) in either gas or
liquid media. Depending on the metal's properties, a controlled
atmosphere may be required as well. The milling process can yield
particles down to hundreds of nanometers or less but fails to provide
tight size distributions and particle shape control. Despite these
disadvantages, this approach is widely used in the manufacturing
of metal powders and flakes (Ag, Au, AgPd, Cu, and Ni) for the
electronic industry [35].

The second route (“phase transformation”) consists of converting
finely divided metal compounds into metal particles [36]. The transfor-
mation can be achieved through thermal decomposition (i.e. pyrolysis)
[37–40], chemical reduction, or a combination of the two. The approach
is particularly useful in the preparation of anisotropic metallic particles
as often it is easier to prepare particles of metallic compounds with
unique shapes [41]. When the conversion takes place at high tempera-
ture, the process can yield highly crystalline metal particles and, for
multi-elemental systems, alloy powders. Chemical transformations
can be conducted in both gas and liquid dispersion media at either am-
bient or elevated temperatures. However, the phase transformation in
liquid phase is limited by the boiling point of the dispersion medium
and the partial dissolution of the precursor salt can become a complicat-
ing factor.

In the “phase build-up” (‘bottom up’) approach the metal atoms
are used as building blocks. The generation of the latter and their as-
sembly into the final particles can be carried out in either gas phase
(chemical, physical vapor deposition [42–44]) or liquid media
(chemical precipitation [45–49]). Although the two methods are
similar in principle, the difference in the dispersion medium gives
each route specific advantages. As the build-up in the gas phase pro-
ceeds at high temperatures, it results in highly crystalline metallic
particles. However, the inability to prevent inter-particles collisions
leads to severe aggregation and/or loss of particle uniformity and
shape control. In contrast, the “phase build-up” in liquid dispersion
media (chemical precipitation) provides a better control of the par-
ticle formation mechanisms and inter-particles forces. In this case
it is possible to control the size of the final particles (through the
number of atoms incorporated), their shape (by controlling the at-
tachment of ad-atoms to different crystal facets), and composition
(through selection of elements precipitated). The ability to control
the aggregation of smaller particles into larger polycrystalline enti-
ties allows also adjustments of the internal structure of the particles
[7, 9, 48]. Lastly, the surface properties of the particles can be tailored
by employing a wide variety of solvents, dispersants/surfactants, and
other ionic and molecular species. An important merit of the chemi-
cal precipitation is that such sophisticated control of particles prop-
erties can be achieved at low cost on large scale. Its significant
limitation, however, is the inability to reduce highly electronegative
metals in common solvents and ordinary conditions.
2. Mechanism of metallic particle formation in liquid media

Although methods in which the metal atoms are formed ‘ex-
situ’ and then assembled inside the liquid dispersion medium are
known [50, 51], this review deals only with the case in which they
are generated in the liquid phase as a result of redox reactions.
Without minimizing the merit of the former approach, it is easy to
understand how the ability to manipulate the reactivity of oxidized
metallic species and the electron transfer enhances the control of
atoms generation in the system and the thus the properties of
final particles.
In chemical precipitation, the metal atoms are formed by reacting
oxidized metallic species in form of ions or molecules with compounds
with reducing capabilities (reductants) (Eq. (1)).

Menþ þ nRed→Me0 þ nOxþ ð1Þ

Where:

n is oxidation number (n = 1, 2, 3…)
Men+ symbolizes the oxidized metallic species
Me0 stands for the metal atom
Red stands for reducing agent
Ox+ represents the oxidized form of reducing agent

The driving force behind the process is the redox potential of the
overall reaction (ΔE), the value of which must be positive in order for
the electron transfer to be thermodynamically possible. A higher posi-
tive value ofΔE translates in a more negative value of the Gibbs free en-
ergy, and, thus, a higher probability for the reaction to occur (Eq. (2)).

ΔG ¼ −nFΔE ð2Þ

Where:

ΔG stands for Gibbs free energy,
n is the number of electron transferred,
F is Faraday's constant

It is generally accepted that a larger Gibbs free energy favors an in-
creased rate of atoms generation. This leads to the formation of a larger
number of nuclei and, as it will be shown later, smaller final particles.
Due to their exceedingly high energy, the metal atoms easily associate
into clusters as their concentration in the solvent increases. The clusters
can still dissociate back to free atoms and, as such, cannot be considered
yet a stable metallic phase. As the concentration of metal atoms in-
creases, a critical radius (R*) is eventually reached. Clusters with radius
larger than R* keep growing through addition of more atoms and be-
come stable. These entities (nuclei) represent the first stable solid me-
tallic entities in the liquid dispersion medium. According to the LaMer
model [52–55], the nucleation process is driven by the supersaturation
(S) of free atoms in the system, defined by Eq. (2).

S ¼ C=Ceq; ð3Þ

Where:

C actual metal atoms concentration
Ceq solubility of the metal in the given system

Fig. 1 represents the change in the concentration of solute metallic
atoms in the precipitation process. The supersaturation builds up from
A to B. Once the concentration ofmetal atoms reaches the critical super-
saturation, Sc, nucleation occurs (point B). It is typically a very rapid
process (‘burst’) followed by a rapid depletion of the solute atoms
until their concentration decreases to the saturation concentration of
the metal in the respective solvent (Ceq). As long as the concentration
of the solute atoms does not exceed again the supersaturation level, fur-
ther nucleation bursts are not possible. During the following ‘supersat-
uration release’ the nuclei grow rapidly from less than 0.8 nm (20–30
atoms) to ‘primary particles’ of a larger size. Depending on the system
conditions, the later can be as small as 1.0 nm and as large as 30 nm.
During their growth the primary particles are inevitably the subjects
of attractive (Van der Waals) and repulsive (electrostatic) forces. If the
repulsive forces prevail throughout the ‘supersaturation release,’ the
primary particles form a stable colloidal system in which the unique
properties (optical, electronic, transport etc.) that are essential in



Fig. 2. Schematic presenting the key stages in the precipitation of metallic particles.

Fig. 1. The variation of the concentration of metal atoms with time in the precipitation
process [52].
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many applications are preserved. Conversely, the primary particles
aggregate if the attractive forces overcome the repulsive forces. The bal-
ance between repulsive and attractive forces affecting these processes
depends on many factors (solvent dielectric constant, nature precip-
itated metal, counterions charge and concentration, etc.), which are
discussed elsewhere [56, 57].

The primary particles continue to grow if metal atoms are continu-
ously generated in the dispersion medium. However, to prevent subse-
quent nucleation bursts that can lead to polydispersed systems, it is
essential that the supersaturation limit is not exceeded. In principle,
particle growth can proceed through two distinct mechanisms: diffu-
sional growth and aggregation. The first relies on the diffusion and
deposition of atoms to the surface. Since the orderly arrangement of
the ad-atoms require a finite time, the diffusional growth is typically
slow. Alternatively, the primary particles may aggregate to form much
larger entities. This process is usually rapid and occurswhen the balance
between the attractive and repulsive forces is suddenly tilted in favor of
the former. The internal cohesion of the resulting large aggregates re-
quires that aggregation overlaps to some extentwith diffusional growth
so that the primary particles are ‘fused’ together following the deposi-
tion of ad-atoms at the contact points. The diffusional deposition can
evenfill spaces in the arrangement of primary particles to yield particles
with density approaching that of bulk metal. Particles formed predom-
inantly by one of these two growth mechanisms have very different in-
ternal structures. Those obtained by diffusion growth typically have few
internal grain boundaries and can adopt well defined regular shapes
(cubes, prisms, platelets, rods, etc.). In contrast, the particles formed
by aggregation of a large number of smaller crystallites are in general
spherical and have smooth surfaces. It must be noted that by changing
the reaction conditions particles of intermediate ‘polycrystallinity’ can
be prepared as needed. This becomes extremely important when
designing metallic particles for specific practical applications. Fig. 2
reflects the entire sequence of events from the reduction of metal ions
to the formation of large metallic particles with different internal
structure.
3. Controlling the properties of metallic particles

3.1. Particle size

The size of the particles is a critical parameter in most, if not all,
applications relying on finely dispersed metals. The importance of this
parameter in catalysis, electronics, metallurgy, pigments, etc. has been
amply documented and the need to control the physical dimensions
of particles widely recognized.
3.1.1. Redox potential as controlling parameter
Manipulating the ΔE of the redox reaction is perhaps the most

effective way to control particle size. As previously stated, a large
value causes a more rapid supersaturation buildup and leads to the
formation of a larger number of nuclei. Conversely, a small ΔE gap
generates fewer nuclei. For the same amount of metal reduced, it is
obvious that smaller final particles will be formed in the first case.
The most effective and practically facile way to adjust the redox po-
tential of the reaction is through the selection of reducing agent.
Strong reducing agents (i.e. sodium borohydride [58–60]) as well
as milder ones (ascorbic acid [61–68], alcohols/polyols [69–74],
sugars [48, 75], tetrahydrofuran [76]) are widely used in the chemical
precipitation of metals. The compounds in the first category provide a
fast generation of nuclei while those in the second group tend to favor
slow reductions. If all other process parameters are the same, the former
tend to generate small particles while the latter result in larger ones.
Other parameters also affect the redox potential of the metal ions
and/or reducing species. A change in the pH may impact not only the
potential of each reactant but also that of the entire reaction [77–81].
A good example is the case of ascorbic acid. Since its reducing ability de-
pends on the protonation degree of the molecule, an increased proton
concentration (lower pH) translates in a diminished ability to transfer
electrons to the metallic ions and thus slower reductions [29, 82].
Similarly, the redox potential of hydrazine becomes more negative at
higher pH (−1.16 V in alkaline conditions vs. −0.26 V in acidic medi-
um) due to the fact that OH− are consumed in the oxidation of N2H4

to elemental nitrogen [83]. Thus, hydrazine can be rendered mild or
strong reductant by varying the pH of the reaction environment.
Complexation is another effective tool in controlling the redox
potential of oxidized metallic species. As a rule, engaging the metal
ions in progressively stronger complexes decreases gradually their
redox potential and makes their reduction more difficult. The complex-
ation of silver ions with various ligands is a good example. While the
standard redox potential (E0) of the Ag+/Ag0 system is +0.799 V, that
of the Ag [(NH3)2] +/Ag0 pair is +0.373 V and of AgCl/Ag0 is +0.222
V [29]. As a result, when using the same reductant and experimental
conditions the precipitation of silver becomes more difficult in this
order. Sometimes OH− ions can be the complexing species, case in
which an increase in pH affects simultaneously the redox potential of
both the reductant and metallic species. For example, the substitution
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of Cl− ions with OH− in the [AuCl4]− complex following the addition of
a NaOHdecreases the redox potential of the latter from+0.71 to+0.60
V [84]. When all these parameters (standard redox potential of Men+

ions, pH, and complexing agents) are considered when designing the
precipitation process, it is possible to significantly alter the reaction
redox potential of a given redox system and thus obtain particles with
a broad range of sizes.

3.1.2. Surfactants and dispersants
While the main role of these additives is to prevent the aggregation

of metallic particles or impart specific surface characteristics (aspects
discussed latter), they can also affect particle size. For example, in the
case of the reductions conducted in reverse micelles the amount of
metal incorporated in one particle is dictated by the size of themicelles,
which depends on the type of surfactant used [85–91]. The dispersant
plays an important role in the nucleation and growth of particles as
well [52, 92–94]. Typically, when the concentration of the dispersing
agent increases, the particle size tends to decrease and the uniformity
improves. The former effect is due to the generation of an increased
number of nuclei in a given volume. The second is simply a consequence
of the smaller size. It is noteworthy that certain reducing agents can
have a similar effect. When citrate molecules [95–97] or organic amines
[98, 99] are used in the synthesis of Au nanoparticles, they do not only
provide the electrons needed for the reduction but also favor the forma-
tion of very small metallic particles.

3.1.3. Seeding
An effective way to control the size of metallic particles is through

heterogeneous nucleation. In this case, small metallic particles are
either added in the system or generated “in situ” before the reduction
of the metal starts. Because of their catalytic properties, noble metals
(Pd, Pt) are frequently used as ‘seeding’ agents in the synthesis of more
electronegativemetals (Ni, Cu, Co, Fe, etc.) [100, 101]. Fig. 3 shows images
of dispersed isometric Ni particles formed in the polyol process in
the presence of different concentrations of tetrachloropaladate ions
([PdCl4]2−). The seeding element may be the metal that is deposited or
Fig. 3. Dispersed Ni particles of different diameter precipitated in boiling propylene glycol pro
b) 100 ppm Pd; c) 1000 ppm Pd, and d) 2500 ppm Pd.
a different one. When the seeds are different from the precipitated
metal, the epitaxial growth is possible only when the two elements
have similar lattice parameters. This scenario, called hetero-epitaxial
growth, is applicable to the Ni/Pd polyol process illustrated in Fig. 3 but
can be equally effective in aqueous systems [102–106].
3.2. Particle shape

The ability to control particle morphology has been left far behind
the capabilities achieved in controlling their size. This is particularly
frustrating as the properties of the final particles (optical, catalytic,
transport, packing characteristics, adhesion, etc.) depend to great extent
on their shape. To date, the shape selection mechanisms proposed
have dealt mostly with specific shapes and restrictive experimental
conditions. As a result, their applicability to other systems is limited.
In principle, the shape of precipitated particles can be determined at
any stage of their formation. During nucleation, the atoms comprising
the supersaturation are associating in increasing number until the
critical size of the dynamic embryos reaches the critical radius R⁎

(see proceeding section). If the generation of atoms in the dispersion
medium is very slow, the association of atoms may lead to anisotropic
nuclei due to the difference in the energy of different crystal facets
[47]. Once such entities are formed, they may continue to grow along
preferential directions during the supersaturation release stage yielding
larger anisotropic primary particles. In contrast, if the supersaturation
concentration is high and the nucleation rapid, the nuclei tend to be iso-
metric (i.e. spherical), as the ad-atoms do not have time to discriminate
between various crystal facets. As this situation is preserved during the
rapid “supersaturation release,” the resulting primary particles remain
essentially isometric. As the rate of atom generation in the liquid
phase is controlled by ΔE, themost obvious approach to control particle
shape is through a suitable selection of complexing agents and/or
reductants used. Indeed, precipitations involving very stablemetal com-
plexes and/or mild reducing agents (i.e. narrow ΔE) are more likely to
yield anisotropic entities.
cess in the presence of different amounts of Pd (added as [PdCl4]2− ions): a) 0 ppm Pd;

image of Fig.�3
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The surface energetics plays an important role in particle growth
and shape selection. Precious metals (Ag, Au, Pd, and Pt) have a
face centered cubic (fcc) crystal structure. For this type of crystal, the
surface energy of (111) facets is lower than for (100) and (110)
[107–109]. Wulff polyhedrons contain extended (111) facets and are
therefore often incorporated in the structure of noble metallic particles
[52, 110–112]. Since this type of crystal habitatmaximizes the expression
of (111) facets, systems inwhich such entities are present aremore prone
to anisotropic growth. Structural defects (twin or multi-twin platelets)
generated in specific system can have an important role as well in
shape control. It has been reported that nitric acid is a critical factor con-
tributing to the formation of Ag nanoplatelets during the reaction of silver
nitratewith ascorbic acid [47].Whennitric acid is present in high concen-
tration, it creates a strong oxidizing environment in which metal atoms
are re-oxidized (and thus removed) preferentially from high energy
facets. The combination of this effect and the deposition of the silver at
the lower energy facets lead topreferential growth along the (111)planes
[113, 114] and formation of platelets (Fig. 4).

One element that can contradict the shape predictions based on the
reduction rate and surface ‘energetics’ is the ‘template’ effect. In
this case, ions, surfactants, and dispersing agents direct preferentially
the atoms at particular locations [65, 66, 93, 115–121]. These species
are even more effective when paired with relatively weak reducing
agents that provide a slow growth. Polyols, for example, have been
used successfully to control particle morphology either by themselves
or in combination with such compounds [113, 122–125]. A relevant ex-
ample is the formation of silver wires during the reduction of AgNO3 in
ethylene glycol in the presence of polyvinylpyrrolidone (PVP) and
tetrabutylammoniumchloride (TBAC) (Fig. 5a). In some cases, however,
the growth directing agents are effective even in the cases of relatively
fast reduction rates. It was recently shown that naphthalene sulfonate
formaldehyde copolymers facilitate the formation of Ag wires in the
case of the rapid reduction of silver nitrate with ascorbic acid in acidic
solutions [121]. The decrease in the solubility of the dispersant due
to the protonation of the sulfonic groups leads to the formation of ex-
tended lamellar structures along which the silver wires grow rapidly
(Fig. 5b).

In some cases, a seed-mediated growth method can be combined
with the template effect [65, 66, 93, 116, 118, 128, 129]. A common
route in the preparation of Ag platelets is to first form metallic seeds
by reducing Ag ions with a strong reducing agent (i.e. NaBH4) followed
by a step involving a weaker reductant [93, 130]. In the second step the
selective adsorption of an ion or a capping agent can alter the growth
mechanism. It has been reported that halide ions play a significant
role in the morphology of final particles [131–133]. Mirkin et al. [131]
reported that I− ions preferentially adsorb on the (1 1 1) and (1 1 0)
facets of Aunanoparticles and act as growth-directingmoieties. By vary-
ing the concentration of I− alone, the morphology of the Au nanoparti-
cles can be changed from spheres, to rods, and to prisms in the presence
of cetyltrimethylammonium bromide (CTAB). Similarly, Br− ions can
Fig. 4. Silver (a) and silver/palladium platelets prepared by reducing the respective m
selectively adsorb onto (1 0 0) facets of Ag, Au, and Pt nanocrystals
with edge length less than 25 nm and promote the growth of
nanocubes, rectangular nanobars, and octagonal nanorods [113, 134].
Selective adsorption of surfactant (capping agents) on different crystal
facets can also promote anisotropic growth. Although the effect is
more pronounced for larger molecules, small ones (i.e. citrate [130])
can be effective as well. Polyvinylpyrrolidone (PVP) is one of the most
commonly used capping agents in controlling particle morphology.
The oxygen atoms in the PVP molecule have a strong interaction with
the (1 0 0) facet of Ag nanocrystals [115, 122, 135–138]. The growth
in this direction is thus inhibited while the (1 1 1) and (1 1 0) facets
remained favorable to the addition of Ag atoms. Ag nanocubes, nano-
wires, and nanorods have been synthesized following this approach.
As already mentioned, CTAB is also used as a capping agent and
promotes the formation of nanorods, nanofibers, and nanoplatelets
[93, 128, 139]. For the formation of silver nanoplates, it has been accept-
ed that the CTAB preferentially adsorbs on the (1 1 1) plane of the silver
seeds [93]. Besides the selective adsorptionmechanism, another growth
mechanism (template mechanism) has been proposed to explain the
formation of silver nanowire/nanotube in the presence of CTAB as a cap-
ping agent [128]. In this case a capping agent containing hydrophobic
and hydrophilic groups formsmicelle structures which act as templates
for growth. The morphology and size of the particles inside of the
micelle are determined by the type of micelles formed.

To further complicate the situation, particles of well-defined geo-
metric shapes can be formed by aggregation of smaller isometric enti-
ties. These particles appear at low magnification as regular crystals of
various shapes but when investigated by electron microscopy at higher
magnification they clearly show the presence of subunits. The polycrys-
talline nature can be further substantiated by XRD, the crystalline size
determined by the Scherrer's equation [140] being much smaller than
the actual particle size [141]. The copper particles shown in Fig. 6 are
the good illustration of this case. At low magnification, they look as
perfectly shaped crystals (Fig. 6a) but both SEM inspection at higher
magnification (Fig. 6b–d) and XRD analysis reveal that they consist in
fact of aggregates of smaller crystallites.

3.3. Internal particle structure

Depending on their formation mechanism, metallic particles can
have different internal crystalline structures. While in all cases the lat-
tice (spatial atoms arrangement) remains the same, the entire particle
can have either a highly crystalline structure (i.e. extended orderly ar-
rangement of atoms) or polycrystalline (consisting of many joined
small crystalline domains). As suggested by the general formation
scheme given in Fig. 2, highly crystalline particles formwhen the prima-
ry particles grow by a slow diffusion of ad-atoms to the surface. In con-
trast, polycrystalline particles form when small primary particles
(crystallites) aggregate rapidly. These drastically different formation
mechanisms imprint significant morphology and surface topography
etal nitrates with ascorbic acid in 10% wt.% HNO3 in the presence of Arabic gum.

image of Fig.�4


Fig. 5. Silver wires formed by: a) reduction of silver nitrate in ethylene glycol in the presence of PVP and TBAC[115, 126, 127] and b) reduction of silver nitrate with ascorbic acid in the
presence of Daxad 11G [121].
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variations that can be easily detected by electronmicroscopy. Indeed, as
illustrated in Fig. 7, the former display extended flat facets while the
small constituent crystallites in the latter make them appear as well-
shaped, smooth spheres. The crystalline structure can be accurately
assessed byXRD analysis using the Scherrer's equation,which estimates
the crystallite size (the smallest domain in the particle with a highly or-
dered crystal structure).

The internal structure ofmetallic particles plays amajor role inmany
applications. In electronics, for example, the densification (firing) of
packed deposit of particles leading to conductive lines/structures is
greatly influenced by crystallinity. Highly crystalline particles sinter
rather slowly (due to only inter-particle mass transport) and form
dense, continuous, and highly conductive structures. Polycrystalline
particles on the other hand, are less desirable in such cases as the
“intra-particle” sintering complicates the sintering/densification of the
metal, often leading to less continuous layers. They are, however, well
suited for other situations. For example, in the case of the formation of
the silver conductive grid on the front side of crystalline silicon solar
cells, highly polycrystalline spherical Ag particles perform better as
Fig. 6. Copper particles formed by reducing copper sulfate with ascorbic acid in diethyle
they sinter rapidly and completely in the short time the wafers are
kept at a relatively low temperature (780–830 °C). The ability to tailor
the size of metallic particles is essential for both types of particles.
While the strategies outlined in Section 3.1 are all relevant for the prep-
aration of crystalline particles, in the case of polycrystalline particles the
final size can also be controlled through the size andnumber of nanosize
primary crystallites incorporated. The former can be adjusted by tailor-
ing nucleation while the latter by controlling the experimental condi-
tions affecting the aggregation process (ionic strength, pH, amount
and nature of dispersant, etc.). Fig. 8 shows polycrystalline silver parti-
cles of different sizes obtained following the latter strategy.

3.4. Particle composition

Precipitation in homogeneous solutions can be used to prepare par-
ticles containingmore than onemetal. To do so, all componentsmust be
quantitatively reduced in a given set of experimental conditions. In the
simplest case of bi-metallic particles, two outcomes are possible. If the
E0 of the two metals is similar and their reduction is rapid (i.e. reactive
ne glycol at 170 °C in the presence of Daxad 11G as dispersant (unpublished data).
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Fig. 7.Dispersed silver particles with different internal structure: a) highly crystalline particles prepared by reducing slowly silver nitrate with ascorbic acid in a dilute nitric acid solution;
b) highly polycrystalline particles prepared by reducing rapidly an Ag polyamine complex with ascorbic acid at pH 10.0 [49].
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metallic species paired with strong reducing agents), particles with
an alloy structure can be obtained. If the E0 values are significantly
different, core-shell structures are typically formed as themore electro-
positive metal forms the core while the more electronegative one is
reduced slower and forms the shell [32]. Fig. 9 shows examples of
core-shell and alloy AgPd particles with the same size, shape, and com-
position (70 wt.% Ag, 30 wt.% Pd) obtained by changing the conditions
of the chemical precipitation.

Since the redox potential E0 of individual metallic species can be
altered by complexation or precipitation (Section 3.1.1.), it is possible
to reverse the order of reduction and, thus, the particle structure.
Core-shell structures can also be obtained by the “seeding” approach
in which both the core and the shell metals can be deposited in a
more controlled manner by sequential precipitation. Such particle
structures have great importance in electronics, catalysis, sensors,
medical applications, etc.

3.5. Particle uniformity

Particle uniformity affects most properties of colloidal metals. For
plasmonic elements it impacts the optical properties (critical in decora-
tive and sensing applications [142, 143]) as well as the release of drugs
adsorbed on their surface as a result of excitation with electromagnetic
Fig. 8. Polycrystalline Ag spherical particles obtained by reducing a silver amine complex
with ascorbic acid in a) 100% water (~1.0 μm), b) 95% water/5% DEG (~400 nm) and
c) 75%water/25%/DEG (~100 nm). In all cases the crystallite size estimated with the
Scherrer's equation is ~14 nm [49].
radiation [25, 144]. The stability of metal dispersions (inks and pastes)
is also affected by the uniformity of particles. Indeed, aggregation of
smaller particles and rapid settling of the larger ones are detrimental
to dispersion stability. In electronic applications particle uniformity is
also essential for obtaining densely packed green structures that yield
continuous, defect-free structures after sintering [145, 146]. Controlling
the uniformity of the particles means not only that the mechanisms
involved in particle formation are well understood but also that all crit-
ical stages of the precipitation process are tightly controlled. To prepare
uniform nanoparticles onemust ensure that a single nucleation burst oc-
curs and the formed nuclei and the growing particles remain dispersed
throughout the entire process. Fig. 10 shows images of highly uniform
dispersed gold and silver nanoparticles prepared following this strategy
[48, 146].

Obtaining uniform large metallic particles is more challenging.
Generally, as the particles reach sub-micrometer and micrometer
Fig. 9. XRD patterns and SEM images of: (a) core-shell AgPd particles (~130 nm) obtained
by adding hydrazine hydrate solution to a silver/palladium ammonia complex solution
containing Arabic gum; (b) alloy AgPd particles (~140 nm) prepared by adding ascorbic
acid to a solution containing silver nitrate, palladium nitrate, nitric acid, and Arabic gum.
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Fig. 10. a) Uniform gold nanoparticles (~20 nm) prepared by reducing gold chloride with
diethylaminodextrane [48]; b) uniform 12 nm silver particles prepared by reducing silver
salicylate in polyol in the presence of Daxad 11G as dispersant [147].
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dimensions they become less uniform. For large crystalline particles the
difficulty in preserving uniformity arises from the increased probability
of inter-particles collisions during extended reaction times. In the case
of polycrystalline particles, it depends on how uniformly the aggrega-
tion centers are generated in the reaction volume. Since this is affected
by concentration gradients of reactants and additives in the reaction
volume, the addition rate of reactants andmixing are important param-
eters in chemical precipitation processes.

3.6. Particle dispersion

An excellent dispersion of metallic particles is necessary in order to
display unique optical properties (in the case of nanoparticles) or for
Fig. 11. a, b) SEM image and size distribution of highly dispersed Cu crystalline particles (~1.8 μ
[157]; c, d) electron micrograph and size distribution of polycrystalline silver spheres (~1.2 μm
optimum performance in various other applications. The effect of parti-
cle dispersion on optical properties has been extensively studied and
demonstrated in numerous practical applications. An excellent disper-
sion is also essential in electronic applicationswhere long term stability
ofmetallic conductive inks and the ability to printfine lines consisting of
densely packed deposits of particles that formdefect-freemetallic struc-
tures are essential.

The aggregation of metallic particles leading to poor dispersion is a
major issue in chemical precipitation. This is particularly valid for non-
aqueous processes (where the electrostatic repulsive forces arising
from the charged double layer are weak) and in concentrated systems
(where the electrical double layer responsible for electrostatic repulsive
forces is greatly compressed). Certain dispersion media are more effec-
tive in screening the attractive forces than others. When metals are
prepared by reduction in polyols (ethylene glycol, 1,5-pentanediol,
diethylene glycol, etc.), for example, the particles remain dispersed at
higher metal concentrations than in water [52, 148]. The higher viscos-
ity of these compounds and the ability of theirmolecules to formhydro-
gen bonds at high temperature are likely the reasons for their superior
ability to prevent particle aggregation. Using metallic salts containing
anions that do not contribute to an increase in the ionic strength permit
the preparation of dispersedmetallic particles at even higher concentra-
tions. Using this approach, dispersions of non-aggregated Cu particles
with metal concentrations as high as 20 wt.% can be obtained by the
polyol processwhen using copper carbonate instead of sulfate, chloride,
or nitrate, while still maintaining an excellent dispersion and particle
uniformity (Fig. 11a,b). In aqueous systems, however, particle aggrega-
tion at high metal concentration can be avoided only by introducing in
the system surfactants/polymers that ensure dispersion stabilization
through either steric or electro-steric mechanisms [59, 85, 149–151].
Natural [152–154] and synthetic [117, 135, 136, 155] polymers have
been used successfully for this purpose. Fig. 11c,d shows images of
highly dispersed uniform polycrystalline silver particles prepared in
such conditions [84, 156, 157]. To be effective, these additives must be
optimized for each specific system in terms of both structure and
m) obtainedwithout dispersant by heating copper carbonate in propylene glycol at 180 °C
) obtained in water in the presence of Arabic gum as dispersant.
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quantity. Unfortunately, there are few scientifically rigorous criteria
allowing us to predict the effectiveness of a compound in a new exper-
imental setup. Most often, the complexity of the precipitation environ-
ment makes this task a frustrating, complicated, and lengthy ‘trial and
error’ type activity.

3.7. Surface properties

The surface of metallic particles affects the interactions with the
environment/medium in which they are placed. The solvent used in
the precipitation process is largely responsible for the characteristics
of the metallic surface. Water is by far the most frequently used liquid
medium for precipitating metals. It is readily available, inexpensive,
ecofriendly and easily dissolves most common metal salts. The litera-
ture dealingwith the preparation of metallic particles in aqueousmedi-
um is vast and the phenomena involved are quite well understood.
While most industrial processes are based on this approach, the hydro-
philic surface of the particles obtained is not well suited for some appli-
cations. Indeed, in many cases metallic particles with hydrophobic
surfaces are needed. One strategy to provide such surfaces is by intro-
ducing in the solvent surfactant molecules that attach with the polar
moiety to the metal. While attractive in principle, this approach rarely
succeeds in concentrated systems where the surfactants can cause
phase separation and/or emulsion formation. Amore practical approach
is to carry out the reduction in non-aqueous liquid media. One example
of such system is the polyol process discussed above. As the metallic
species are reduced, the polyol is oxidized to various by-products
(aldehydes, ketones) which can adsorb along with the polyalcohol
molecules on themetallic surface and decrease its hydrophilic character
[158]. The slightly hydrophobic surface not only provides a better wet-
ting in non-aqueousmedia but also increases the oxidation resistance of
electronegative metals by forming a barrier that prevents the oxygen to
reach the metal. This is the main reason why copper particles prepared
by the polyol method can be exposed for long time to ambient environ-
ment without oxidizing. More exotic solvents (tetrahydrofuran [159],
dimethylformamide [160], etc.) can be also used for preparingdispersed
metals but their applicability is limited by their toxicity, cost, and sensi-
tivity to external environment.

Another important aspect related to the surface of the particles re-
lates to their interaction with the external environment in applications
involving high temperatures. In these cases, the particles can either
react with various gasses that change their composition/properties or
be the subjects of mutual interactions that lead to sintering. In the first
case, reactive particles which oxidize easily when exposed to air can
be encapsulated into hermetic shells that seal the surface and prevent
the access of O2 to the metal. In the second case, the sintering tempera-
ture of the metal particles can be altered by depositing external shells
that either promote (low melting metals) or delay (refractory metal
oxides) the mass transport between particles. These strategies can be
implemented during the precipitation process (through careful selec-
tion of the solvent, reductant, dispersing agent, or inorganic additives)
or during subsequent steps in the separation and purification of the
particles.

4. Conclusions

The data presented illustrate the capabilities of chemical precipi-
tation process in tailoring the size, shape, composition, internal
structure, dispersion, and surface characteristics of metallic parti-
cles. The unmatched control of particle properties is achieved
through an appropriate selection of the solvents, metal precursors,
reducing agents, additives, and reaction conditions. As it can be car-
ried out in a very wide concentration range, the chemical precipita-
tion has become the most versatile approach for obtaining metallic
particles with well-tuned properties in both laboratory and industri-
al settings.
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