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Abstract 

The eigensystem realization algorithm (ERA) is one of the most popular methods in civil engineering applications for 
estimating the modal parameters, including complex-valued modal frequencies and modal vectors, of dynamic 
systems. In dealing with noisy measurement data, the ERA partitions the realized model into principal (signal) and 
perturbational (noise) portions so that the noise portion can be disregarded. During the separation of signal and noise, 
a critical issue is the determination for the dimensions of the block Hankel matrix which is built from noisy 
measurement data. We show that the signal and noise matrices can be better separated when the number of block-
rows and number of block-columns of the corresponding block Hankel matrix are chosen to be close to each other. 
We introduce the concept of using the Frobenius norm (L2-norm) of the signal and noise matrices to quantify the 
signal to noise ratio in the global sense (involving multiple signals). We also propose a verification procedure to 
justify that the estimated modal parameters are noise insensitive and thus indeed associated with the true system. The 
procedure involves artificially injecting random noise into the measured signals (which are noisy signals) to create 
noisy-noisy signals, then comparing the identification results obtained respectively from the measured and noisy-
noisy signals. Using experimental data collected from a test plate, we demonstrate that if signal and noise portions 
have been properly separated while using the measured data, then the artificial noise would almost completely 
accumulate to the noise portion. Therefore, the modal estimation based on the signal portion only would remain the 
same by using either the measured or the noisy-noisy signals. 
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1. INTRODUCTION 

Modal identification involves estimating the modal parameters, such as complex-valued modal 
frequencies and modal vectors, of a structural system from measured input-output data. Many different 
modal identification methods have been developed, analyzed and tested. In the early eighties when multi-
input multi-output (MIMO) testing became popular, the eigensystem realization algorithm (ERA) was 
developed to handle MIMO test data (Juang and Pappa 1985; Juang 1994). Today, the ERA method has 
become one of the most popular methods in civil engineering applications for experimental modal 
analysis.  

The ERA is a time-domain method based on the Markov parameters (i.e., pulse response). The 
knowledge of Markov parameters makes it possible to construct a block Hankel matrix as the basis for 
realization of a discrete-time state-space model. Developed based on the minimum realization theory, the 
ERA identifies modal parameters from noisy measurement data. In handling the noise, the ERA partitions 
the realized model into principal and perturbational (noise) portions so that the noise portion can be 
disregarded (Juang and Pappa 1986). Although the ERA is mathematically sound, a critical issue that has 
not been addressed adequately is the optimum determination for the dimensions of the block Hankel 
matrix (Juang 1994). An inappropriate choice for the dimensions might cause the ambiguity between the 
signal and noise portions, and lead to inaccurate estimation for the modal parameters.  

One objective of this paper is to provide insight on how to choose the dimensions of the block Hankel 
matrix such that the signal portion can be properly separated from the noise. Furthermore, a novel 
procedure is proposed to evaluate the robustness and accuracy of the modal parameters estimated from 
measurements with unknown degree of contamination. The numerical investigation will be based on 
experimental data collected from a test plate with 4 inputs and 32 outputs. 

2. THEORETICAL BACKGROUND 

A time-invariant system can be described by its state-space representation as: 

c cx = A x + B u
y = Cx

                                                                                                                                          (1) 

where ,n mx u , and ry  are the state, input, and output vectors, respectively; and n, m 
and r are the corresponding numbers of those vectors. The constant matrices , ,c cA B C  with appropriate 
dimensions represent the internal operation of the linear system. 

The discrete-time version of the state-space representation is expressed as: 

( 1) ( ) ( )
( ) ( )
k k k
k k

x = Ax + Bu
y = Cx

                                                                                                                     (2) 

where k is the time index, and constant matrices A and B are derivable from Ac and Bc. 
When the unit impulse excitation is taken for each input element, the results can be assembled into a 

pulse-response matrix m r
kY  as follows: 

1
1 2, , k

kY CB Y CAB Y CA B…,                                                                                               (3) 
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The constant matrices in the sequence are known as Markov parameters.  A system realization is the 
computation of a triplet [A,B,C] from the Markov parameters shown in Eq. 3, for which the discrete-time 
model, Eq. 2, is satisfied.  

Assume that the state matrix A of order n has a complete set of linearly independent eigenvectors 
( 1 2, , n, ) with corresponding eigenvalues ( 1 2, , n, ) which are not necessarily distinct. 
Define  as the diagonal matrix of eigenvalues and  as the matrix of eigenvectors. The realization 
[A,B,C] can then be transformed to the realization [ , 1B,C ]. The diagonal matrix  contains the 
information of modal damping rates and damped natural frequencies. The matrix 1B defines the initial 
modal amplitudes and the matrix C  the mode shapes at the sensor points. All the modal parameters of a 
dynamic system can thus be identified by the triplet [ , 1B,C ]. The desired modal damping rates and 
damped natural frequencies are simply the real and imaginary parts of the eigenvalues c, after 
transformation from the discrete-time domain to the continuous-time domain using the relation c = 
ln( )/ t. 

System realization begins by forming the generalized m r  Hankel matrix, composed of the 
Markov parameters from Eq. 3: 

1 1

1 2

1 1

( 1)

k k k

k k k

k k k

k

Y Y Y
Y Y Y

H

Y Y Y

                                                                                       (4) 

For simplicity, we use the block Hankel matrix given in Eq. 4 as the ERA block data matrix. The ERA 
process starts with the factorization of H(0), which is obtained by replacing k = 1 in Eq. 4, using singular 
value decomposition, 

(0) TH R S                                                                                                                                            (5) 

where the columns of matrices R and S are orthonormal and  is a rectangular matrix 

n 0
0 0

                                                                                                                                            (6) 

with n = diag[ 1 2, , , n ] and monotonically non-increasing i, i.e. 1 2 0n . 
Define 0i as a null matrix of order i, Ii as an identity matrix of order i, T

m [ , , , ]m m mE I 0 0  where 
m is the number of outputs, and T

r [ , , , ]r r rE I 0 0  where r is the number of inputs. The triplet 

1/ 2 1/ 2 1/ 2 T 1/ 2
m

ˆ ˆˆ(1) , ,T T
n n n n n n r n nA R H S B S E C E R                                                                (7) 

is a minimum realization, where Rn and Sn are the matrices formed by the first n columns of R and S, 
respectively. Here the quantities with ˆ mean estimated quantities to distinguish from the true quantities. 
The order of the matrix Â  is n which is the order of the system for sufficiently low-noise data. The 
realized discrete-time model represented by the matrices ˆ ˆˆ[ , , ]A B C  can be transformed to the 
continuous-time model. The system frequencies and dampings may then be computed from the 
eigenvalues of the estimated continuous-time state matrix.  
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3. MODEL ORDER DETERMINATION AND NOISE HANDLING 

If H(0) has been built from noise-free Markov parameters, then the rank of H(0) should be equal to n, 
as long as all system modes are active and m and r are greater than or equal to n. One common way of 
knowing the rank of a matrix is based on the singular value decomposition (SVD) of the matrix. When the 
singular values are arranged in the descending order, for theoretical data the singular values should go to 
zero when the rank of the matrix is exceeded. For measured data, however, due to random errors and 
small inconsistencies in the data, the singular values will not become zero but will become very small. 

In the traditional ERA method, a low rank approximation method has been employed to reduce the 
model order and to decompose H(0) into two parts: 

(0)H S N                                                                                                                                             (8) 

where S and N represent matrices associated with the signal and noise, respectively. While 
approximating H(0) to its “nearest” matrix S, an often used criterion is based on minimizing the 
Frobenius norm (L2-norm) of the difference between H(0) and S, denoted ||H(0)-S||2. 

While low rank approximation problem is to approximate a data matrix A with another matrix Â  that 
has a specific lower rank by minimizing || ˆA A ||2, the matrix Â  can be obtained via the truncation of 
the SVD of the data matrix A. This approach has often been referred to as based on the truncated singular 
value decomposition (TSVD) technique or Eckart-Young theorem. Although the optimal L2-norm lower 
rank approximation to H(0) can be obtained from the TSVD of H(0), but the resulting matrix S will not 
maintain the block-Hankel structure of H(0). 

For (0) m rH , the L2-norm of H(0) can be obtained as: 

2
2

1
(0)

p

i
i

H                                                                                                                                   (9) 

where p = min{ m, r} and i is the ith singular value of H(0). As S has been obtained from the TSVD 
of H(0) with truncated rank n and N is the remaining part, we thus have 

2
2

1

n

i
i

S      and     2
2

1

p

i
i n

N                                                                                          (10) 

Since S and N represent the signal (principal) and noise (perturbational) portions, a way to quantify the 
signal to noise ratio in the global sense (involves multiple measured signals) is ||S||2/||N||2. Geometrically, 
||S||2, ||N||2 and||H (0)||2 form a right triangle. 

As H(0) is - and -dependent, the optimum determination of  and  is still a critical issue which has 
not been addressed adequately. In the presence of significant noise at the measured signals, the success of 
applying ERA to obtain accurate estimate for modal parameters does not depend on enhancing the ratio 
||S||2/||N||2, but rely on properly separating S from N. To this end, a straightforward way is to create the 
H(0) that has a large gap between n and n+1. Given that -point signals are employed, we have various 
options for  and  to meet  = + -1. Clearly, the size of H(0) is the largest when  and  are chosen to 
be closest to each other. For example, if 99-point signals are available, we can choose ( , ) to be (50, 50) 
to have the largest H(0). In turn, this H(0) also has the highest p, the number of singular values. When the 
number of components associated with S is the model order n, then the number of components associated 
with N is p-n. For the sake of theoretical argument, we assume that all p-n noise components are 
corresponding to almost identical singular values, then the value of n+1 would become smaller when p is 
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getting larger. As a result, we expect a more dramatic drop between n and n+1 when a larger size of H(0) 
is taken, or  and  are chosen to be closest to each other. 

In this study, we also propose a “verification” procedure to verify the estimated true modal parameters, 
and to examine their accuracy. The procedure involves artificially injecting random noise into the 
measured signals (which are noisy signals to start with) to create noisy-noisy signals. We then compare 
the modal estimation from measured signals to that from noisy-noisy signals. If they agree well to each 
other, it indicates that the modal estimation has not been affected by the injected noise, let alone the 
measured noise. The hypothesis is as follows: If S and N are well separated, the artificial noise would be 
mainly added to the N, thus the modal estimation based on S would remain unchanged. In short, we 
expect that the artificial noise would be easily absorbed by N when a large size of H(0) is taken. 

4. EXPERIMENT STUDIES 

The experimental studies will be based on the data collected from a steel plate. Shown in Figure 1 is a 
sketch of the set-up for the test plate, of which the length, width and thickness are 1m, 0.8m, and 3.7mm, 
respectively; marked by solid circles are the locations of 32 accelerometers. With 4 input locations at the 
four corners of the plate, there are 128 measured acceleration signals available, recorded at sampling rate 
200 Hz. Although thousands of data points have been recorded for each acceleration signal, throughout 
this study only 100 sample points of each measured signal (see an example in Figure 2) are utilized in 
ERA for estimating system parameters. To simulate noisy-noisy signals for our proposed verification 
procedure, we inject randomly simulated Gaussian white noise to the measured data. The level of the 
additive noise is quantified by a stated percentage, which is defined as the ratio of the standard deviation 
of the white noise to that of the measured acceleration segment. Also shown in Figure 2 is a realization of 
a 20% noise signal. 

The singular values of Hankel matrices (based on  = 50 and  = 51) associated with the 100-point 
measured and noisy-noisy signals (see Figure 2) are shown in Figure 3, where each singular value has 
been normalized by the first (largest) singular value. From Figure 3, we observe that the artificially 
injected 20% noise has a noticeable influence to the singular values, starting at 9th singular value. 

Including all 128 measured acceleration signals, we use the first 99 points of each measured signal to 
build the associated block Hankel matrix H(0). Determining the number of modes that have to the 128 
measured acceleration signals is by estimating the rank of H(0). In theorem, the rank of H(0) should be 
twice the number of modes. 

Based on the first 99 points of each measured signal to form H(0), two cases with different  and  are 
investigated: (1)  = 50,  = 50, and (0)H 1600×200 and (2)  = 2,  = 98, and (0)H 64×392. The 
normalized singular values associated with both block Hankel matrices are plotted in Figure 4. While 
there is a sharp drop starting at the 20th singular value ( 20) at the curve for Case 1, no such a feature 
could be observed for Case 2. In other words, the model order can be determined to be 20 from Case 1 as 
the signal and noise portions are nicely separated, but it is not clear how to determine the model order 
from Case 2. However, both cases should have the same model order because they are based on the same 
measured data. 

To test the robustness of the modal identification based on our proposed verification procedure, we 
inject two levels of noise, 10% and 20% respectively, into the measured data to create the cor- responding 
noisy-noisy signals. The normalized singular values associated with the measured and noisy-noisy signals 
for Case 1 and Case 2 are plotted in Figure 5 and Figure 6, respectively. For Case 1 (see Figure 5), the 
added 10% or 20% noise almost contributes all to the region after 20, and has a negligible effect to the 
first 20 singular values, which represent the region associated with the true system. For Case 2 (see Figure 
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6), the influence of the added noise occurs mainly at the region after 20, but the added noise also 
noticeably affects the singular values prior to 20. 

              

Figure 1: Sketch of the set-up for the test plate.  Figure 2: An example of the measured and injected 20% noise signal. 

To quantify the signal and noise contribution to H(0), we use Eq. 10 based on n = 20 to compute ||S||2 
and ||N||2, respectively. The resulting norms of ||S||2 and ||N||2 associated with the measured and noisy-
noisy signals for Cases 1 and 2 are shown at Table 1. As expected, the signal to noise ratio (SNR), i.e. 
||S||2/||N||2, decreases when more artificial noise has been added. We should not make a direct SNR 
comparison between Case 1 and Case 2, because more noise terms have been included in Case 1 and 
more noise at Case 2 has been counted towards ||S||2. Precisely, the numbers of noise terms for Case 1 and 
Case 2 are 180 and 44, respectively. Listed at Table 2 are the changes of ||S||2/||N||2 between the measured 
and noisy-noisy signals. Much higher percentage of the added noise has been absorbed by ||S||2 in Case 1 
than Case 2. 

    

Figure 3: Singular values of the Hankel matrix from one signal; Figure 4: Singular values of the block Hankel matrices from 128 
signals 
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Figure 5: Singular values of the block Hankel matrices for Case 1;  Figure 6: Singular values of the block Hankel matrices for Case 
2 

Table 1: L2-norm of signal and noise matrices 

Signal 
 

||S||2 

Case 1

||N||2 

 

||S||2/||N||2

 

||S||2 

Case 2

||N||2 

 

||S||2/||N||2 

measured 2.8463 0.2413 11.7939 2.3935 0.1089 21.9807

10% added 2.8514 0.3660 7.7903 2.4061 0.2053 11.7227

20% added 2.8585 0.5992 4.7704 2.4258 0.3614 6.7115 

Table 2: The change of ||S||2 and ||N||2 norms between measured and noisy-noisy signals 

Signal  
||S||2 

Case 1
||N||2

 
||S||2/ ||N||2

 
||S||2

Case 2
||N||2

 
||S||2/ ||N||2 

10% 0.005 0.1247 24.94 0.0126 0.0964 7.651 

20% 0.0122 0.3579 29.399 0.0323 0.2525 7.817 

Tables 3 and 4 are the estimated modal frequencies and damping ratios, respectively, from the 
measured, 10%-noise added and 20%-noise added signals. For Case 1, the estimated frequencies and 
damping ratios, with or without injected noise are almost unchanged. This suggests that the modal 
estimation from Case 1 has been insensitive to the injected noise, thus most likely insensitive to the 
measured noise as well. We conclude that the modal identification in Case 1 is robust and accurate. 
Certainly, we cannot state the same to Case 2. 

5. CONCLUDING REMARKS 

A key requirement to the success of accurately estimating modal parameters from noisy measurements 
is a proper separation of the system information (signal) and noise from the measured data. Via the 
truncated singular value decomposition technique, the ERA decomposes the block Hankel matrix H(0) 
into two matrices: S for signal and N for noise. This paper demonstrated that we can best separate S and 
N from the corresponding H(0) when the number of block-rows and the number of block-columns are 
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chosen to be closest to each other. We also proposed a procedure to ensure that the estimated modal 
parameters are indeed associated with the true system.  

Table 3: Estimated frequencies: measured, 10%-noise and 20%-noise added signals  

Component 

r 

 

Measured 

Case 1 

10% noise

 

20% noise

 

Measured

Case 2 

10% noise

 

20% noise 

1 17.5098 17.5024 17.4941 17.5519 17.7563 18.3558 

2 19.5113 19.5147 19.5191 19.5495 19.9038 20.9414 

3 30.5248 30.5154 30.5046 30.6026 30.7629 31.2208 

4 36.8163 36.8153 36.8140 36.8223 36.8576 36.9662 

5 44.5120 44.5075 44.5028 44.5100 44.5218 44.5582 

6 55.6433 55.6471 55.6503 55.6448 55.5933 55.5084 

7 69.8036 69.8036 69.8035 69.8264 69.7330 69.4020 

8 71.2253 71.2182 71.2106 71.1966 71.0622 70.6707 

9 83.3762 83.3874 83.3982 83.2222 82.6586 85.5717 

10 95.4995 95.5037 95.5085 98.8435 98.9223 — 

Table 4: Estimated damping ratios: measured, 10%-noise and 20%-noise added signals 

Component 
r 

 
Measured 

Case 1 
10% noise

 
20% noise

 
Measured

Case 1 
10% noise

 
20% noise 

1 0.0036 0.0036 0.0038 0.0120 0.0434 0.1287 
2 0.0034 0.0033 0.0033 0.0107 0.0532 0.1764 
3 0.0038 0.0036 0.0035 0.0063 0.0165 0.0464 
4 0.0014 0.0016 0.0019 0.0021 0.0039 0.0093 
5 0.0027 0.0026 0.0025 0.0031 0.0037 0.0062 
6 0.0015 0.0015 0.0015 0.0017 0.0030 0.0069 
7 0.0030 0.0031 0.0031 0.0036 0.0065 0.0162 
8 0.0031 0.0030 0.0031 0.0034 0.0074 0.0187 
9 0.0029 0.0028 0.0027 0.0055 0.0346 0.1673 
10 0.0025 0.0026 0.0027 0.0086 0.0128 — 
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