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Abstract

A set of world-line deviation equations is derived in the framework of Mathisson—Papapetrou—Dixon description of pseudo-
classical spinning particles. They generalize the geodesic deviation equations. We examine the resulting equations for particles
moving in the space—time of a plane gravitational wave.
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1. Introduction is the parameter along the orbits ahccharacterize
different orbits. To obtain the separation of two nearby
The geodesic deviation equation, geodesics, one of them is taken as “fiducial” geodesic
5 described by, sayy#, and the other byw* + An*,
D<n* . .
—— = —R“wﬁv"n”vﬁ, (1) where An* represents the separation. The equation
Dt for n** is then obtained by inserting* + An* into

is one of the well-known equations of general rel- the geodesic equation, comparing terms linean in
ativity. This equation shows the role of the space— and neglectingo (12). This idea have been used in
time curvature on the motion of test particles and has [1] to obtain generalized geodesic deviation equations
important applications, namely, it is used for calcu- by considering expansions containing higher orders
lating relative accelerations of nearby particles in an of A. These generalized equations have been applied,
observer-independent manner, and may be integratedfor example, in [1] to the problem of closed orbital
to give the Lyapunov exponent in the study of chaotic motion of test particles in the Kerr space-time and
behaviour of particle’s orbits. in [2] to the orbital motion in Schwarzchild metric.
There are several ways to derive this equation. Other interesting generalizations may be found in
One standard derivation is as follows. Consider a two [3,4]. Another way to derive the equation is by varying
parameter family of geodesi¢*(z; 1) in which t a suitable action [5]. This method was used in [6]
to generalize the equation to the so-called “string
T E-mail address: m-mohseni@pnu.ac.ir (M. Mohseni). deviation equation”. The guéization of the geodesic
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equation was discussed in [7] and generalizing the
equation to Kaluza—Klein theories was done in [8].
Some other aspects or applications of the equation
have been discussed in [9].

When forces other than gravity are present, or the
particle has some internal structure, it would no longer
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in which v* = dx* /dt is the particle’s four-velocity,
p* its four-momentum and*V its spin tensor. We
confine ourselves to time-like orbits with
e ©)

MPD equations guarantee that the particle’'s mass and

Uy v

move along geodesics in general. In these situations aspin are conserved

“world-line deviation” equation may be obtained by
modifying the geodesic deviation equation by taking
the effect of the matter field or internal structure into
account. Thus using methods described in the previ-
ous paragraph, a world-line deviation equation was ob-
tained in [10] for the of motion of charged patrticles in
the framework of Einstein-Maxwell theory. Another
generalization of this type was made in [11] (see also
[12]) for describing spinning particles and was used
there to study epicycles.

The equations used in [11] to determine the parti-
cle’s trajectories are simplified version of Mathisson—
Papapetrou-Dixon (MPD) equations [13]. The later
equations have been widely used to study the mo-
tion of spinning particles (e.g., see [14] and references
therein). The aim of the present work is to obtain a
world-line deviation in the framework of MPD de-
scription of spinning particles. In the following sec-
tions we apply the prescription mentioned earlier to
obtain the equations, and provide an example in which
they could be integrated analytically. Throughout the
work, 1, 2, 3, 4 would stand fou, v, x, y as indices,

RlLvozﬁ = aarﬂvﬂ - aﬂ[‘“va
+ THasT g — THpsT g,

D/Dt and V represent covariant derivative, the
space—time signature would be + ++), and[u, v]
stands fov — vu.

2. Theequations

The motion of a spinning particle is described by
MPD equations

Dp* 1
Dp = —ER“,,MUVSK}‘, (2)
T
DsHY
DT p[MUV], ®)
p/Lsuu =0, 4)

pup" = const= —m?,

(6)
1
Zs,0s"Y = const= 2.

5 W)
Now consider a sek”(t;A) describing the world-
lines of spinning particles of the same spin-to-mass
ratios and define

DsHv _
Dx ’
Dpﬂ _ le
Dx ’

Insertingx*(t) + An*(t) into (2)—(4) and looking for
A terms, we obtain the following equations:

Dj#* 1 Dn"
o = —RY g v n® pP — ER“Wg Do s
1 1
— ER“W,gv”J"‘ﬂ — EVK R“Wﬁnkv”s“ﬂ, (8)
DJ" Dn"!
D = sl RV, gn® 0P 4 pli l;lt + j” (9)
s/wjv + J;wpv =0, (10)

respectively. If we turn off the spin, all terms except
the first in the right-hand side of (8) vanish and
the geodesic deviation equation results. If we set
p* = mv*, Egs. (8)—(10) reduce to those of [11]. It
can be seen from the above equations that there is
no evolution equation for*, it should be obtained
indirectly from Egs. (8)—(10). The situation resembles
the case of MPD equations in which no direct equation
exists forv#*. The following equations

Dn*(7)
=0, 11
Un Dt ( )
puj" =0, (12)
S J* =0 (13)
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are helpful in this regard. They stem from (5)—(7), fiducial world-line. Now Eq. (10) results in
respectively. The latter two equations can be used for

world-lines describing nearby particles of the same I () = (18)
spins and masses. T3y 4+ st(t) _ _2_0].4(T) (19)
J¥@) + 1% (1) = — 3(r) (20)

3. Themotion in a GW space-time
Egs. (13) and (14) result in

In this section we consider the world-line devia-
dnl(t) dn?(t)

tions of spinning particles in the space—time described —~~ 4 = > _ g (21)
by the following metric dt dt

it + @ =0, (22)
ds?> = —dudv — K(u,x,y) du2+dx2+dy2, (14) 734y =0, (23)

inwhichu =t —z,v=1t+zarelight-cone coordinates  respectively. From Eq. (8) we obtain
and

jt(r) =const=a, (24)
K(u,x,3) = f0(* = %) + 2wy, j2(v) = const= 8, (25)
This metric represents a plane gravitational wave dj3(t) 13 3
of arbitrary polarization lad profile characterized by dt = f@({J (@) —mn*(0))
f(u), g(u) propagati_ng inz—dir_ection. In this space— + g(u)(J14(r) _ mn4(r))’ (26)
time, the MPD equations admit the following solution: i)

J T 14 4
=— J —
o = (1.1.0,0). e f @) (4 T) —mn* (1))
o = (m.m. 0,0) + ) (1) = mn®(0)). 27)
s = g2 =, JR<Z (15) Eq. (9) leads to
12 2 1

This solution describes a particle of massand of ~ 4/°(®) _(dn*(t) _dn"(0)) . (28)
spino-, dt dt dt ’

dJ¥()  dn(r) 4 29
st = ———et,,pVsP,  with €1234= 1 dr ar @, (29)

2\/_ ’ ’ 14 4

dJ"(t) _ dn”(t) 4 30
sitting in the origin of the coordinates with its spin dr "ar @), (30)
along thez direction. For the above world-line, the dJ%3(7) 5 .
geodesic deviation equation leads to the following — - =20gw)n>(t) — 20 f (u)n"(t)
equations: @) "
d2n3(f) m dt —J (t)v ( )

T = —f@ni@ - gn' (@), A
4 ZUg(u)n () — ZUf(u)n?’(I)
d?n () 4 3 drt
Iz fn™(t) — gu)n’(z). (17) dn*(t)
t e (1), (32)

We now consider two particles of the same spins 34
and masses, one initially at the origin and the other dJ7(T) — (33)

at a nearby point with a specific separation. We dt
aim to calculate this separation at any value of the Now, comparing (24), (25), and (22) we ge¢t= —«.
parameterr. We take (15) with(z, 7,0,0) as the If we use the same parameter to describe both of the
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world-lines, thems! = 0. So we seil(t) = —n?(7)
which is consistent with (21). Taking this into account,
Egs. (18) and (28) give us

o
—nt(r)=n’(1)= =1+,
m

in which y and « are the initial values of2 and
dn?/dt, respectively. The transverse components of
n* can be obtained from Egs. (19), (20), (26), (27),
and (29)—(33) if one knows the second particle’'s
world-line and spin orientation. Two interesting cases
are as follow.

Case 1. The second particle moves on a nearby
geodesic. We set

JB) =0, 7)) =0.

Thus

dn3(7) dn*(t)
-3 _ .4 _
J(m)=m . Ji(t)y=m pE
and

dn? dn3
st(t)=—20 nd(r)’ J24(r)=20 " (T).
T

It follows that

d2n3
:zl © o fumde) - g o),
T
d2 4
Zté‘[) = fn*(r) — gwn’(v),

as we expected.

Case 2. The second patrticle’s spin is such that
FPo=jtm=0,
and

JB@) =mni(r),  J¥@) =mn*(2).

It follows that

dn® 2

ndit) - Za(f(u)n“(r) — gwn’(D)), (34)
dn* 2

ndir) = =2 (Fan’m) +gn’ (). (35)

which can be solved far3(1), n*(t) if fu), g(u) is
given explicitly in terms oft = 7.
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4. Conclusions

The equations we have found describe the world-
line deviations in the framework of MPD equations
determining the effect of the spin—curvature coupling
on relative accelerations of nearby particles. They may
be helpful in different applications including the study
of chaotic behaviour of spinning particles in certain
space—times [15]. Another important application of
these equations is to find approximate solutions to
MPD equations by using a known solution, an exam-
ple is the case two of the previous section. We ap-
plied the equations to the case of motion in the space—
time of a gravitational wave and showed that they can
be integrated analytically. A linear approximation of
these equations may be useful in some applications. In
more complex situations they may be solved at least
numerically. In situations in which a higher accuracy
is needed one can use more sophisticated equations
containing higher orders of in a systematic way. If
the particles experience extra forces like the Lorentz
force, the equations can be modified by adding suit-
able terms. The example of the previous section de-
serves a more extended study.
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