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Abstract

A set of world-line deviation equations is derived in the framework of Mathisson–Papapetrou–Dixon description of p
classical spinning particles. They generalize the geodesic deviation equations. We examine the resulting equations fo
moving in the space–time of a plane gravitational wave.
 2004 Published by Elsevier B.V.
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1. Introduction

The geodesic deviation equation,

(1)
D2nµ

Dτ2 = −Rµ
ανβvαnνvβ,

is one of the well-known equations of general r
ativity. This equation shows the role of the spac
time curvature on the motion of test particles and
important applications, namely, it is used for calc
lating relative accelerations of nearby particles in
observer-independent manner, and may be integr
to give the Lyapunov exponent in the study of chao
behaviour of particle’s orbits.

There are several ways to derive this equat
One standard derivation is as follows. Consider a
parameter family of geodesicxµ(τ ;λ) in which τ
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is the parameter along the orbits andλ characterize
different orbits. To obtain the separation of two nea
geodesics, one of them is taken as “fiducial” geode
described by, say,xµ, and the other byxµ + λnµ,
where λnµ represents the separation. The equa
for nµ is then obtained by insertingxµ + λnµ into
the geodesic equation, comparing terms linear iλ

and neglectingO(λ2). This idea have been used
[1] to obtain generalized geodesic deviation equati
by considering expansions containing higher ord
of λ. These generalized equations have been app
for example, in [1] to the problem of closed orbit
motion of test particles in the Kerr space–time a
in [2] to the orbital motion in Schwarzchild metric
Other interesting generalizations may be found
[3,4]. Another way to derive the equation is by varyi
a suitable action [5]. This method was used in
to generalize the equation to the so-called “str
deviation equation”. The quantization of the geodesi
se.
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equation was discussed in [7] and generalizing
equation to Kaluza–Klein theories was done in [
Some other aspects or applications of the equa
have been discussed in [9].

When forces other than gravity are present, or
particle has some internal structure, it would no lon
move along geodesics in general. In these situatio
“world-line deviation” equation may be obtained b
modifying the geodesic deviation equation by tak
the effect of the matter field or internal structure in
account. Thus using methods described in the pr
ous paragraph, a world-line deviation equation was
tained in [10] for the of motion of charged particles
the framework of Einstein–Maxwell theory. Anoth
generalization of this type was made in [11] (see a
[12]) for describing spinning particles and was us
there to study epicycles.

The equations used in [11] to determine the pa
cle’s trajectories are simplified version of Mathisso
Papapetrou–Dixon (MPD) equations [13]. The la
equations have been widely used to study the
tion of spinning particles (e.g., see [14] and referen
therein). The aim of the present work is to obtain
world-line deviation in the framework of MPD de
scription of spinning particles. In the following se
tions we apply the prescription mentioned earlier
obtain the equations, and provide an example in wh
they could be integrated analytically. Throughout
work, 1,2,3,4 would stand foru,v, x, y as indices,

Rµ
ναβ = ∂αΓ µ

νβ − ∂βΓ µ
να

+ Γ µ
αδΓ

δ
νβ − Γ µ

βδΓ
δ
να,

D/Dτ and ∇ represent covariant derivative, th
space–time signature would be(− + ++), and[µ,ν]
stands forµν − νµ.

2. The equations

The motion of a spinning particle is described
MPD equations

(2)
Dpµ

Dτ
= −1

2
Rµ

νκλv
νsκλ,

(3)
Dsµν

Dτ
= p[µvν],

(4)pµsµν = 0,
in which vµ = dxµ/dτ is the particle’s four-velocity
pµ its four-momentum andsµν its spin tensor. We
confine ourselves to time-like orbits with

(5)vµvµ = −1.

MPD equations guarantee that the particle’s mass
spin are conserved

(6)pµpµ = const= −m2,

(7)
1

2
sµνs

µν = const= s2.

Now consider a setxµ(τ ;λ) describing the world-
lines of spinning particles of the same spin-to-m
ratios and define

Dsµν

Dλ
= Jµν,

Dpµ

Dλ
= jµ.

Insertingxµ(τ) + λnµ(τ) into (2)–(4) and looking for
λ terms, we obtain the following equations:

Djµ

Dτ
= −Rν

βακvκnαpβ − 1

2
Rµ

ναβ
Dnν

Dτ
sαβ

(8)− 1

2
Rµ

ναβvνJ αβ − 1

2
∇κRµ

ναβnκvνsαβ ,

(9)
DJµν

Dτ
= sκ[µRν]

καβnαvβ + p[µ Dnν]

Dτ
+ j [µvν],

(10)sµνj
ν + Jµνp

ν = 0,

respectively. If we turn off the spin, all terms exce
the first in the right-hand side of (8) vanish a
the geodesic deviation equation results. If we
pµ = mvµ, Eqs. (8)–(10) reduce to those of [11].
can be seen from the above equations that ther
no evolution equation fornµ, it should be obtained
indirectly from Eqs. (8)–(10). The situation resemb
the case of MPD equations in which no direct equat
exists forvµ. The following equations

(11)vµ
Dnµ(τ)

Dτ
= 0,

(12)pµjµ = 0,

(13)sµνJ
µν = 0
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are helpful in this regard. They stem from (5)–(
respectively. The latter two equations can be used
world-lines describing nearby particles of the sa
spins and masses.

3. The motion in a GW space–time

In this section we consider the world-line dev
tions of spinning particles in the space–time descri
by the following metric

(14)ds2 = −dudv − K(u,x, y) du2 + dx2 + dy2,

in whichu = t −z, v = t +z are light-cone coordinate
and

K(u,x, y) = f (u)(x2 − y2) + 2g(u)xy.

This metric represents a plane gravitational wa
of arbitrary polarization and profile characterized b
f (u), g(u) propagating inz-direction. In this space–
time, the MPD equations admit the following solutio

vµ = (1,1,0,0),

pµ = (m,m,0,0),

(15)s1µ = s2µ = 0, s34 = σ.

This solution describes a particle of massm and of
spinσ ,

sµ := 1

2
√−g

εµ
νκρpνsκρ, with ε1234= −1,

sitting in the origin of the coordinates with its sp
along thez direction. For the above world-line, th
geodesic deviation equation leads to the follow
equations:

(16)
d2n3(τ )

dτ2
= −f (u)n3(τ ) − g(u)n4(τ ),

(17)
d2n4(τ )

dτ2
= f (u)n4(τ ) − g(u)n3(τ ).

We now consider two particles of the same sp
and masses, one initially at the origin and the ot
at a nearby point with a specific separation.
aim to calculate this separation at any value of
parameterτ . We take (15) with(τ, τ,0,0) as the
fiducial world-line. Now Eq. (10) results in

(18)J 12(τ ) = 0,

(19)J 13(τ ) + J 23(τ ) = −2σ

m
j4(τ ),

(20)J 14(τ ) + J 24(τ ) = 2σ

m
j3(τ ).

Eqs. (13) and (14) result in

(21)
dn1(τ )

dτ
+ dn2(τ )

dτ
= 0,

(22)j1(τ ) + j2(τ ) = 0,

(23)J 34(τ ) = 0,

respectively. From Eq. (8) we obtain

(24)j1(τ ) = const= α,

(25)j2(τ ) = const= β,

dj3(τ )

dτ
= f (u)

(
J 13(τ ) − mn3(τ )

)
(26)+ g(u)

(
J 14(τ ) − mn4(τ )

)
,

dj4(τ )

dτ
= −f (u)

(
J 14(τ ) − mn4(τ )

)
(27)+ g(u)

(
J 13(τ ) − mn3(τ )

)
.

Eq. (9) leads to

(28)
dJ 12(τ )

dτ
= m

(
dn2(τ )

dτ
− dn1(τ )

dτ

)
+ 2α,

(29)
dJ 13(τ )

dτ
= m

dn3(τ )

dτ
− j3(τ ),

(30)
dJ 14(τ )

dτ
= m

dn4(τ )

dτ
− j4(τ ),

dJ 23(τ )

dτ
= 2σg(u)n3(τ ) − 2σf (u)n4(τ )

(31)+ m
dn3(τ )

dτ
− j3(τ ),

dJ 24(τ )

dτ
= −2σg(u)n4(τ ) − 2σf (u)n3(τ )

(32)+ m
dn4(τ )

dτ
− j4(τ ),

(33)
dJ 34(τ )

dτ
= 0.

Now, comparing (24), (25), and (22) we getβ = −α.
If we use the same parameter to describe both of
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world-lines, thennt = 0. So we setn1(τ ) = −n2(τ )

which is consistent with (21). Taking this into accou
Eqs. (18) and (28) give us

−n1(τ ) = n2(τ ) = α

m
τ + γ,

in which γ and α are the initial values ofn2 and
dn2/dτ , respectively. The transverse components
nµ can be obtained from Eqs. (19), (20), (26), (2
and (29)–(33) if one knows the second particl
world-line and spin orientation. Two interesting cas
are as follow.

Case 1. The second particle moves on a nea
geodesic. We set

J 13(τ ) = 0, J 14(τ ) = 0.

Thus

j3(τ ) = m
dn3(τ )

dτ
, j4(τ ) = m

dn4(τ )

dτ
,

and

J 23(τ ) = −2σ
dn4(τ )

dτ
, J 24(τ ) = 2σ

dn3(τ )

dτ
.

It follows that

d2n3(τ )

dτ2 = −f (u)n3(τ ) − g(u)n4(τ ),

d2n4(τ )

dτ2 = f (u)n4(τ ) − g(u)n3(τ ),

as we expected.

Case 2. The second particle’s spin is such that

j3(τ ) = j4(τ ) = 0,

and

J 13(τ ) = mn3(τ ), J 14(τ ) = mn4(τ ).

It follows that

(34)
dn3(τ )

dτ
= 2σ

m

(
f (u)n4(τ ) − g(u)n3(τ )

)
,

(35)
dn4(τ )

dτ
= 2σ

m

(
f (u)n3(τ ) + g(u)n4(τ )

)
,

which can be solved forn3(τ ), n4(τ ) if f (u), g(u) is
given explicitly in terms ofu = τ .
4. Conclusions

The equations we have found describe the wo
line deviations in the framework of MPD equatio
determining the effect of the spin–curvature coupl
on relative accelerations of nearby particles. They m
be helpful in different applications including the stu
of chaotic behaviour of spinning particles in certa
space–times [15]. Another important application
these equations is to find approximate solutions
MPD equations by using a known solution, an exa
ple is the case two of the previous section. We
plied the equations to the case of motion in the spa
time of a gravitational wave and showed that they
be integrated analytically. A linear approximation
these equations may be useful in some application
more complex situations they may be solved at le
numerically. In situations in which a higher accura
is needed one can use more sophisticated equa
containing higher orders ofλ in a systematic way. I
the particles experience extra forces like the Lore
force, the equations can be modified by adding s
able terms. The example of the previous section
serves a more extended study.
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