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Abstract

In this paper, a variant of SQP method for solving inequality constrained optimization is presented. This method uses a modified
QP subproblem to generate a descent direction as each iteration and can overcome the possible difficulties that the QP subproblem of
the standard SQP method is inconsistency. Furthermore, the method can start with an infeasible initial point. Under mild conditions,
we prove that the algorithm either terminates as KKT point within finite steps or generates an infinite sequence whose accumulation
point is a KKT point or satisfies certain first-order necessary condition. Finally, preliminary numerical results are reported.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider the nonlinear inequality constrained optimization problem

min f (x)

s.t. ci(x)�0, i ∈ I , (1)

where I = {1, . . . , m}, f : Rn → R and ci : Rn → R, i ∈ I , are continuously differentiable functions.
The method of sequence quadratic programming (SQP) is an important method for solving problem (1). At each

iteration, the standard SQP method generates a decent direction by solving the following quadratic programming
subproblem

min ∇f (xk)
Td + 1

2dTBkd

s.t. ci(xk) + ∇ci(xk)
Td �0, i ∈ I . (2)

where Bk is Hessian of Lagrangian function associated with (1). With an appropriate merit function, line search
procedure, Hessian approximation procedure, and (if necessary) Maratos avoidance scheme, the SQP iteration is
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well-known to be globally and locally superlinearly convergent [8]. But the SQP method may fail if the linear constraints
in quadratic programming subproblems (2) is inconsistency.

Many efforts have been made to overcome the difficulties associated with the inconsistency of quadratic programming
subproblem (2). For example, Powell [10] suggested to solving a modified subproblem at each iterate:

min ∇f (xk)
Td + 1

2dTBkd + 1
2�k(1 − �)2

s.t. �ici(xk) + ∇ci(xk)
Td �0, i ∈ I .

where

�i =
{

1, ci(xk) < 0

�, ci(xk)�0
and 0���1, �k > 0

is a penalty parameter. The computational investigation provided by Schittkowski [12,13] showed that this modification
worked very well. However, this approach may not be the best one for it cannot cope with a simple example presented
by Burke and Han [4] and Burke [3].

Another approach was proposed by Burke and Han [4] and Burke [3]. Their methods can converge to a point
which meets a certain first-order necessary optimality condition even when problem (1) is infeasible. Liu and Yuan [9]
presented a method of the same convergent property with Burke and Han’s. Their method solves two subproblems, one
is an unconstrained piecewise quadratic subproblem, the other is a quadratic subproblem. In [17], Zhou presented a
modified SQP method. Their method solves two subproblem, one is a linear programming with bound constraint, the
other is a quadratic subproblem.

Recently, Zhang and Zhang [16] proposed a robust SQP method for solving problem (1). Similar to Zhou’s method,
at each iteration, their method solves a linear programming and a quadratic programming subproblem and is imple-
mentable. Under certain conditions, their method is globally convergence and locally superlinearly convergence.

In this paper, we describe another implementable method that can cope with the infeasibility of QP subproblem.
Specifically, given xk ∈ Rn, a symmetric positive definite matrix Bk , we solve a QP subproblem QP(xk; Bk) with the
following form:

mind,z z + 1
2dTBkd

s.t. ∇f (xk)
Td �z,

ci(xk) + ∇ci(xk)
Td �z, i ∈ I . (3)

Note that QP(xk, Bk) is always feasible for d = 0 and z = maxi∈I {ci(xk); 0} satisfy the constraints of (3). Let (dk, zk)

be the solution of Q(xk, Bk). If dk �= 0, then dk is a decent direction of merit function. Under mild conditions, our
algorithm is global convergent.

The QP subproblem which is similar to QP(xk, Bk) has recently been used in the constrained optimization by Birge
et al. [2], Lawrence and Tits [8], Chen and Kostreva [5] and Kostreva [7]. They introduced the right-hand side constraint
perturbation in (3) subproblem and used it to obtain a feasible direction. But, in this paper, our goal is to compute a
descent direction even if the constraints in (2) is inconsistent.

The paper is organized as follows. Our algorithm is presented in Section 2. In Section 3, the global convergence results
of the algorithm are proved. Some preliminary numerical results are reported in Section 4. Finally, the conclusions are
given in Section 5.

2. The algorithm

In this section we define our SQP method for inequality constrained optimization. In our approach, the algorithm
can start at any point x ∈ Rn.

In order to obtain the global convergence, we employ the penalty function associated with (1) as a merit function,
i.e.,

��(x) = f (x) + ��(x),



272 J. Mo et al. / Journal of Computational and Applied Mathematics 197 (2006) 270–281

where � > 0 is the penalty parameter and

�(x) = max
i∈I

{ci(x), 0}. (4)

The directional derivatives of �(x) in any direction d ∈ Rn is

�′(x; d) = max
i∈I0(x)

{∇ci(x)Td},

where I0(x) = {i ∈ I : ci(x) = �(x)}.
In general, �′(x; d) is not continuous. In [1], Bazaraa used the following continuous approximation of �′(x; d):

�∗(x; d) = max
i∈I0(x)

{ci(x) + ∇ci(x)Td, 0} − �(x).

Then the approximation directional derivatives of ��(x) is

��(x; d) = ∇f (x)Td + ��∗(x; d).

Unlike Zhou’s [17] and Zhang and Zhang’s [16] method, our algorithm solves only one quadratic programming
subproblem QP(xk, Bk) at each iteration. Let (dk, zk) be the solution of (3). If dk = 0, we have zk = 0 and xk is a KKT
point of (1) (see Lemma 2 below). If dk �= 0, dk is a descent direction of �(xk, �k+1) for sufficiently large �k+1.

The object of updating the penalty parameter �k is to force dk to be a descent direction of merit function ��k+1(x) at
xk . Thus, at the kth iteration we let �k unchanged if dk is a descent direction; Otherwise, �k is increased in the following
way:

�k+1 = max

{
∇f (xk)

Tdk + dT
k Bkdk

−�∗(xk, dk)
, 2�k

}
, (5)

Now we can state our algorithm as follows.

Algorithm 1 (A SQP algorithm for inequality constrained optimization). Step 0: Given initial point x0 ∈ Rn, a
symmetric positive definite matrix B0 ∈ Rn×n, some scalars � ∈ (0, 1), � ∈ (0, 1/2) and initial penalty parameter
�0 > 0. Set k := 0.

Step 1: Compute (dk, zk) by solving subproblem (3). If dk = 0 then stop;
Step 2: If ��k

(xk, dk)� − dT
k Bkdk , let �k+1 = �k; Otherwise, �k+1 is updated by (5).

Step 3: Compute tk the first number t in the sequence {1, �, �2, . . .} satisfying

��k+1(xk + tdk) − ��k+1(xk)� t���k+1(xk; dk).

Set xk+1 = xk + tkdk;
Step 4: Generate Bk+1. Set k := k + 1 and go back to Step 1.

3. Global convergence

In this section we establish the global convergence of Algorithm 1. We make a few assumptions that will be in force
throughout.

Assumption 1. The sequences {xk} and {(dk, zk)} are uniformly bounded.

Assumption 2. The functions f, ci , i ∈ I are twice continuously differentiable.

Assumption 3. For all x ∈ Rn , the set of vectors {∇ci(x) : i ∈ I0(x)} is linearly independent, where I0(x) = {i :
ci(x) = �(x)}.
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Assumption 4. There exists constants 0 < M1 �M2 such that

M1‖d‖2 �dTBkd �M2‖d‖2, ∀d ∈ Rn and k = 1, 2, . . . .

First, we give some definition of stationary points as follows.

Definition 1. A point x ∈ Rn is called

(1) a strong stationary point of (1) if x is feasible and there exists scalars 	i , i ∈ I , satisfying

∇f (x) +
m∑

i=1

	i∇ci(x) = 0,

	ici(x) = 0, 	i �0, i ∈ I ,

(2) a weak stationary point of (1) if x is feasible and there exists an infeasible sequence xk converging to x such that

lim
k→∞

maxd∈D(xk) maxi∈I {ci(xk) + ∇ci(xk)
Td; 0}

�(xk)
= 1, (6)

where D(xk) = {d : ∇f (xk)
Td �0}.

It should be noted that there are some difference between our definition and that of Yuan [15], Liu and Yuan [9],
Zhang and Zhang [16]. A strong stationary point defined above is precisely a Krush–Kuhn–Tucker (KKT) point of (1).
As for weak stationary point, we can prove the following lemma.

Lemma 1. If x ∈ Rn is a weak stationary point, then there exists 	0 ∈ R and 	 ∈ Rm such that

	0∇f (x) +
m∑

i=1

	i∇ci(x) = 0, (7)

	i �0, i ∈ I , (8)

holds.

Proof. Suppose that d(x) minimizes the constrained problem P(x):

min
d∈Rn

1
2 dTBd − max

i∈I
{ci(x) + ∇ci(x)Td; 0}

s.t. ∇f (x)Td �0.

at the iteration point x, where B is any positive definite matrix. Then, the first-order optimality condition at x gives that

Bd − ∇c(x)�(x) + 
(x)∇f (x) = 0, (9)


(x)∇f (x)Td(x) = 0, 
(x)�0, (10)

�(x) ∈ �u(x). (11)

where u(x) = maxi∈I {ci(x) + ∇ci(x)Td; 0} and ∇c(x) = (∇c1(x), . . . , ∇cm(x)). It follows from (11) that �i (x)�0
for all i ∈ I .

Now suppose that x is a weak stationary point, {xk}k∈K is a subsequence converging to x. Suppose that d(xk) is a
solution of problem P(xk), then (9)–(11) holds at xk and

max
d∈D(xk)

max
i∈I

{ci(xk) + ∇ci(xk)
Td(xk); 0} − �(xk)� 1

2 d(xk)
TBd(xk)�0,
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where D(xk) = {d : ∇f (xk)
Td �0}. This, together with (6), implies that

lim
k∈K,k→∞

d(xk)
TBd(xk)

�(xk)
= 0.

Thus,

lim
k∈K,k→∞ ‖d(xk)‖ = 0.

Since {(�(xk), 
(xk))} is bounded, there is a cluster (�∗, 
∗) of {(�(xk), 
(xk))}k∈K such that �∗
i �0 for i ∈ I and 
∗ �0.

Taking limit for k → ∞ and k ∈ K in (9), we have

∇c(x)�∗ − 
∗∇f (x) = 0.

We see that (7) and (8) hold with 	0 = −
∗ and 	i = �∗
i for i ∈ I . This completes our proof. �

Next we prove some important properties of subproblem (3).

Lemma 2. Suppose that x ∈ Rn, B is positive definite matrix and (d, z) is the solution of QP(x, B).

(1) The following inequality holds:

z��(x) − 1
2 dTBd. (12)

(2) If d = 0, then z = 0 and x is a strong stationary point of problem (1).

Proof. (1) Since d̂ =0 and ẑ=maxi∈I {ci(x); 0} is a feasible point of QP(x, B), from the optimality of (d, z), we have

z + 1
2 dTBd� ẑ = max

i∈I
{ci(x), 0),

which, together with (4), implies that (12) holds.
(2) Since (d, z) is the solution of QP(x, B), there exists 
 ∈ R and � ∈ Rm such that


∇f (x) +
m∑

i=1

�i∇ci(x) = 0, (13)

1 − 
 −
m∑

i=1

�i = 0, (14)


z = 0, 
�0, (15)

�i[ci(x) − z] = 0, �i �0, i ∈ I , (16)

0�z, ci(x)�z, i ∈ I . (17)

By the definition of �(x) and (17), �(x)�z. Then, from (12) and d = 0, �(x) = z. From (16), it follows that

�i = 0, ∀i /∈ I0(x) = {i ∈ I : ci(x) = �(x)}.
Hence, it follows from Assumption 3, (13) and (14) that


 > 0.

This, together with (15), implies that z = 0. Then, from (16) and (17),

�ici(x) = 0, �i �0, i ∈ I ,

ci(x)�0, i ∈ I .
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Therefore, by (13), x is a strong stationary point of problem (1) with 	j = �i/
, i ∈ I .

The next two lemmas establish that the line search in Step 3 of Algorithm 1 is well defined.

Lemma 3 (Xue Guoliang [14]). (1) For any x, d ∈ Rn, we have

�∗(x; d)��′(x; d)

and there exist � > 0 such that

�∗(x; td) = �′(x; td) ∀t ∈ [0, �];

(2) For any x ∈ Rn, �∗(x; .) is a convex function on Rn.

Lemma 4. Suppose that dk �= 0. Then the line search in Step 3 of Algorithm 1 is well defined, i.e., Step 3 yields a step
tk = �j for some finite j = j (k).

Proof. It follows from Step 2 of Algorithm 1 and Assumption 4 that

��k+1(xk; dk)� − dT
k Bkdk � − M1‖dk‖2 < 0. (18)

Now we prove that the line search in Step 3 of Algorithm 1 is well defined. If it is not true, the following inequality

��k+1(xk + �j dk) − ��k+1(xk)

�j
> ���k+1(xk; dk)

holds for some k and j = 1, 2, . . . . Taking limit for j → ∞, we have

∇f (xk)
Tdk + �k+1�

′(xk; dk)����k+1(xk; dk).

Then it follows from Lemma 3(1) and the definition of ��k+1(xk; dk) that

(1 − �)��k+1(xk; dk)�0,

which contradicts (18) for � ∈ (0, 1
2 ). This completes our proof. �

The previous lemmas imply that Algorithm 1 is well defined. In fact, if Algorithm 1 generates a finite sequence
x1, . . . , xt , then by Lemma 2, xt is a strong stationary. Now we suppose that the algorithm never satisfies the termination
condition, i.e., the algorithm generates a infinite sequence {xk}.

Lemma 5. Let (dk, zk) be the solution of problem Q(xk; Bk). If

xk → x̂ and Bk → B̂ as k → ∞,

then {(dk, zk)} converges to (d̂, ẑ), where (d̂, ẑ) is the unique solution of problem Q(x̂; B̂).

Proof. Let {(dk, zk)}k∈K be any subsequence converging to (d0, z0). Since (dk, zk) is the solution of problem Q(xk, Bk),
from the first-order optimization condition, there exist 
k ∈ R1 and �k ∈ Rm such that

Bkdk + 
k∇f (xk) +
m∑

i=1

(�k)i∇ci(xk) = 0, (19)

1 − 
k −
m∑

i=1

(�k)i = 0, (20)


k[∇f (xk)
Tdk − zk] = 0, 
k �0, (21)
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(�k)i[ci(xk) + ∇ci(xk)
Tdk − zk] = 0, (�k)i �0, i ∈ I , (22)

∇f (xk)
Tdk �zk, ci(xk) + ∇ci(xk)

Tdk �zk, i ∈ I . (23)

Note that (20) implies that {
k} and {�k} are bound. Without loss of generality, we may assume that


k → 
0 �0, �k → �0 �0 as k → ∞ and k ∈ K

In (19)–(23), taking limit for k → ∞ and k ∈ K , we have

B̂d0 + 
0∇f (x̂) +
m∑

i=1

(�0)i∇ci(x̂) = 0,

1 − 
0 −
m∑

i=1

(�0)i = 0,


0[∇f (x̂)Td0 − z0] = 0, 
0 �0,

(�0)i[ci(x̂) + ∇ci(x̂)Td0 − z0] = 0, (�0)i �0, i ∈ I ,

∇f (x̂)Td0 �z0, ci(x̂) + ∇ci(x̂)Td0 �z0, i ∈ I ,

which implies that (d0, z0) is a KKT point of Q(x̂, B̂). From Assumption 4, B̂ is positive definite matrix. Then it
follows from Lemma 2 that (d0, z0) = (d̂, ẑ).

Lemma 6. Let dk be solution of QP(xk, Bk). If K is an infinite index set such that {dk}k∈K converges to zero, then all
accumulation points of {xk}k∈K are strong stationary point of (1).

Proof. By Assumption 1, there is an infinite index set K ′ ⊆ K such that {xk}k∈K ′ converges to x̂.
Let (dk, zk) be the solution of QP(xk, Bk). From Assumptions 1 and 4, without loss of generality, we assume that

Bk → B̂, dk → d̂, zk → ẑ, as k → ∞ and k ∈ K ′.

where B̂ is positive definite matrix. It follows from Lemma 5 that (d̂, ẑ) is a solution of QP(x̂, B̂). But, by the hypothesis
of the lemma, d̂ = 0. This, together with Lemma 2, implies that x̂ is a strong stationary point of (1).

Lemma 7. If �k → ∞, then

lim
k→∞ �(xk) = 0.

Proof. It follows from Lemma 4.2 of [15] that limk→∞ �(xk) exists, if �k → ∞. By the definition of �(x), we have
limk→∞ �(xk)�0.

Suppose limk→∞ �(xk) > 0. Then there exists a constant c1 > 0 such that for k large enough

�(xk) > c1. (24)

We consider two cases separately.
Case 1: There exists a positive constant c2 > 0 such that, for k large enough,

‖dk‖ > c2. (25)

By the definition of �∗ and I0(xk) ⊆ I ,

�∗(xk; dk)� max
i∈I

{ci(xk) + ∇ci(xk)
Tdk, 0} − �(xk)

� max
{
− 1

2dT
k Bkdk, −�(xk)

}
.
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The last inequality follows from (12). Hence, from Assumption 4, (24) and (25), the following inequality holds for k
large enough,

�∗(xk; dk)� − c3,

where c3 =min{ 1
2M1c

2
2, c1} > 0. The above inequality, �k → ∞, (12), Assumptions 1, 2 and 4 imply that the following

inequality

��k
(xk, dk) + dT

k Bkdk �zk + dT
k Bkdk + �k�

∗(xk; dk)

��(xk) + 1
2 dT

k Bkdk − c3�k < 0

holds for k large enough. From Step 2 of Algorithm 1, we have

�k+1 = �k

for k large enough, which contradicts the fact �k → ∞.
Case 2: Case 1 does not hold. Thus there exists an infinite index set K such that {dk}k∈K converges to zero. Since K

is an infinite index set, by Assumption 1, {xk}k∈K has at least one accumulation point. Let K ′ ⊆ K such that {xk}k∈K ′
converges to x̂. By Lemma 6, x̂ is a strong stationary point of (1). Hence, �(x̂) = 0, which implies that

�(xk) < c1

holds for k ∈ K ′ large enough. This contradicts (24).
Therefore, the lemma is proved. �

Lemma 8. Suppose that �k = � > 0 for all k large enough, {xk} is an infinite sequence and {xk}k∈K is a convergent
subsequence. Then dk → 0 as k → ∞ and k ∈ K .

Proof. Without loss of generality, assume that �k = � for all k. We proceed by contradiction. Suppose that there is an
infinite subset K ′ ⊂ K and a positive constant �0 such that

‖dk‖��0, k ∈ K ′. (26)

It follows from the definition of �∗(x; d) that, for any t ∈ (0, 1],
�∗(xk, tdk) − �(xk)� t (�∗(xk, dk) − �(xk)).

By Assumption 4, we have

��k+1(xk + tdk) − ��k+1(xk) − t���k+1(xk; dk)

� t (1 − �)��k+1(xk; dk) + t2�1‖dk‖2, (27)

where �1 > 0 is a constant. From Step 2 of Algorithm 1 and (26), there exists a �1 > 0 such that

��k+1(xk; dk)� − �1 < 0 for k ∈ K ′.

This, together with (27), implies that, for all k ∈ K ′, there exists a t0 ∈ (0, 1) such that

��k+1(xk + tdk) − ��k+1(xk)� t���k+1(xk; dk) for t ∈ [0, t0],
By Step 3 of Algorithm 1, we have tk � t0 for all k ∈ K ′. Thus,

��k+1(xk + tkdk) − ��k+1(xk)� − t0��1 < 0 for k ∈ K ′.

This implies that

��k+1(xk + tkdk) → −∞ as k → ∞ and k ∈ K ′,

which contradicts the assumption that {xk} is bounded. Hence, there is not K ′ and �0 satisfying (26) and the lemma
is proved. �
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We now state and prove the main result of this section.

Theorem 1. Let {xk} be an infinite sequence generated by Algorithm 1. Then any accumulation point of {xk} is either
a strong stationary point or a weak stationary point of (1).

Proof. Suppose K is an infinite index set such that xk → x̂ as k → ∞ and k ∈ K . Let (dk, zk) be the solution of
QP(xk, Bk). If there exists an infinite index set K ′ ⊂ K such that

dk → 0 as k → ∞ and k ∈ K ′,

then it follows from Lemma 6 that x̂ is a strong stationary point of (1).
Now suppose that there exists a constant c0 such that

‖dk‖�c0 (28)

for k ∈ K and k large enough. In the view of Lemma 8, it follows that

�k → ∞ as k → ∞.

We will show that x̂ is a weak stationary point. Proceeding by contradiction, suppose that there exists a constant �1 > 0
such that for k large enough,

max
d∈D(xk)

max
i∈I

{ci(xk) + ∇ci(xk)
Td; 0}��(xk) − �1, (29)

where D(xk) = {d : ∇f (xk)
Td �0}.

Suppose that d̂k belongs to D(xk) such that

max
i∈I

{ci(xk) + ∇ci(xk)
Td̂k; 0} = max

d∈D(xk)
max
i∈I

{ci(xk) + ∇ci(xk)
Td; 0}. (30)

Since �k → ∞, it follows from (12), Assumption 4, (28) and Lemma 7 that for k large enough,

zk � − �2,

where �2 > 0 is a constant. Thus, from the first constraint of (3), we have

∇f (xk)
Tdk �0,

i.e., dk ∈ D(xk) for k large enough. Hence, from (30), we have

max
i∈I

{ci(xk) + ∇ci(xk)
Tdk; 0}� max

i∈I
{ci(xk) + ∇ci(xk)

Td̂k; 0}.

Then Assumption 1, Lemma 7 and �k → ∞ imply that inequality

��k
(xk, dk) + dT

k Bkdk �zk + dT
k Bkdk + �k

(
max
i∈I

{ci(xk) + ∇ci(xk)
Tdk; 0} − �(xk)

)

��(xk) + 1
2 dT

k Bkdk

+ �k

(
max
i∈I

{ci(xk) + ∇ci(xk)
Td̂k; 0} − �(xk)

)
��(xk) + 1

2 dT
k Bkdk − ��k < 0,
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holds for k large enough, which contradicts the parameter updating procedure in Algorithm 1. Hence, it follows that x̂

is weak stationary point of (1).

4. Numerical results

To show the behavior of Algorithm 1, numerical tests are performed on some small size problems previously used
in related literatures.

A Matlab subroutine is programmed and used to solve the problems.The standard internal function QP in Optimization
Toolbox is used to solve subproblem (3) in our algorithm.

The first problem was considered in [11,9] to illustrate the fact that the algorithm in [11] terminated at an approximate
Kuhn–Tucker point which was not the approximate minimum point. The second one is from Zhou [17].

Example 1 (Sahba [11], Liu and Yuan [9], Zhang and Zhang [16]).

min f (x) = x1x2

s.t. c(x)�0,

where c(x) ∈ R5 and c1(x) = sin x1, c2(x) = − cos x1, c3(x) = x2
1 + x2

2 − �/2, c4(x) = −x1 − �, c5(x) = −x2 − �/2.

On this problem, staring at the point (0, 5)T,Algorithm 1 terminates after 14 iterations at the point (−0.8862, 0.8862)T

which is the approximate minimum point. A full step of one is taken at each iteration. This result is similar to that of
Liu and Yuan [9] and Zhang and Zhang [16]. But the algorithm in [11] terminated at the point (0, −1.25331)T which
is an approximate Kuhn–Tucker point and not the approximate minimum point.

Table 1
Numerical results of Algorithm 1

Prob n, m x0 �(x0) Ni Nf f (xk) ‖dk‖ �(xk)

hs003 2, 1 (10, 1) 0 36 37 2.11973459e − 010 5.29e − 007 0
(8, −2) 2 36 37 1.43306083e − 010 6.18e − 007 0

hs012 2, 1 (0, 0) 0 15 16 −2.99999960e + 001 3.96e − 007 0
(8, −6) 267 12 14 −3.00000032e + 001 4.46e − 007 1.93e − 005

hs031 3, 7 (1, 1, 1) 0 82 83 6.00004323e + 000 9.59e − 007 0
(1.5, 0.5, 3) 2 117 118 6.00004520e + 000 9.83e − 007 0

hs034 3, 5 (0, 1.05, 2.9) 0 17 21 −8.34031999e − 001 6.44e − 007 0
(3, 3, 3) 17.09 21 24 −8.34032019e − 001 6.16e − 007 0

hs035 3, 1 (0.5, 0.5, 0.5) 0 11 12 1.11111360e − 001 6.47e − 007 0
(3, 3, 3) 9 15 16 1.11111207e − 001 2.44e − 007 0

hs065 3, 7 (4, 4, 4) 0 6 7 9.53529029e − 001 2.67e − 007 0
(−5, 5, 0) 2 48 49 9.53528897e − 001 1.73e − 007 0

hs066 3, 8 (0, 1.05, 2.9) 0 15 16 5.18176876e − 001 9.95e − 007 0
(1, 1, 1) 1.72 20 21 5.18162862e − 001 6.62e − 007 1.03e − 006

hs113 10, 8 (2, 3, 5, 5, 1, 2, 7, 3, 6, 10) 0 73 74 3.04820825e + 001 8.76e − 007 0
(5, 5, 5, 5, 5, 5, 5, 5, 5, 5) 116 82 148 3.04820766e + 001 7.87e − 007 0

s215 2, 2 (1, 1) 0 20 21 9.53674316e − 007 6.74e − 007 0
(−1, 2) 1 23 24 7.07746851e − 007 5.00e − 007 0

s225 2, 5 (1.5, 1.5) 0 54 55 2.00001291e + 000 9.13e − 007 0
(3, 1) 2 60 61 2.00001277e + 000 9.03e − 007 0

s226 2, 4 (0.8, 0.25) 0 13 14 −4.99999922e − 001 3.27e − 007 0
(3, −3) 17 15 16 −5.00000187e − 001 5.90e − 007 1.12e − 006

s227 2, 2 (0.5, 0.5) 0 35 36 1.00000355e + 000 8.37e − 007 0
(2, 8) 62 26 27 1.00000332e + 000 7.84e − 007 0

s230 2, 2 (1, 1) 0 19 20 3.75001602e − 001 8.01e − 007 0
(0, 0) 1 18 19 3.74998625e − 001 6.87e − 007 2.75e − 006
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Example 2 (Zhou[17]).

min f (x) =
3∑

i=1

x2
i x2

i+1 + x2
1x2

4

s.t. c1(x) = 4 −
4∑

i=1

x2
i �0,

c2(x) = 1 −
4∑

i=1

(−1)i+1xi �0.

From the initial point (2.5, 1.5, 0, 0)T, Algorithm 1 terminates after 12 iterations at the point (3.1503, 0, 4.4661, 0)T

and the value of objective function is 0. This result is better than Zhou’s [17]. In [17], Algorithm A terminated after 9
iterations at (1.2508, 0.7500, 1.2492, 0.7450)T and the value of objective function is 3.515627.

We also test some problems selected from [6]. In the tests, we choose initial parameters � = 0.5, � = 0.25, � = 1
and 
 = 10−6. The initial Lagrangian Hessian estimate B0 = I and Bk is updated by the damped BGFS formula [10].
The stopping condition is ‖dk‖�10−6..

The numerical results are reported in Table 1, where the columns have the following meanings: Prob denotes the
name of test problems in [6], n and m denote the number of variables and constraints, Ni and Nf denote the number of
iterations and objective function and constraints evaluations, x0 and xk denote the initial and termination point, �(x0)

and �(xk) denote the value of �(x) defined by (4) at x0 and xk . Note that x is feasible if and only if �(x) = 0. For
each problem, we test Algorithm 1 with two initial points, a feasible point and an infeasible point. The preliminary
numerical results are encouraging. Algorithm 1 performances stable numerical results for feasible and infeasible initial
points. Hence, this algorithm is an improvement of the classical SQP method.

5. Conclusions

A SQP method that can be applied to inequality constrained optimization problems has been presented. Global
convergence has been shown under mild assumptions. There are two significant differences between the presented
method and previously proposed SQP methods. One is that the quadratic subproblem (3) is always consistent. The
other is that the present method can start from an infeasible initial point. Preliminary numerical results indicate that
the presented method is viable and efficient.
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