
Synchronisation in Trust Management

Using Push Authorisation

Thomas B. Quillinan and Simon N. Foley

Department of Computer Science,
University College, Cork, Ireland.

{t.quillinan, s.foley}@cs.ucc.ie

Abstract

Traditional trust management authorisation decisions for distributed technologies, are, in general,
based on the history of the authorisations/computation to date. We consider this a pull autho-
risation strategy: the authorisation decision reflects the current and/or past authorisations. In
this paper, we examine this pull strategy and propose an alternative form of authorisation in a
distributed environment. Instead of ‘pulling’ the information required for the current authorisation
decisions from the past, authorisation decisions are made to specify what will happen in the future.
This strategy is called push authorisation. When a push decision is made, its result is pushed to
just the relevant protection mechanisms. This approach allows the creation of distributed sepa-
ration of duties policies, without requiring additional synchronisation between components in the
execution. It allows present actions to inform future authorisation decisions, before those decisions
must be made.

Keywords: Naming, Trust Management, Distributed Systems.

1 Introduction

Distributed computing technologies, such as Grid and cluster computing, raise
unique problems when articulating security policies. With traditional closed
systems, computations are performed within domains, where attributes are a
priori known. Distributed applications are made up of computational com-
ponents that are executed on distributed resources. Traditional authorisa-
tion decisions, including trust management [2,5], are, in general, based on
the history of the authorisations/computation to date. We consider this pull
authorisation: the authorisation decision reflects the current and/or past au-
thorisations. For example, in a Chinese Wall policy [3], having previously

Electronic Notes in Theoretical Computer Science 157 (2006) 143–158

1571-0661 © 2006 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.09.035
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82588509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


accessed a particular organisation dataset, a consultant is not permitted ac-
cess the dataset of a competitor. Other examples of pull authorisation include
high water mark mechanisms [16], trace based authorisation [15], and dy-
namic separation of duties [10]. However, supporting pull authorisation in a
distributed environment can be difficult. It requires protection mechanisms to
‘pull’ authorisation state from a variety of sources to ensure a complete view
of the authorisation history across the distributed system. In the case of a
Chinese Wall policy, before deciding whether a consultant may access a Shell
dataset, the protection mechanism must pull past authorisation details from
network authorisation servers. For example, in [1], authorisation decisions and
are stored within self-describing workflows and are pulled from one task to the
next as required.

We challenge this conventional pull strategy and propose an alternative
perspective of authorisation in a distributed environment. Rather than cur-
rent authorisation decisions being ‘pulled’ from past authorisation history, au-
thorisation decisions prescribe what will happen in future authorisations. This
strategy is called push authorisation. Instead of authorisation state having to
be pulled from all authorisation sources, when a push authorisation decision
is made, its result is pushed to just the relevant protection mechanisms. As
will be demonstrated in this paper, this subtle difference in perspective con-
siderably simplifies the architectural support that is required to coordinate
the distributed authorisation state.

In this paper we propose a distributed computational model than supports
pull and push authorisation and demonstrate the effectiveness of the push
strategy. We extend the naming architecture described in [11] and show how
it can be used to provide support for both of these authorisation strategies

This paper is organised as follows. Our research uses the Condensed
Graphs [8] model of distributed Computation and this is outlined in Section 2.
Section 3 describes a naming system that extends the scheme in [11] to sup-
port push authorisation. Section 4 describes pull authorisation within this
model. In Section 5, we introduce push authorisation and provide examples
demonstrating it use.

2 Condensed Graphs

Previous work has examined the use of trust management in providing a se-
curity architecture within the WebCom metacomputing environment [6]. We-
bCom supports heterogeneous applications, using components based on tech-
nologies such as Grid and Web Services. In general, applications are made up
of distinct functional nodes. Each node takes input, operates on it and returns

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158144



a result. In order that compute resources can make decisions regarding these
functional nodes, security checks are required based on the input data; the
function of the node; the result and the overall purpose of the application.
In addition the user launching these applications must be confidant in the
compute resources being utilised by the computation.

In the WebCom System, applications are coded as hierarchical condensed
graphs [8] which provide a simple notation in which lazy, eager and imperative
computation can be naturally expressed. There are two types of distributable
operation: nodes that represent atomic operations and condensed nodes that
represent subtasks and are encapsulated as subgraphs. Atomic operations
are value-transforming actions and can be defined at any level of granularity,
ranging from low-level machine instructions to mobile-code programs such as
applets, middleware components (such as .NET, Globus).

Example 2.1 The Condensed graph shown in Figure 1 defines a simple Web
Services application. This application is defined as a workflow of atomic ac-
tions. The application operates as a simple travel agent, using web services

E Purchase
Ticket

Reserve
Hotel
Room

Rental
Car

Print

Details X

Fig. 1. A simple Travel Agent Web Services application, specified as a Condensed Graph.

from different sites. Users of the application are directed to fill in the details
required to purchase an airline ticket. Once this purchase is completed, the
relevant details are sent to hotel reservation and car rental sites. The user can
then fill in any extra details. Finally all the details are collated and printed
out for the user. The graph specifies the sequencing constraints of the appli-
cation components. Nodes perform actions, and data travels along the arcs
between the nodes. Nodes can be thought of as the meeting place for the
execution triple: the inputs to the node, the operator and the destination.
Nodes execute when this triple is complete. Figure 2 shows the graph from
Figure 1 in the process of firing. As nodes fire and results are returned, more
nodes become fireable.

Any node in this graph could itself be a Condensed Graph. Furthermore
this graph, called TravelAgent, could itself be part of another Condensed
Graph. Recursive graphs are also possible, for example, the TravelAgent graph
could include an instance of itself.

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158 145



Reserve
Hotel
Room

Rental
Car

Print

Details X

Flight Details

Flight Details

Flight Details

Print

Details X
Flight Details

Hotel
Reservation

Details

Car Rental
Details

(a) Graph after a plane ticket (b) Graph after the plane, car and

has been reserved. hotel reservations.

Fig. 2. Firing sequence of the Web Services Application Graph.

As the application graph executes, nodes become “fireable” (the execution
triple is complete). When this occurs, the node is scheduled for execution
to some execution context. When a node executes, its result is returned and
integrated into the graph, making more nodes fireable. Thus as the execu-
tion progresses, the graph is modified to represent the current state of the
application.

2.1 Authorisation in Condensed Graphs

WebCom [9] is a distributed architecture for executing, and for coordinating
the execution of, Condensed Graphs. WebCom Masters use trust management
credentials [2,13] to determine the operations that the client is authorised to
execute; WebCom master credentials are used by clients to determine if the
master had the authorisation to schedule the computation that the client is
about execute.

In the original Secure WebCom [6], authorisation decisions were made
based only on the condensed node function, such as CarRental. The policies
that can be defined are limited by the amount of information available to
the security infrastructure, in effect the trust decisions that can be made
are coarse grained. In [11], we extend the WebCom authorisation scheme to
include additional information about the other attributes of a component. In
this paper we build on this extended WebCom authorisation model to support
richer authorisation policies in order to explore the notions of pull and push
authorisation.

3 Naming

Authorisation in Secure WebCom requires the ability to precisely refer to the
components of concern in relevant ways. For example, one may wish to be
able to distinguish between a CarRental node that executes using credit card

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158146



details rather than PayPal. We argue that this problem can be reduced to a
naming problem. Naming distributed components [7,12] is typically static; for
example, names used in Web Services [4]. Naming in WebCom is dynamic in
order to reflect the dynamically evolving nature of the nodes in a condensed
graph.

3.1 Naming Computations

Dynamically generating a name in a computation requires capturing the at-
tributes of the computation at a specific moment. We can use these names to
make trust decisions regarding the ongoing computation. To properly name
a component in a computation, we must first identify the computational con-
text that identify that component. A computation is comprised of a collection
of execution contexts, each one corresponding to the nodes in the executing
condensed graph.

Definition 3.1 An Execution Context, expressed as S-Expression [14], is a
5-tuple:

• Domain: the name of execution domain to which this component is currently
executing, or is scheduled to execute.

• Application: the name of the condensed graph in which this component ap-
pears.

• Function: the name of the operational function of this component.

• Inputs: the names of the inputs to this node.

• Outputs: the names of the destination nodes for output.

An execution context is used to represent a computation in various states of
completion. As a consequence, some of its attributes may be null, reflecting,
for example, currently unavailable input values, destinations, and so forth. A
name may, in turn, also refer to further execution contexts. Avoiding circular
definitions is achieved through reduction rules considered in Section 3.3.

3.2 Naming Condensed Graphs

SDSI-like local naming is used to name the attributes of an execution context.
Principals in SDSI [13] define their objects according to their local view of the
system. Local naming provides the ability to use names from other principals
namespaces. Applying this principle to Condensed Graphs, we can define, for
example, the input to a node as “Node’s Input”, from the perspective of the
graph. Expanding this name further we get “Graph’s Node’s Input”. Using
this approach, we name every portion of the graph in as much detail as is

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158 147



required to uniquely identify it. For example, from Alice’s perspective, the
name of the CarRental node from Figure 1 executing on her computer can be
specified as shown in Figure 3.

((Computer’s TravelAgent),
(Computer),
(Computer’s TravelAgent’s CarRental),
(Computer’s TravelAgent’s CarRental’s Input),
(Computer’s TravelAgent’s CarRental’s Output))

Fig. 3. The Name of the CarRental node from Alice’s perspective

From Bob’s perspective, the name must refer to Alice, in whose namespace
these name-components exist. Local naming provides the ability to store the
required detail to uniquely identify each portion of the nodes in as much detail
as is necessary. These names are primarily used within WebCom [11] and thus
each computational context is also given as a WebCom name.

Figure 4 defines the syntax of a WebCom name. All parts of the name are
optional, a name can be represented by a combination of any of these fields
or by a simple S-Expression. There can be one or more input and/or output
fields when the inputs and/or outputs fields, respectively, are present.

<webcomname> ::=
(WebComName
[(domain <webcomname>)] [(graph <webcomname>)]
[(function <webcomname>)]
[(inputs (input <webcomname>) {(input <webcomname>)} )]
[(outputs (output <webcomname>) {(output <webcomname>)} )]

)
<webcomname> ::=
(WebComName S-Expression)

Fig. 4. The format of a generic WebCom Name.

Example 3.2 Figure 5 gives a WebCom name for the node CarRental from
the Condensed Graph in Figure 1. Alternatively, a representation of this

(WebComName
(domain (ref: RentalCompany (ref: Location)))
(graph (ref: Company (ref: Office (ref: Alice TravelAgent))))
(function (ref: RentalCompany (ref: Location

(ref: TravelAgent CarRental))))
(inputs (input (ref: Airline (ref: Flight (ref: Destination

(ref: TravelAgent TicketPurchase))))))
(outputs (output (ref: Company (ref: Office (ref: Alice

(ref: TravelAgent PrintDetails)))))) )

Fig. 5. An S-Expression version of the name for the CarRental node.

node could include less information, such as the simple S-Expression:

(WebComName (ref: RentalCompany CarRental))

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158148



representing a node that Alice refers to as “Rental Company’s CarRental”. In
Bob’s namespace, this is “Alice’s RentalCompany’s CarRental”.

While these names provide the contextual detail required to enable autho-
risation policies to be articulated before computation takes place, it is clear
that the size of these names will cause them to become unusable in compu-
tations of a non-trivial nature. A system is required to provide a canonical
form for these names, yet still containing enough detail to allow informed
authorisation decisions to be made.

3.3 Reduction Rules

The contextual detail provided by WebCom names comes at the cost of pos-
sible redundant information stored in the name. This cost can be reduced
through the use of reduction rules. A reduction rule is a heuristic by which
an abstract name can be translated into a more compact, yet equivalent form.
Having a unique reference to an node is not always ideal. Creating security
policies may require generic node references. For example, it is not always
appropriate to make security decisions based on the path that an execution
has taken to this point. This would require knowledge of all valid paths that
the computation would be allowed to take. Reduction rules can be used to
create more generic names for use within policies.

In [11], we examined some basic reduction rules. These rules considered
tuple elimination rules only, for example removing Domains or Inputs from
the name to make them more usable. However, such rules are very limited.
We need more sophisticated reduction rules that consider the contextual state
of the execution. These rules must retain details important to the security
policy of the system, while eliminating irrelevant details. They must create a
canonical form that can be used to write and enforce authorisation policies.

3.3.1 Tuple Reduction

Reducing the components of a name is an application specific process, as, for
example, the type of the inputs and results to nodes are potentially unique to
an application. Each application defines the specific rules for that application.
For example, a rule for the graph shown in Figure 1 could specify that the
flight details returned by the TicketPurchase node is reduced to contain the
airline name, destination and travel date, as these may be important for the
security policy. This reduction makes no change to the results returned by a
node, just how they are represented to the security infrastructure. We will
examine these rules in more detail in Sections 4 and 5, in the context of specific
examples.

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158 149



3.3.2 Tuple Elimination

The simplest form of reduction rule is a tuple elimination rule. With these
rules, component tuples, for example the domain tuple, of the name are re-
moved. We represent reduction rules with a simple logic axiom, reducesTo(X,Y).
This means that where the pattern Y is found, it is replaced with X. Figure 6
defines the five basic tuple elimination rules. Each axiom replaces a compo-
nent tuple with a null s-expression (∅). These rules can be used individually,
or in combination.

reducesTo(name(∅,g,f,i,o), name(d,g,f,i,o)).
reducesTo(name(d,∅,f,i,o), name(d,g,f,i,o)).
reducesTo(name(d,g,∅,i,o), name(d,g,f,i,o)).
reducesTo(name(d,g,f,∅,o), name(d,g,f,i,o)).
reducesTo(name(d,g,f,i,∅), name(d,g,f,i,o)).

Fig. 6. Reduction rules used to remove component tuples

4 Pull Authorisation

Traditional authorisation decisions are made based on the context in which
components have been executed in the past. With this “pull authorisation”
strategy, the authorisation state needed to make decisions must be pulled
from all the distributed mechanisms that are involved in the computation. In
the case of trust management, this means that all credentials issued must be
pulled to accurately determine the authorisation history of a user.

Definition 4.1 Pull Reduction: A node n has a name (execution context)

[D, G, F, [i1, i2, . . . , in], O]

whose attributes provide the names of execution contexts for domain (D),
application graph (G), function (F ), inputs (i1, . . . , in) and outputs (O), re-
spectively. The pull reduction of the name of node n is

E [D, G, F,R[i1, i2, . . . , in], O]

where E [. . .] and R[. . .] represent the application of tuple elimination and ap-
plication reduction rules, respectively

To perform a ‘pull’ authorisation, we take the inputs to a node and examine
their execution contexts. This takes the form of a sequence of reduction rules.
First, the input tuple is examined and its context is acquired. Figure 7 shows
a representation of such a rule in the form of a logic axiom. This axiom

reducesTo(name(d,g,f,name(d’,g’,f’,i’,o’),o), name(d,g,f,i,o)).

Fig. 7. Input Expansion Rule

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158150



defines that an execution context is expanded to contain the context(s) of the
input(s). Next the relevant details from the input tuple are extracted and are
integrated into the name of the current context. This is the R reduction rule.
For example, if there existed an ordering where the graph of the input were
greater than the graph of the current context, the graph of the input’s context
would replace that of the current graph. Example rules to achieve this are
shown in Figure 8.

In this case the order(g’,g) axiom states that there exists an ordering
g’ ≥ g, such that the graph g’ takes precedence over g. Therefore the current
context is modified to contain the input’s graph name.

reducesTo(name(d,g’,f,i,o),name(d,g,f, name(d’,g’,f’,i’,o’),o).
order(g’,g).

Fig. 8. Domain ordering rules

Tuple elimination rules, such as those discussed in Section 3.3.2, are then
applied to reduce the name to the form required by the authorisation mech-
anism. These act as the E reduction rules. An authorisation decision can
then be performed based on the node name. This mechanism allows the en-
forcement of history-based, or pull, authorisations within, for example, a trust
management system. The node names form the attributes used when mak-
ing a trust decision and credentials holding these names are delegated to the
principals involved in the computation.

The pull authorisation strategy works well in the case of a straight order-
ing of, in this case, domains. However, consider the case where we have a
mutually exclusive ordering such as with a separation of duties policy. With
a Condensed Graph application, it is possible that multiple nodes execute in
parallel, and the results from these parallel executions are integrated in the
future. If we use a pull strategy to enforce a separation of concerns policy,
we can encounter deadlock, where the computation can never finish due to a
policy conflict. We could address this concern with a policy that dictates all
computations must execute in one domain, however this will force the com-
putation to be assigned a priori to a specific domain. This approach limits
the flexibility of the computation, Instead we introduce the concept of ‘push’
authorisation to address this issue.

Example 4.2 In a high watermark policy component names rise to reflect
the classification of the data written to it. In the case of a Condensed Graph
application, this is cast as a policy where a node may only execute on a resource
of equal or higher classification. The classification of a node will depend on
the path the execution has taken to this point. In a distributed computation
such a policy may be expressed as: “once a computation is executed on a

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158 151



resource running at a certain security level, resources that are of a lower
security level should never be used in the future execution of the computation”.
Traditionally, such policies required a centralised method to store state. An
infrastructure is used to maintain the contexts that the computation has used
to that point.

We use node names to store security state in a decentralised manner during
application execution. The details required to make authorisation decisions
are pulled from the nodes that have executed. The reduction policies applied
to the names must encode the highest security clearance of the resources that
the execution has used to this point. In the case of a distributed computation,
the resources that are used to execute components in the future depends on
the resources used to date.

Figure 9 shows a Condensed Graph that describes how an airline imple-
ments a flight reservation application. This graph can be considered as an im-
plementation of the TicketPurchase node from Figure 1. The airline’s policy

E

Input
Passenger

Details

Input
Payment
Details

Confirm
Reservation XFlight

Choose
Account

Select

Guest /
User

Financial

Customer
Services

Fig. 9. Reserving a Flight specified as a Condensed Graph.

includes a basic ordering of domains, Financial ≥ CustomerService ≥ Guest.
For example, if a node executes on a resource that is classified Financial, no
subsequent node should execute on resources classified CustomerService or
lower.

If this graph executes on the Airline’s network, and in the domains shown,
the security policy should require, that the ConfirmReservation node should
only be executed in the Finance domain. This can be achieved using reduction
rules that maintain the high watermark within a node’s name.

We use the high watermark reduction rule shown in Figure 10. This op-
erates in a twofold manner. First, the ordered pair, order(d’,d), indicates
that d’ ≥ d. This means that wherever d is present, d’ replaces it. Second,
the input context is examined and if the input’s domain tuple matches the
ordering, it replaces the domain in the current context.

In the names shown in Figure 11, prior to the application of the reduc-
tion rules, the node ConfirmFlight is considered to be permitted to execute
on a resource classified CustomerService. However, as one of the previously

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158152



reducesTo(name(d’,g,f,i,o), name(d,g,f,i,o)) :-
order(d’,d), name(d,g,f,name(d’,g’,f’,i’,o’),o).

Fig. 10. High watermark reduction rule.

(WebComName
(domain CustomerService)
(graph TicketPurchase)
(function ConfirmFlight)
(inputs (input (WebComName (domain CustomerService)

(function InputPassengerDetails)))
(input (WebComName (domain Finance)

(function InputPaymentDetails))))
(outputs (output X)) )

(a) Before Reduction

(WebComName (domain Finance) (function ConfirmFlight))

(b) After Reduction

reducesTo(name(d,∅,f,∅,∅), name(d,g,f,i,o)).

(c) The Tuple Elimination Reduction Rule

Fig. 11. The name of the ConfirmFlight node, (a) before and (b) after reduction, and (c) the
reduction rule used.

executed nodes, InputPaymentDetails, was executed on a resource of classifi-
cation Finance, the Reduction rule modifies the name of the node and specifies
that it must execute on a resource of at least Finance.

This enforces a high water mark authorisation policy, once any node in the
computation reaches a higher security level, all subsequent nodes must execute
on resources with at least that security level. We could also make decisions
based on the type of customer using the service. If a known customer, whose
details are retained by the airline, logs into the site, the name of the node could
be set to reflect this. When the payment details are required, that node would
be directed to specific resources that hold saved customer financial details.

5 Push Authorisation

Authorisation decisions often have consequences that alter the possible future
authorisation decisions that may occur. For example, in a Chinese Wall policy
[3], once a computation executes on a particular company’s resource, it should
never be allowed execute on resources belonging to a competitor. One solution
to this issue is to select a priori where the computation will execute. However,
this limits the flexibility of the system to adapt to changes at runtime.

Traditionally, when such problems are addressed dynamically, they use
synchronisation between the components. However, such synchronisation is

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158 153



often undesirable and requires extra infrastructural support. Ideally, we want
to be able to identify potential conflicts and address them within the authori-
sation policy. Instead of pulling the information required to make a decision
from the source, we instead push this information from the source to the points
where it will be needed. We refer to these as ‘push’ authorisation policies.

We can use push authorisation to force a computation to execute in the
future on specific resources based on the authorisations that the computation
has received in the past and on the potential conflicts that must be avoided
in the future. This allows, for example, the enforcement of dynamic separa-
tion of duty policies, without an external synchronisation infrastructure. The
details required to identify potential conflicts are stored in the computational
context of the nodes. Push authorisation policies are then written in terms
of trust management credentials and are enforced using the existing security
architecture. No additional architecture is required to support these policies,
the only change is in how the names of the node are created.

Push reduction can be defined in a similar way to pull reduction. The
subtle difference between them exists in the part of the execution context
that is expanded, inputs for pull reduction, and outputs for push reduction.

Definition 5.1 Push Reduction: A node n has a name (execution context)

[D, G, F, I, [o1, o2, . . . , on
]]

whose attributes provide the names of execution contexts for domain (D),
application graph (G), function (F ), inputs (I) and outputs (o1, . . . , on

) , re-
spectively. The push reduction of the name of node n is

E [D, G, F, I,R[o1, o2, . . . , on
]]

where E [. . .] and R[. . .] represent the application of tuple elimination and ap-
plication reduction rules, respectively

To make a ‘push’ authorisation decision about an execution context, first
we expand the execution context to examine the destination contexts that will
be used. Next application specific tuple reduction rules, R are used to extract
the relevant details. Tuple elimination rules, E are then used, if required.
Finally the reduced name is used with the authorisation mechanism.

Example 5.2 The rental company’s separation of duties policy states that:
“Sales and Finance Data should not be processed on the same resource”.
Once the node EnterPaymentDetails, from Figure 12, has been scheduled
to a computational context, the name of SelectCarModel node must be up-
dated so that when it is to be scheduled, it is sent to a non conflicting do-
main. This ensures that when the results from both of these nodes reaches
the ConfirmReservation node, it can be executed in accordance with the

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158154



Enter
Customer

Details

Select
Car Model

Enter
Payment

Details

XE
Reservation

Confirm

Fig. 12. Reserving a Car specified as a Condensed Graph.

separation of duties policy.

Updating the ConfirmReservation node could be achieved with pull au-
thorisation; however updating the SelectCarModel node would require com-
munication between nodes that are able to execute at the same time to ensure
synchronisation. Instead, when the EnterCustomerDetails node’s result is to
be integrated into the computation, the details of the computational contexts
that it will be sent to is pushed to the SelectCarModel node.

Figure 13 shows a representation of the node’s name before a push authori-
sation decision has taken place. In particular, the node’s domain has not been
specified at this point. When the EnterPaymentDetails node is scheduled

(WebComName (graph CarRental) (function SelectCarModel)
(inputs (input(WebComName (domain CustomerService)

(function EnterCustomerDetails)))
(outputs (output (WebComName (function ConfirmReservation)))) )

Fig. 13. Name of the SelectCarModel node before the Push Authorisation decision.

to execute, the authorisation policy ensures it is sent to the Finance domain.
Thus, all subsequent nodes must adhere to the separation of duties policies.
Once this requirement is apparent, the name of the SelectCarModel node is
modified to contain a specific domain, Finance. This push action ensures that
no policy conflicts will occur.

reducesTo(
name(d,g,f,i,(name(d*,g’,f’,i’,o’),name(d*,g*,f*,i*,o*))),
name(d,g,f,i,(name(d’,g’,f’,i’,o’),name(d*,g*,f*,i*,o*)))).

Fig. 14. Push reduction rule, for a node with two destination domains, d’ and d*.

This push action is implemented in the form of a reduction rule. Figure 14
shows such a rule where a node’s result may be sent to conflicting domains
d’ and d*. The reducesTo axiom defines that where the result of this node
could execute in domains d’and d*, then they should both be forced to be
executed in domain d*. These rules are applied to the names of the nodes
that will execute in the future and the authorisation mechanism ensures that
they are scheduled to the correct domains. Figure 15 shows the node name

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158 155



after the push.

(WebComName
(domain Finance) (graph CarRental) (function SelectCarModel)
(inputs (input (WebComName (domain CustomerService)

(function EnterCustomerDetails))))
(outputs (output (WebComName (function ConfirmReservation)))) )

Fig. 15. Name of the SelectModel node after the authorisation decision.

Push authorisation allows a more dynamic control over ongoing computa-
tions and provides support for pushing computations to specific resources using
the security policy. This allows the implementation of distributed separation
of duty policies, without requiring ongoing synchronisation or communication
between atomic nodes. Changing the names of the nodes requires no changes
to the existing pull-based security architecture. The same security policies
are used to provide authorisation. The only change is in how the relevant
information is provided to the protection mechanism. This subtle change is
powerful. Traditionally, synchronisation between parallel processes requires
additional hooks into the application.

With this push mechanism, we can provide the communication within the
existing framework. However, providing a push authorisation model limits
the possible contexts that a computation may execute in the future. The
fact that decisions are pushed before execution means that some potential
future information cannot be used when making a decision. We argue that
the advantages that simplification of the architecture bring, outweigh this
potential downside.

Push authorisations can be modelled within the pull architecture, however
this requires a centralised synchronisation mechanism. When a pull reduction
takes place, the node names on parallel paths must be synchronised. Such
a centralised mechanism would have to exist outside of the existing trust
architecture.

6 Implementation

Integrating the naming architecture into the WebCom architecture is achieved
through the creation of a security manager module to support it. This security
manager takes a node, extracts it’s WebCom name and reduces it according
to the reduction rules of the particular application. This name forms part of
the query to a trust management system, along with the system policy and
the appropriate client’s credentials. If the trust management system finds a
trusted path from the system policy to the client’s key, it notifies the security
manager. The security manager in turn notifies the scheduler that a suitable

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158156



client has been found. When a result is returned from a client, before it
is integrated into the execution, a security check is performed to ensure the
system policy has been upheld.

7 Discussion and Conclusion

Traditional authorisation policies use a history based mechanism to determine
if current actions are authorised. With this pull authorisation strategy, the
information required to make an authorisation decision is pulled from source.
However, supporting pull authorisation in a distributed environment can be
difficult. It requires protection mechanisms to ‘pull’ authorisation state from
a variety of sources to ensure a complete view of the authorisation history
across the distributed system.

In this paper we propose an alternative approach. Rather than pulling au-
thorisation decisions from past history, authorisation decisions prescribe what
will happen in future authorisations. We call this strategy push authorisation.
Instead of pulling authorisation state from all authorisation sources, when a
push authorisation decision is made, its result is pushed to just the relevant
protection mechanisms.

This subtle difference in perspective considerably simplifies the architec-
tural support that is required to coordinate the distributed authorisation state.
Using the naming architecture developed for Condensed Graphs, we can en-
force both pull and push authorisation mechanisms. Providing support for the
push strategy allows development of authorisation policies without requiring
communication between separate paths in the future. Using the naming ar-
chitecture of the Condensed Graphs environment, we can support this push
strategy. As only the names of the components change, no modification of the
authorisation system is required.

Acknowledgements

This work was supported by the Boole Centre for Research in Informatics,
University College Cork under the HEA-PRTLI scheme and by the Enterprise
Ireland Commercialisation grant Scheme.

References

[1] Atluri, V., S. Chun and P. Mazzoleni, A chinese wall security model for decentralized workflow
systems, in: Proceedings of the 8th ACM conference on Computer and Communications
Security, 2001, pp. 48–57.

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158 157



[2] Blaze, M. et al., The keynote trust-management system version 2 (1999), internet Request For
Comments 2704.

[3] Brewer, D. and M. Nash, The Chinese Wall security policy, in: Proceedings of the 1989 IEEE
Symposium on Security and Privacy, 1989, pp. 206–214.

[4] Distributed
Management Task Force, http://www.dmtf.org/standards/cim/cim schema v291 prelim,
“Common Information Model (CIM) Version 2.9.1 Specification,” (2005).

[5] Ellison, C. et al., SPKI certificate theory (1999), internet Request for Comments: 2693.

[6] Foley, S., T. Quillinan and J. Morrison, Secure component distribution using webcom, in: Proc.
17th IFIP Int. Conf. on Information Security, Cairo, 2002.

[7] Force, I. E. T., Public key infrastructure (x.509) [PKIX],
http://www.ietf.org/html.charters/pkix-charter.html .

[8] Morrison, J., “Condensed Graphs: Unifying Availability-Driven, Coercion-Driven and Control-
Driven Computing,” Ph.D. thesis, Eindhoven (1996).

[9] Morrison, J. et al., WebCom-G: Grid enabled metacomputing, Neural, Scientific and Parallel
Computations Journal. (2004).

[10] Nash, M. and K. Poland, Some conundrums concerning separation of duty, in: Proceedings of
the Symposium on Security and Privacy, 1990, pp. 201–207.

[11] Quillinan, T. B. and S. N. Foley, Security in WebCom: Addressing naming issues for a web
services architecture., in: Proceedings of the 2004 ACM Workshop on Secure Web Services
(SWS)., ACM, Washington D.C., USA., 2004.

[12] Radia, S., Naming policies in the spring system, in: Proceedings of the 1st International
Workshop on Services in Distributed and Networked Environments., Sun Microsystems, Inc.
(1994).

[13] Rivest, R. and B. Lampson, SDSI - a simple distributed security infrastructure, in: DIMACS
Workshop on Trust Management in Networks, 1996.

[14] Rivest, R. L., S-expressions, Technical report, Network Working Group (1997), internet Draft:
http://theory.lcs.mit.edu/∼rivest/sexp.txt.

[15] Sobel, A. and J. Alves-Foss., A trace-based model of the chinese wall security policy, in:
Proceedings of the 22nd National Information Systems Security Conference, Arlington, Va.,
USA, 1999.

[16] Weissman, C., Security controls in the ADEPT-50 time-sharing system, in: AFIPS Conference
Proceedings (1969), pp. 119–133.

T.B. Quillinan, S.N. Foley / Electronic Notes in Theoretical Computer Science 157 (2006) 143–158158

http://www.dmtf.org/standards/cim/cim_schema_v291_prelim
http://www.ietf.org/html.charters/pkix-charter.html
http://theory.lcs.mit.edu/~rivest/sexp.txt

	Introduction
	Condensed Graphs
	Authorisation in Condensed Graphs

	Naming
	Naming Computations
	Naming Condensed Graphs
	Reduction Rules

	Pull Authorisation
	Push Authorisation
	Implementation
	Discussion and Conclusion
	References

