the near future, and similar levels of efficacy and acquisition cost as key comparators in rare circumstances conducting an STA may not be cost-effective. It is possible that this can be predicted early in the STA process and we propose criteria to aid in this decision. When these criteria are met the possibility of “unreferencing” the topic is likely to be the most cost-effective option.

PRM231
THE 2013 REVISION TO NICE’S DISCOUNTING GUIDELINES: DIFFERENTIAL DISCOUNTING HAS GONE BUT UNJUSTIFIED SELECTIVE APPLICATION REMAINS
Paulden M1,2, D’Molony J1
1University of Alberta, Edmonton, AB, Canada; 2Trinity College Dublin, Dublin, Ireland
OBJECTIVES: To call attention to the problems resulting from the National Institute for Health and Care Excellence’s (NICE) recent revisions to their method for discounting, which recommends applying a lower discount rate than the reference case rate in selected cases. METHODS: NICE’s reference case discount rate for costs and benefits is 3.5%. In 2013 NICE updated their economic appraisal guidelines recommending differential discounting of costs and health effects at 3.5% and 1.5% respectively in selected cases. A recently published article in Value in Health criticised this amendment on a number of grounds, including ambiguity over what is “selected case” and what is “differential discounting”; the apparent inconsistencies that unjustified selective application give rise to; and, the size of the differential between the two discount rates. In April 2013 NICE published a comprehensive revision of their methods guidelines, in which equal discounting of costs and effects at 1.5% in selected cases is now recommended. RESULTS: While NICE’s new 2013 guidance no longer includes an unjustified differential between the discount rate on costs and health effects, it still recommends the application of lower discount rates in selected cases. The revised guidance still offers no rationale for such selective application of lower discount rates. This means that many of problems described in the recently published critique (and by 26 of 28 comment-still apply to the new 2013 guidance, including a particularly worrying potential for age discrimination. CONCLUSIONS: NICE’s selective application of lower discount rates in certain cases is not justified and leads to inconsistencies in the appraisal of different interventions. NICE is urged to again revise their discounting guidance, this time ensuring all interventions are treated equally and are subject to the same discount rates.

PRM232
A FLEXIBLE MULTI-STATE MODELLING FRAMEWORK FOR THE SIMULATION OF CANCER PROGRESSION AND CANCER CARE
van der Meule W1,2, van der Steur W1,2,1, van der Stuyf CA1,2,2, vougé YVM1,2,3
1VU University Medical Center, Amsterdam, The Netherlands, 2Institute for Medical Technology Assessment, Rotterdam, The Netherlands
Most cost-effectiveness models for evaluation of cancer care compare interventions within a single treatment line. However, to investigate the full impact of a new treatment, also downstream effects must be taken into account. Furthermore, most models are based on observed clinical states, whilst these observations depend on the timing of examinations and the choice of diagnostic test. To evaluate the potential of new treatments and diagnostics, the underlying disease process needs to be modeled including the interaction with diagnostics and treatment objectives. To build a flexible framework for a disease model, that simulates cancer progression to the end of life, taking into account economic outcomes, while taking diagnostics treatment pathways and surveillance schedules into account. METHODS: The modeling framework discerns two levels to describe disease progression, the level of the patient and the tumor. At the patient level, tumor progression is characterized by clinical states; “primary tumor only”, “local recurrence”, “distant metastasis, stable”, “distant metastasis, progressing” and “death”. The clinical states of the disease develop at the tumor level, when seven tumor growth states are defined: “absent tumor”, “dormant tumor”, “micro tumor”, “small macro tumor”, “medium macro tumor”, “large macro tumor”, “symptomatic tumor”. Melanoma progression was used as a case study. The model simulates, in parallel, 11 possible tumor sites, ranging from “local” to “regional” and “distant metastatic” locations. Sites were chosen because they are associated with different treatment and prognosis. The disease model is complemented with a treatment and surveillance module. In this module, treatment choices in each of the clinical states are specified. Treatment choice may depend on patient and tumor features, and subsequently influences rate of transitioning between tumor growth states. For surveillance, timing of surveillance visits, techniques used and their detection rate(s) are specified. CONCLUSIONS: The proposed framework provides a flexible and widely applicable cancer modeling design.

PRM233
HOLISTIC DATA GENERATION AND SYNTHESIS FOR HTA ASSESSMENT: BRINGING TOGETHER COMPARATIVE EFFECTIVENESS RESEARCH, PERSONALISED MEDICINE AND PATIENT-CENTRED OUTCOMES RESEARCH
Lamberti S1,2, Raitcliffe M1,3, Floyd D1
1FIMR Associates, London, UK
2Defining value and generating innovation in health care relies increasingly on real world evidence. There is an ongoing evolution in the data needs for health technology assessment (HTA). Three key elements of data generation are comparative effectiveness, personalised medicine and patient-centred outcomes. Integrating these themes to support synthesis via systematic review, network analysis and modeling is necessary to maximise value and drive innovation. Effectiveness is not just about reduced morbidity and mortality. It now covers quality of life, patient satisfaction, intermediate endpoints, and screening/diagnosis/monitoring. Additionally, there are opportunities away from economic impacts for improving comparative effectiveness versus other technologies or standards of care in the real world, focusing on the effect on health outcomes in defined patient populations based on ethnicity, comorbidities or age. Personalised medicine signals another shift of focus away from broad, homogenous populations to small, more-or-less defined patient subgroups. For example, in oncology, markers such as KRAS, HER-2/neu and BRCA 1/2, are the first used for personalized treatment. To reach the evolution, comparative effectiveness research programme designs and analytical methods must be able to detect important treatment effects and outcomes for specific patient subgroups. The emergence of patient-centered care adds further complexity to HTA data requirements. The systematic collection of patient-reported outcomes (PROs) and their application to medicine is far from standard in clinical practice, although many clinical trial programmes now include the collection of PROs. For products in early stage, data generation plans must reflect ongoing changes and evolving complexities. We will review the growing range of methods employed in clinical effectiveness research, and show how personalised medicine and patient outcome programmes can strengthen HTA data packages.

PRM234
AN ANALYSIS OF HOW NOT TO USE COST-EFFECTIVENESS ANALYSIS FOR PRICE-SETTING
Standaert B1,2, Ethgen O1,2, Emerson RA3, Postma M4
1GlasoSmithKline Vaccines, Wavre, Belgium, 2University of Liege, Liege, Belgium, 3Immunogen Consulting o/ a GlaSimSmithKline Vaccines, Wavre, Belgium, 4University of Groningen, Groningen, The Netherlands
OBJECTIVES: Cost-effectiveness Analysis (CEA) and the calculation of the Incremental Cost-Effectiveness Ratio (ICER) together with its threshold such as Gross Domestic Product (GDP)/capita, have long been used to assess the value for money of a new intervention compared with a comparator that this new intervention precisely seeks to displace. In this paper we show the paradoxical increase in cost-effective price using data from middle, low and very low income settings. METHODS: Using the introduction of rotavirus vaccination, compared with no-vaccination as the example. We create a theoretical framework for calculating the ICER by gradually decreasing the investment for treatment of rotavirus disease ("no-vaccination comparator") representing different countries with different GDP levels and decreasing levels of existing health care investment. We compare these results with an analysis of cost-effectiveness using real health care data from 9 countries within a range of discount rates. RESULTS: The theoretical framework works well in situations where the GDP/capita exceeds $10,000 – as expected the cost-effective price decreases with a decrease in the GDP/capita. Below this the scant investment in health care infrastructure thereby reduces potential cost-offsets, coupled with the significant increase in the potential effect gain, results in a much wider margin between a cost-neutral and cost-effective price that could effectively be set using this approach. CONCLUSIONS: Although CEA and the calculation of Cost-effectiveness Analysis is widely used to assess the value for money of a new intervention for a particular price, we would argue that where investment in health care is low and disease burden is high, the use of CEA leads to paradoxes in price-setting.

PRM235
RE-ENGINEERING OF THE DISTRIBUTION OF DRUGS IN THE HOSPITAL.
Alois Herreros 1
HOSPITAL GENERAL REINA SOFIA, MURCIA, Spain
OBJECTIVES: Presents a reengineering process of the distribution of drugs into the hospital, targeting the reduction of time, and looking for alternative solutions that may be more cost-effective. METHOD: The processes and subprocesses in the cycle from prescribing, distribution, and drug administration, are defined. RESULTS: The calculation of medication reduced costs is performed in selected cases. The health economic analysis is performed on the subprocesses. As technique for finding creative solutions (new cost-effective alternatives) apply the Theory of Constraints (TOC), and the TRIZ methodology. CONCLUSIONS: Since patient safety can distinguish four processes: prescribing, procurement, distribution, (about 10% each), and administration (about 40% of MD). In the administration, avoided ME before they reach the patient are minimal (only 2%). In the prescription/transcription there are 4 options: manual prescription, preprinted sheets, electronic prescription, and assisted prescription. In the distribution has 3 options: classical SD, filling carts using automated carousels, and automated dispensing systems (ADS). For administration there are other 3 options: manual record, electronic registration, and registration across the barcode. The most expensive option would be the introduction of ADS in all plants (1.4 million/ for a hospital of 280 beds). But these teams only reduces errors about 10% of all ME. Applying the TOC and TRIZ, investment in electronic prescribing, and administration with barcodes is the most cost-effective. Dose-day (sending medication for one day but not rated by patient) could be the most cost-effective. Dose-day can be annulled by the advantages of the assisted prescription, and administration with barcode. CONCLUSIONS: It is surprising to invest large sums in improving distribution processes (ADS) - where the fewest mistakes occurs - instead of prescribing and administration. The dose-day with barcode administration would be the most cost-effective theoretical-model.

PRM236
HOW CAN HEALTH ECONOMIC ASSESSMENT METHODS HELP DECISION MAKING IN PORTFOLIO DEVELOPMENT
Ako P, Popa C, Saka O, Mika A, Goel N1,2,3,4
1AstraZeneca, Macclesfield, UK, 2AstraZeneca, Sherington, UK, 3Osaka University, Osaka City, Japan, 4Centre for Health Economics, University of York, York, UK
OBJECTIVES: The R&D costs of a new drug approximate $1.3 billion and are increasing due partly to regulatory hurdles and development costs. There is a need for smarter investments, which consider the requirements of regulatory bodies, increasing regulatory and development costs and long time to market. In addition, there is a significant potential for reduced lifetime of new drugs. As new drugs reduce health care costs, the problem becomes more complex. We describe how health economic methods could support capital investment decisions in funding, valuing and bringing new pharmaceuticals to market. METHODS: A literature review was performed on both economic and capital investment methods. The different analyses were mapped to the commercial roadmap and R&D pipeline.