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Imputing Gene Expression in Uncollected Tissues
Within and Beyond GTEx

Jiebiao Wang,1 Eric R. Gamazon,2,3 Brandon L. Pierce,1 Barbara E. Stranger,4,5 Hae Kyung Im,4

Robert D. Gibbons,1 Nancy J. Cox,2 Dan L. Nicolae,4,6 and Lin S. Chen1,*

Gene expression and its regulation can vary substantially across tissue types. In order to generate knowledge about gene expression in

human tissues, the Genotype-Tissue Expression (GTEx) program has collected transcriptome data in a wide variety of tissue types from

post-mortem donors. However, many tissue types are difficult to access and are not collected in every GTEx individual. Furthermore, in

non-GTEx studies, the accessibility of certain tissue types greatly limits the feasibility and scale of studies of multi-tissue expression. In

this work, we developed multi-tissue imputation methods to impute gene expression in uncollected or inaccessible tissues. Via simula-

tion studies, we showed that the proposedmethods outperform existing imputationmethods inmulti-tissue expression imputation and

that incorporating imputed expression data can improve power to detect phenotype-expression correlations. By analyzing data from

nine selected tissue types in the GTEx pilot project, we demonstrated that harnessing expression quantitative trait loci (eQTLs) and tis-

sue-tissue expression-level correlations can aid imputation of transcriptome data from uncollected GTEx tissues. More importantly, we

showed that by using GTEx data as a reference, one can impute expression levels in inaccessible tissues in non-GTEx expression studies.
Introduction

Studies of gene expression in peripheral whole blood, skin,

liver, and other tissues have revealed that gene expression

and its regulation depend on cell context.1 The expression

of a given gene can vary substantially across tissue types,

and the genetic variants that regulate gene expression—

expression quantitative trait loci (eQTLs)2,3—can have

eQTL effects that also vary across tissue types.4–7 A careful

examination of gene expression across human tissues and

within target tissues would not only help to answer a wide

range of scientific questions related to transcriptional vari-

ation but also inform other fundamental aspects of biology

and prioritize therapeutic gene targets in the development

of precision medicine.8 The challenge is that many

tissues are not regenerative and are difficult to collect

(hereinafter referred to as ‘‘inaccessible’’ tissues). To date,

most large-scale gene-expression studies have been con-

ducted with RNA extracted from peripheral-blood cells or

their derivatives, such as lymphoblastoid cell lines. The

blood samples are generally heterogeneous and contain a

mixture of different cell types. The expression in the blood

cells might not directly inform the expression and its reg-

ulatory mechanisms in other target cell types from other

tissues.

The NIH Common Fund’s Genotype-Tissue Expression

(GTEx) program has generated rich transcriptome data in

a wide variety of human tissue types, as well as genome

sequencing data from a large number of post-mortem do-

nors, thus allowing researchers to generate knowledge

about gene expression across human tissues and also char-

acterize the regulatory role of genetic variation from both
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cross-tissue and tissue-specific perspectives.9–11 In May

2015, GTEx released pilot data including transcriptome

measurements in 44 reference human tissue types and

sequencing data on 175 donors.11 The GTEx project pro-

vides a unique opportunity to systematically evaluate the

relationships among transcriptomes of different tissues

and inform the design of future studies of multi-tissue

gene expression.

One major challenge of conducting similar types of ana-

lyses in studies beyond GTEx is tissue accessibility. Despite

the importance of obtaining specific target tissues from

additional cohorts of interest, it might be difficult to

collect multi-tissue expression data in many studies. For

example, the collection of inaccessible tissues from living

study participants is neither possible nor ethical, certain

samples in some existing expression studies might not be

available for additional data collection, or certain samples

might have only limited tissue biopsies available, etc. In

those cases, it would be desirable if available information

on the target samples and the rich resources in GTEx could

be harnessed for accurate imputation of the expression

data in the uncollected or inaccessible tissues. With

multi-tissue imputation, we are able to reanalyze and leve-

rage existing single-tissue expression data or design future

multi-tissue expression studies with limited resources.

Compared with single-tissue expression data, multi-tissue

expression data provide a more comprehensive and sys-

tematic view of the underlying biological mechanisms.

Moreover, the expression levels of a gene in functionally

related tissues often show coordinated expression patterns,

reflecting shared developmental and genetic factors. By

jointly analyzing expression data from multiple tissue
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Figure 1. Illustrations of Two Imputation Scenarios
In both scenarios, one can apply the proposed methods to impute
the expression in the uncollected or inaccessible tissues of interest.
Each row is one individual, and each column is one tissue type.
The collected and measured tissues are shown in black, and the
uncollected or inaccessible ones are in white. The tissues with
question marks are the ones of interest.
(A) Expression in the uncollected GTEx tissues (with question
marks) was imputed on the basis of expression in the collected
GTEx tissues.
(B) Expression in the uncollected tissues (with question marks),
including inaccessible tissue types, was imputed on the basis of
collected tissues in a new expression study. GTEx was used as a
reference.
types, one can enhance the power to identify biomarkers

for complex diseases and traits and facilitate the develop-

ment of precision medicine.

In this work, we propose harnessing eQTLs and tissue-

tissue expression-level correlations for imputing ex-

pression data in uncollected or inaccessible tissues. We

propose algorithms for multi-tissue imputation based on

a mixed-effects model12 that treats the expression mea-

sures from multiple tissues as the outcome and

considers as predictors the eQTL genotypes, known

covariates, and the estimated tissue-specific top principal

components (PCs) of expression data. By borrowing

information across genes and across related tissues, the

proposed method captures not only the genetic factors

influencing gene expression in tissues but also the major
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developmental and environmental factors. We conducted

simulation studies to show the superior imputation

performance of the proposed methods over existing

imputation approaches13–19 in multi-tissue expression

imputation, as well as the utility of the imputed multi-

tissue expression data. Moreover, on the basis of cross-

validation (CV) analyses of GTEx pilot data (accession

number dbGaP: phs000424.v4.p1), we demonstrated the

feasibility of imputing expression in uncollected GTEx tis-

sues (as shown in Figure 1A) and using GTEx data as a

reference for imputing expression in inaccessible tissues

from samples beyond GTEx (Figure 1B shows an

illustration).
Material and Methods

A Mixed-Effects Model for Multi-tissue Imputation
For imputation of gene-expression levels in uncollected or inacces-

sible tissues, structured information—including the expression

levels of the gene of interest in observed tissues, cis- (local) and

trans- (distal) eQTLs, and sample characteristics (gender, age,

etc.) shared across genes—is uniquely available in the GTEx

data. In GTEx data, we measured the expression levels in multiple

tissues from each individual, and the multi-tissue expression mea-

sures naturally clustered within individuals.

A natural model to account for these features is a mixed-effects

model with expression levels frommultiple tissues of a gene as the

response, eQTLs and other cross-tissue or tissue-specific covariates

as predictors, and random effects (here a random intercept) for

each individual:

yit ¼ mt þ bT
t xi þ aT

t ci þ gi þ eit : (Equation 1)

Here, yit is the expression level of a gene in tissue type t

ðt ¼ 1;.;TÞ of individual i ði ¼ 1;.;NÞ, mt is the tissue-specific

mean expression, xi is the genotype vector of length K in individ-

ual i for K selected eQTLs (xi is the same across tissues), bt is a

vector of length K and represents the tissue-specific eQTL effects

in tissue type t, gi is the random intercept for individual i with

gi � Nð0;DÞ, ci is the vector of covariates for individual i with

at as the corresponding coefficients in tissue type t, and eit is the

error term.

In Equation 1, the effect of each eQTL can vary across tissues.

Some eQTLs consistently regulate the expression of a gene across

multiple tissues and are considered cross-tissue eQTLs, whereas

others show eQTL effects only in certain tissue types and are

considered tissue specific.4–6,20 Even for cross-tissue eQTLs, the ef-

fect sizes bt can vary by tissue type (similar to an interaction effect

of eQTL and tissue type).

To estimate the tissue-specific eQTL effects, we need to estimate

a total of T3 K parameters in Equation 1. To reduce the number of

parameters, we further employ an adaptive weighting scheme:21,22

we regress the gene expression in tissue type t on the kth eQTL and

let the marginal eQTL effect be the adaptive weight,wkt. This strat-

egy implicitly assumes that the tissue-specific eQTL effects in

different tissues in Equation 1 are proportional to the marginal tis-

sue-specific eQTL effects. In the GTEx data, we observed empirical

evidence supporting the validity of this assumption (see Supple-

mental Data for details). The pre-specified adaptive weights in

the following model allow us to account for tissue-specific eQTL
016



effects with only one parameter qk for the kth eQTL, thereby

reducing the total number of parameters for eQTL effects from

T 3 K to K:

yit ¼ mt þ
X
k

qk,ðwktxkiÞ þ aT
t ci þ gi þ eit : (Equation 2)

A Mixed-Model-Based Random-Forest Approach
To obtain the predicted values of yit with weighted genotypes and

other covariates as predictors, we propose a mixed-model-based

random-forest (MixRF) approach. Random forest is an ensemble

learning method that operates by constructing a multitude of

regression trees,23 each of which considers a subset of model pre-

dictors and a subset of samples. To learn a regression tree for a

continuous outcome on the basis of some predictors, one can

employ a recursive binary partitioning algorithm.24 At each parti-

tioning, the algorithm splits the response variable on the basis of a

binary (or dichotomized) predictor in the current node such that

the reduction in the sum of squares for values in the node is maxi-

mized. The split continues until the tree is too complex or the

number of observations in the current node is too small. A regres-

sion tree is a non-linear model that predicts the value of a target

variable. Predictions based on a single regression tree can be

unstable. By aggregating overmany regression trees, a random-for-

est approach intrinsically constitutes a multiple-imputation

scheme16 and provides a more robust prediction that minimizes

the overall CV prediction (i.e., imputation) errors.23–25

Most existing random-forest approaches26,27 ignore the clus-

tered data structure. With the proposed MixRF algorithm, we

obtain the predictive values by using the following steps: for

each gene, we obtain the externally defined eQTLs or select the

eQTLs on the basis of the current data and assign the adaptive

weight to each eQTL genotype in each tissue type. We set the

initial values of g
ð0Þ
i ¼ 0. Given the estimated random effects at

the jth iteration, we build a random forest with u
ðjÞ
it ¼ yit � bgðjÞ

i as

the response and with weighted genotypes in each tissue

type and other covariates as predictors, u
ðjÞ
it ¼ f ðw1t x1i;.;

wKtxKi; ciÞ þ dit , where dit is the error term.We obtain the predicted

value buðjÞ
it . In re-estimating the random effects, we let

u
ðjÞ
it ¼ yit � buðjÞ

it and fit a linear random-effect model with

u
ðjÞ
it ¼ g

ðjÞ
i þ eit to obtain the estimated random effect bgðjÞ

i . The pro-

posedMixRF algorithm iterates through estimating the random ef-

fect gi in the linear mixed-effects model12 and constructing a

random forest26 for the new response variable uit until the change

in the likelihood at successive iterations is small (< 0.001). The

proposed MixRF often converges quickly in a few iterations, and

the prediction is not sensitive to the specified initial values. We

summarize MixRF in algorithm 1 in Appendix A.

Our random-forest-based prediction model is a non-linear

function of the predictors in Equation 2: byit ¼ bf ðw1t x1i;.;

wKtxKi; ciÞ þ bgi: It can automatically capture the potential non-

linear effects of the predictors and the interaction effects among

the predictors on the outcome. In the multi-tissue expression

GTEx data, we observed that the eQTL effects on gene expression

levels could be additive, dominant, or recessive (such that 58%,

38%, or 4% of the eQTL expression pairs better fit an additive,

dominant, or recessive eQTL model, respectively).

In addition, we also observed eQTL-eQTL interaction effects and

gender-specific eQTLs (gender-eQTL interactions)28 on many

genes. The proposed random-forest-based predictionmodel would
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be helpful in capturing those effects and would improve the impu-

tation performance. Moreover, because the random-forest-based

prediction model allows higher-order interactions among the pre-

dictors, it is more flexible than Lasso-type penalized regression-

based predictions and would not induce biased prediction.29
An Extension to Capture the Effects of Major

Developmental and Environmental Factors in the

Imputation
We further propose an extension—MixRFþ iPC, where iPC stands

for PCs constructed from imputed and observed expression data.

Specifically, we propose (1) imputing selected gene-expression

levels with multiple eQTLs (~1,000 genes with at least three

eQTLs) by using MixRF with adaptively weighted genotypes and

other known covariates as predictors, (2) constructing tissue-spe-

cific PCs by performing singular value decomposition (SVD) on

the combined observed and imputed expression data on the

selected genes within each tissue type and keeping the top five

PCs for each tissue type, and (3) incorporating the tissue-specific

PCs with adaptively weighted genotypes and other known covari-

ates as predictors in MixRF þ iPC for imputing or re-imputing

gene-expression levels in the genome.

Most of the differences in gene expression among tissues and

many of the correlations in gene expression across tissues are

driven by the sets of genes that are not expressed in many of the

same tissues but rather are expressed in other tissues. Their expres-

sion levels are so correlated across tissues not because of shared ge-

netic architecture but because they are completely and invariantly

not expressed in so many of the same tissues. Human develop-

mental profiles are invariantly shared within our species, and

major developmental information is important information that

augments the genetic information. By borrowing information

across genes, the top PCs within each tissue type partially capture

major developmental factors, as well as the tissue-specific effects of

major environmental factors. By incorporating the top PCs from

each tissue type as predictors, the extension MixRF þ iPC im-

proves the multi-tissue imputation for genes with no eQTLs or

low heritability. We summarize MixRF þ iPC in algorithm 2 in

Appendix A.

In addition to predicting values ofmulti-tissue expression levels,

MixRF and MixRF þ iPC provide a measure of imputation qual-

ity—the estimated imputation correlation ðbr impÞ. It is estimated

on the basis of a 10-fold CV analysis of the currently observed

data. One splits the data into ten subsamples and each time uses

nine subsamples as training data and the rest as testing data.

One then applies MixRF to the training data to impute the testing

data and repeats this until all the data have been imputed once. In

the end, one calculates the correlation between the observed

expression levels and the imputed expression levels for each gene.

On the basis of simulation studies, we suggest excluding the

imputed expression levels for geneswith estimated imputationcor-

relations less than 0.3 in the subsequent analyses, although there is

nouniversal cutoff value for post-imputation exclusionor filtering.

The appropriate threshold for a specific analysis might differ.

With parallel computing, imputing 10,000 genes in nine tissue

types from about 150 individuals and obtaining the 10-fold CV-

based measures of imputation quality could be completed within

30 hr with a 40-node cluster (3.0 GHz Intel Xeon E7 processor) and

16.5 GB of memory.

The overall computation time of MixRF and MixRF þ iPC in-

creases linearly with the number of genes and the number of
erican Journal of Human Genetics 98, 697–708, April 7, 2016 699



eQTLs and other covariates. The computation complexity of

random-forest-based approaches is also dependent on the total

number of observed tissues, NT, a summation of the observed tis-

sues for all individuals. The runtime of MixRF and MixRF þ iPC

scales with a complexity ofOðNT log NT Þ in the total number of tis-

sues.30 The computation is highly parallelizable.
Selecting eQTLs
To obtain the eQTLs for each gene, one can use the reported eQTL

lists from other independent data. However, most of the published

eQTLs are mapped in whole blood or lymphoblastoid cell lines

and might not show eQTL effects in other tissues. In our CV ana-

lyses, we did not use the eQTLs reported in the GTEx project.9,11

Those eQTLs were calculated on the basis of all of GTEx tissues,

whereas in each round of our CVanalyses, we treated a certain pro-

portion of GTEx tissues as ‘‘uncollected,’’ imputed the expression

in those tissues, and evaluated the imputation performance. Using

eQTLs that were calculated on the basis of all tissues to impute the

expression in the ‘‘uncollected’’ tissues would have overestimated

the imputation performance.

We propose selecting eQTLs for each gene on the basis of the

observed data (for example, the training data in the CV analysis).

The selection of eQTLs might affect the predictors used in the

imputation and therefore the imputation performance. Neverthe-

less, the selection can be viewed as a pre-screening of predictors

before imputation, and this step will not lead to biased imputation

assessment yet will greatly reduce the computational burden.

When using GTEx data as a reference for imputing expression in

the uncollected tissues from other studies, one can combine the

GTEx data with data from non-GTEx samples to obtain the eQTLs

used in the imputation.

In each round of CV in our data analyses, we calculated and

selected eQTLs on the basis of only the ‘‘observed’’ (i.e., training)

data. Given the limited sample size in the GTEx pilot project, we

selected only the cross-tissue cis- and trans-eQTLs and ignored

the tissue-specific ones because of low power to detect the latter.

Most of the cis-eQTLs are cross-tissue4–6 and can potentially be

replicated in different cell contexts or even across ethnicities.31,32

To obtain the cross-tissue cis-eQTLs, we used MatrixEQTL33 to

calculate the tissue-specific cis-eQTL effects, used Stouffer’s

method34 to combine the Z statistics from the nine tissue types,

and selected the cis-eQTLs with Stouffer’s p values < 10�6. For

trans-eQTLs, we selected the trans-eQTLs with tissue-specific p

values % 0.05 in at least eight out of nine tissues. These selected

cross-tissue trans-eQTLs have Stouffer’s p values of less than 10�8.

The omission of tissue-specific trans-eQTLs in our analysis might

have hurt the imputation performance, but this can be improved

with the later phase of GTEx data, in which the project will scale

up donor collection to 900, and all 44 tissue types will have reason-

ably large sample sizes.
Ethics Statements
All individuals who donated adipose and muscle biopsies in the

IS-MA (insulin-sensitivity muscle-adipose) study35 provided writ-

ten informed consent under protocols originally approved by

the institutional review board (IRB) at the University of Arkansas

for Medical Sciences.

The GTEx project involves recruitment, IRB approval, and con-

sent issues for deceased donors and their families. The collection

of tissues from deceased donors is not legally classified as human

subjects research under 45 CFR 46 in the Code of Federal Regula-
700 The American Journal of Human Genetics 98, 697–708, April 7, 2
tions; nevertheless, sites were required to obtain written or re-

corded verbal authorization from the next-of-kin for deceased

donor participation in GTEx.

Processing GTEx Data
Our analyses of GTEx data focused on the expression data from

nine tissue types each with R80 collected samples. We restricted

the analyses to the 150 samples with at least four observed tissues,

such that in each subsample of the CV data, each individual had

at least two observed tissues.

We applied standard data pre-processing and quality-control

procedures to both DNA and RNA sequencing data.We considered

only the 10,919 genes that were expressed in all nine tissues with a

tissue-specific log2 (mean expression level) significantly greater

(according to a one-sided t test) than the log2 of five read counts.

We normalized each gene expression in each tissue and removed

the batch effects. For genotype data, we excluded the single-nucle-

otide variants (SNVs) withminor allele frequencies less than 5% or

with p values of Hardy-Weinberg equilibrium test % 0.001 and

used PLINK36 to prune the SNVs with a linkage-disequilibrium

(LD) threshold of 0.5. After filtering and pruning, we considered

282,295 variants as potential eQTLs in the imputation analyses.
Results

Simulations: Methods Comparison on Imputation

Performance

In order to evaluate the imputation performance of our pro-

posedmethods and other competing imputationmethods,

we simulated gene-expression data for 150 individuals and

nine tissue types on the basis of Equation 2. We simulated

the expression levels of 1,000 genes each with zero, one,

two, five, and ten eQTLs.We examined the imputation per-

formance of competing methods when the ‘‘heritability’’

(the percentage of expression variation explained by ge-

netic factors, here the eQTLs) ranged from 0% to 80%, a

wide range commonly observed in eQTL studies.20 We

simulated the random intercept gi � Nð0;1:262Þ and the

error term eit � Nð0; 32Þ. Given the SDs of gi and eit , the

intra-class correlation was 0.15. Additionally, we simulated

two cross-tissue covariate ci values with various effects on

the simulated gene-expression levels. The input parameters

for the simulations, including eQTL count, eQTL effect

sizes, tissue-tissue expression-level correlations, and covar-

iate effect sizes, reflected what we observed in the real data

from the GTEx pilot project.

We randomly treated 30% of all tissues as ‘‘uncollected’’

and set their gene-expression data as ‘‘missing.’’ We applied

eight imputation methods to the simulated dataset to

impute the missing gene-expression data. Those eight

competing methods were k-NN,17 missForest,16 MICE,37

linear regression (lm), liner mixed-effects model (lmer),12

REEMtree,25 MixRF, and MixRF þ iPC. The true eQTLs

wereused aspredictors in thefive regression-basedmethods,

lm, lmer,12 REEMtree,25 MixRF, and MixRF þ iPC. The me-

dian of gene-level true imputation correlations of the

1,000 genes was used for evaluating the imputation perfor-

mance. Note that here, the gene-level true imputation
016
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Figure 2. Methods Comparison of Imputation Performance Based on Simulations
Competing methods included k-NN, missForest, MICE, lm, lmer, REEMtree, MixRF, and MixRF þ iPC.
(A) We simulated the expression levels of 1,000 genes each with zero, one, two, five, and ten eQTLs.
(B) Each expression level was simulated to be affected by two eQTLs and their interaction.
We simulated 1,000 gene-expression levels each for five varying heritability levels. We used the median of gene-level true imputation
correlations of the 1,000 genes to evaluate imputation performance. The difference between the median imputation correlations of
MixRF and those of the best alternative approach was highly significant in all scenarios (p < 2e�16).
correlation was calculated as the Spearman’s correlation

between the true and imputed values of a given gene in a

specific tissue type. A true correlation is distinct from the

estimated imputation correlation based on CV, br imp.

As shown in Figure 2A, our proposed methods MixRF

and MixRF þ iPC outperformed other imputation

methods, and MixRF þ iPC showed an advantage over

MixRF for imputing gene expression with zero eQTLs.

The five regression-based methods incorporated eQTL ef-

fects and performed better than other methods. The impu-

tationmethods k-NN, missForest, andMICE were designed

for single-tissue imputation—whereby selected gene-

expression levels are used for imputing the rest of the

expression levels from the same tissues—and performed

less competitively in the multi-tissue imputation.

In Figure 2B, we simulated another setting, in which

each expression level was affected by two eQTLs and an

interaction effect between them (a gene-gene interaction

effect). In this setting, we simulated 1,000 gene-expression

levels each for five varying ‘‘heritability’’ levels from 15%

to 87%. Our proposed methods MixRF and MixRF þ iPC

showed more obvious advantages over other competing

methods when the heritability was low. The likely reasons

for the observed advantages are that our methods are based

on random-forest approaches and are thus capable of

capturing the non-linear effects of predictors and their in-

teractions with minor extra computation burdens.

Simulations: Incorporating Imputed Data to Improve

the Power to Detect Phenotype-Expression

Correlations

When directly collecting certain tissues in a specific cohort

is challenging and when resources are available, one can
The Am
impute expression data on inaccessible tissues by using

available information and potentially GTEx as a reference.

We argue that the imputed data can be treated as supple-

mental data or supporting data to enhance the primary

analysis on the basis of the observed expression data. To

support this claim, we took the expression data on whole

blood, adipose tissue, and nerve tissue and the genotype

data in the GTEx pilot project and then simulated pheno-

types that were correlated (at 0.25 and 0.3) with gene-

expression levels in the nerve tissues. We treated 50% of

the nerve tissues as ‘‘uncollected’’ and set the expression

levels in those tissues as missing.

By applying the proposed MixRF þ iPC method to the

10,919 genes in the observed data (with blood, adipose tis-

sue, and 50% nerve tissue) and estimating the imputation

correlation for each gene, we obtained 1,537, 762, and 324

genes with estimated imputation correlations ðbr impÞ
greater than 0.3, 0.4, and 0.5, respectively. At the signifi-

cance thresholds of 5% and 10% false-discovery rates

(FDRs), we compared the power to detect the phenotypes

associated with the nerve expression levels on the basis

of (1) only the observed nerve expression data (50% of

the complete nerve data), (2) the combined observed and

imputed nerve expression data with varying imputation

quality (br impR 0.3, 0.4, and 0.5), and (3) the complete

GTEx nerve expression data with 95 samples.

The results are presented in Table 1. Incorporating

reasonably imputed data helped to improve the power to

detect phenotype-expression correlations even when the

phenotype-expression correlations were not strong and/

or when the quality of the imputed data was not superb.

As the imputation quality improved, the power improve-

ment became more substantial. Analyses based on poorly
erican Journal of Human Genetics 98, 697–708, April 7, 2016 701



Table 1. Power Comparison for Detecting Phenotype-Expression Correlations on the Basis of the Observed, Observed and Imputed, and
Complete Expression Data

No. of Genes Passing Estimated
Imputation-Correlation ðbr impÞ
Thresholds

Phenotype-
Expression
Correlations FDR

Observed
Data Only

Observed and
Imputed Data Complete Data

1,537 genes ðbr impR0:3Þ 0.25 0.05 0.269 0.377 0.953

0.1 0.455 0.586 1

0.3 0.05 0.548 0.738 1

0.1 0.729 0.898 1

762 genes ðbr impR0:4Þ 0.25 0.05 0.230 0.652 0.933

0.1 0.391 0.839 1

0.3 0.05 0.613 0.734 1

0.1 0.778 0.887 1

324 genes ðbr impR0:5Þ 0.25 0.05 0.454 0.534 1

0.1 0.688 0.744 1

0.3 0.05 0.676 0.784 1

0.1 0.883 0.926 1

More specifically, the three sources of expression data were (1) only the observed nerve expression data (from which 50% of GTEx nerve tissue was missing),
(2) the observed and imputed data with varying imputation quality, and (3) the complete GTEx nerve expression data. The significance thresholds were 5%
and 10% FDRs. We assessed the power comparison when the phenotype-expression correlations were 0.25 and 0.3 for three groups of genes with estimated
imputation correlations of at least 0.3, 0.4, and 0.5 (representing fair, moderate, and good imputation quality, respectively).
imputed genes might not help or might even hurt the po-

wer of the analyses. Although only a small proportion of

imputed gene-expression levels might be retained in the

subsequent analyses after exclusion of the poorly imputed

expression levels, those genes are often affected by multi-

ple eQTLs and/or related to other factors in functional

pathways and, as such, are often of biological interest.

Analyses of GTEx Data: Imputing Uncollected GTEx

Tissues

The GTEx project is collecting 44 human tissue types, and

most of them are difficult to access. In the pilot data, only

nine tissue types were collected in more than 80 out of

175 donors, and the remainder yielded tissue-specific sam-

ple sizes of less than 40. We sought to impute the uncol-

lected GTEx tissues by using MixRF þ iPC (Figure 1A). We

conducted a 10-fold CVanalysis focusing on the nine tissue

types to evaluate the imputation performancewithinGTEx.

Specifically, we randomly split theGTEx transcriptome data

on the nine tissue types into ten subsamples each contain-

ing data on one-tenth of the collected tissues from each tis-

sue type. In each round of CV analysis, we treated one

subsample of the transcriptome data as unobserved and un-

collected and the other nine subsamples as observed or

collected. For eachgene,we imputed theunobservedexpres-

sion levels in uncollected GTEx tissues by using the expres-

sion levels in the collected tissues (the imputation scheme is

illustrated in Figure 1A). We repeated the exercise for each

subsample of data, combined the imputed data, and evalu-

ated the true tissue-specific imputation correlations.

The imputation performance of MixRF was generally

comparable with that of its extension, MixRF þ iPC,
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although the latter performed better in imputing gene

expression with no eQTLs or in the blood tissue (Table

S1). We also compared the true imputation correlations

from MixRF þ iPC with the standard practice of using

blood expression as a surrogate for target-tissue expression

(hereafter referred to as ‘‘blood surrogate’’) (Figure 3). The

imputation performance of MixRF þ iPC largely relied on

the heritability and tissue-tissue expression-level correla-

tions for each gene, both of which were directly related

to the number of cross-tissue eQTLs. For genes with five

or more combined cis- and trans-eQTLs, the median true

imputation correlation was 0.48. For genes with 10þ and

30þ eQTLs, the median true imputation correlation

increased to 0.55 and 0.63, respectively. Note that

although we used PLINK36 to perform LD pruning (with

a LD threshold of 0.5 and a window size of 50 bp) on the

SNVs, moderate LD could still remain among the eQTLs.

Among the 10,919 expressed genes that we considered,

the genes with 5þ, 10þ, and 30þ eQTLs in at least one sub-

sample of the CV data numbered 1,065 (9.8%), 465 (4.3%),

and 170 (1.6%), respectively.

Generally, expression in whole blood is weakly corre-

lated (with a median correlation of 0.1) with expression

in other tissues and is a poor surrogate for the latter. We

compared the imputation performance of the proposed

methods with that of additional competing imputation

methods for genes with different numbers of eQTLs (Table

S1). Additionally, we evaluated the sample-level true impu-

tation correlations (Figure S1), whichwere calculated as the

correlations between the observed and imputed gene ranks

for each sample in each tissue. The imputed gene ranks

could be useful in analyses of gene-set enrichment.38
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Figure 3. Boxplots of Gene-Level True Imputation Correlation by Tissue Type
The results are based on a 10-fold CV analysis within GTEx tissues. Specifically, we randomly split the GTEx transcriptome data into ten
subsamples, each of which contained one-tenth of the collected tissues from each tissue type. In each round of CV analysis, we treated
one subsample of the transcriptome data as unobserved and the other nine subsamples as observed. We then imputed the unobserved
data. Figure 1A illustrates the imputation scheme in one round of the CV analysis. We repeated the analysis for each subsample of data.
Each correlation was calculated as the Spearman’s correlation between the observed and combined imputed values of a given gene in the
current tissue. We compared the true imputation correlations based on MixRF þ iPC for genes with zero, at least five, and at least ten
eQTLs with the correlations based on blood surrogate. Note that the eQTLs for each gene can be in moderate LD.
To evaluate the impact of sample size on imputation,

we performed a 3-fold CV analysis within GTEx tissues

and compared the results with those obtained from the

10-fold CV analysis (Table 2). In each round of the 3-fold

and 10-fold CV analyses, two out of three and nine

out of ten data subsamples, respectively, were treated as

‘‘observed,’’ yielding average tissue-specific sample sizes

of 73 and 99, respectively. We found that sample size sub-

stantially affected imputation performance largely because

sample size substantially affected the power to detect

cross-tissue eQTLs. With a 36% sample-size increase in

the 10-fold CV analysis and the same significance criteria,

we detected 65% more cross-tissue cis-eQTLs (8,792 versus

5,332) and 225% more cross-tissue trans-eQTLs (12,884

versus 3,976). As a result, the median true imputation

correlation across the genome improved from 0.305 to

0.349. Additional simulations are presented in the Supple-

mental Data to further demonstrate the impact of sample

size on imputation. When more GTEx samples become

available, we expect further improvement in imputation

performance.

Overall, both eQTL and tissue-tissue expression-level

correlations play a major role in multi-tissue imputation.

The average estimated heritability for expressed genes was

reported to be 0.14 ~ 0.26 for different tissue types in other

studies,39,40 which roughly corresponds to an imputation

correlation of 0.37 ~ 0.51 if the appropriate SNVs were

selected in the imputation.According toour results, theme-

dian true imputation correlationbasedon linear regressions

that use only eQTLs as predictors (see ‘‘lm’’ in Table S1) was

much lower (~0.2), indicating that the current imputation
The Am
results could be improved if sample size were to increase

andmore eQTLs were detected and used in the imputation.

Additional comparison of linear-regression and mixed-

effects models (Table S1) showed that information on tis-

sue-tissue expression-level correlation helped improve the

absolute median imputation correlation by 0.1 ~ 0.3 for

genes with at least five or at least ten eQTLs. For genes

with no eQTLs, the median imputation correlation with

mixed-effects models was nearly 0.3 and was higher than

that from using blood expression as a surrogate.

Analyses of GTEx Data: Using GTEx as a Reference to

Impute Other Studies

Tissue accessibility often limits the feasibility and scale of

multi-tissue expression studies in specific cohorts. Multi-

tissue expression imputation would be helpful when direct

measurements in specific tissues are limited or not avail-

able and when expression data on related tissues are exist-

ing or accessible. Incorporating expression in secondary

and related tissue types into the primary data might

enhance the power to detect differentially expressed genes

under different phenotypic conditions and provide in-

sights into disease etiology from a multi-tissue perspective.

Multi-tissue imputation could impute expression in the

uncollected tissues, which could be used as supplemental

data to be combined with the primary observed data in

the secondary data analysis. In those imputation scenarios,

one can use GTEx as a reference and impute gene expres-

sion in the uncollected tissues or tissue types in non-

GTEx samples. Figure 1B shows an example of such

imputation scenarios.
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Table 2. Comparing 10-fold and 3-fold CV Analyses within GTEx Tissues Shows the Impact of Sample Size

10-fold CV Analysis 3-fold CV Analysis

Average sample size across tissues 98.9 73.2

Average no. of cis-eQTLs 8,792 5,332

Average no. of trans-eQTLs 12,884 3,976

Average median true imputation
correlation

0.349 0.305

No. of
Genes

Median True
Imputation
Correlation

No. of Genes with
True Imputation
Correlation R 0.5 (%)

No. of
Genes

Median True
Imputation
Correlation

No. of Genes with
True Imputation
Correlation R 0.5 (%)

Genes with no eQTLs 9,240 0.307 207 (2.2) 10,063 0.271 88 (0.9)

Genes with one eQTL 5,062 0.338 250 (4.9) 2,521 0.317 62 (2.5)

Genes with two eQTLs 2,486 0.368 228 (9.2) 767 0.355 63 (8.2)

Genes with three eQTLs 1,394 0.386 191 (13.7) 371 0.390 44 (11.9)

Genes with four eQTLs 883 0.412 169 (19.1) 225 0.401 48 (21.3)

Genes with five to nine eQTLs 839 0.430 191 (22.8) 275 0.454 90 (32.7)

Genes with at least ten eQTLs 465 0.521 270 (58.1) 185 0.578 128 (69.2)

Increasing the sample size affected the power to detect cross-tissue eQTLs and thus imputation results. The number of genes with x eQTLs is counted as the
number of genes with x eQTLs in at least one subsample of the CV data. For example, genes might have no eQTLs in one or several subsamples of the CV
data and have one or two eQTLs in other subsamples of the CV data. We calculated the true imputation correlation for genes with no eQTLs by only considering
the subsamples of the CV data in which the gene had no eQTLs. As such, there was overlap among genes with zero, one, or two eQTLs, etc.
We conducted another 10-fold CV analysis to evaluate

the feasibility of such imputation. Unlike in the 10-fold

CVanalysis conducted in the previous section, herewe split

theGTEx individuals into ten subsamples. In each round of

the current CV analysis, we treated nine subsamples of the

GTEx individuals as the ‘‘GTEx reference’’ and the other

subsample as testing samples from a new study. In the

new samples, we only observed the transcriptome data in

the three accessible tissues and used the data on the three

tissues with GTEx as a reference to impute the expression

in the uncollected tissues in the new samples (Figure 1B).

We used MixRF þ iPC to evaluate the tissue-specific

gene-level true imputation correlations in the six inacces-

sible tissue types (Figure 4). Blood surrogate achieved a me-

dian correlation of only ~0.1. In contrast, even for genes

with no eQTLs, MixRFþ iPC achieved amedian true impu-

tation correlation of 0.17–0.27 in different tissue types. For

genes with at least ten eQTLs, the median true imputation

correlation increased to ~0.4 across tissue types. The impu-

tation performance was better in nerve tissue than in other

tissues in that it achieved a median correlation of 0.37,

0.42, and 0.54 for genes with 5þ, 10þ, and 30þ eQTLs,

respectively. This might be attributable to the relatedness

between nerve tissue and adipose tissue and skin or to its

reaction to stimuli. We also assessed the sample-level true

imputation correlations (Figure S2), and the conclusions

were similar.

Additionally, one can also use multi-tissue imputation to

build on existing single-tissue expression and eQTL data.

One can collect the tissues of interest in a small set of

new samples in the specific cohorts as the learning tissues
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and then use those tissues together with the GTEx refer-

ence samples to impute the samples with expression data

only on a single tissue and not available for additional

data collection.

The multi-tissue imputation strategy can also be used in

designing future multi-tissue expression studies in certain

populations or ethnicities or with specific phenotypes.

One can utilize the GTEx resource and conduct CV ana-

lyses on the GTEx tissues. By leveraging tissue availability

and predictability, one can select the tissue types that are

most relevant and predictive for the target tissue types.

Using GTEx as a Reference in the Presence of Potential

Study Heterogeneity and a Validation Analysis

The performance of the proposed multi-tissue imputation

methods primarily depends on the predictive ability of

eQTLs and the tissue-tissue expression-level correlations.

We suggest including a reference-sample indicator variable

in the MixRF as a covariate when using GTEx as a reference

for imputing other non-GTEx samples with potential

study heterogeneity. When the eQTL effects or effects of

other covariates are sufficiently different among the

GTEx reference and the non-GTEx samples, the interaction

terms of the reference indicator and the eQTLs or other

covariates will be selected in building the random forest.

As such, in the presence of study heterogeneity, the estima-

tion of eQTL effects in the non-GTEx samples will be based

primarily on the non-GTEx samples only.

Recent studies have shown that the predictive ability of

eQTLs can be replicated across GTEx and other studies,20

and the expression patterns of many pharmacogenes
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Figure 4. Boxplots of Gene-Level True Imputation Correlation in Inaccessible Tissues in a New Study
The results are based on a 10-fold CV analysis of imputing uncollected tissues in the new samples while using GTEx as a reference.
Specifically, we split the GTEx individuals into ten subsamples. In each round of CV analysis, we used nine subsamples as a reference
and treated the other subsample as new. With GTEx data as a reference, we imputed the transcriptome data in the inaccessible tissues
on the basis of the accessible ones (blood, skin, and adipose) in the new samples. Figure 1B illustrates the imputation scheme in one
round of CV analysis. We repeated the analysis for each subsample of data. We compared the true imputation correlations based on
MixRF þ iPC for genes with zero, at least five, and at least ten eQTLs with the correlations based on blood surrogate.
investigated by the Pharmacogenomics Research Network

project can also be validated in the GTEx samples.41

To further validate the utility of the proposed methods

and of GTEx data as a reference in multi-tissue imputation

for non-GTEx samples, we applied MixRF to the IS-MA

study on insulin (INS [MIM: 176730]) sensitivity (accession

number GEO: GSE40234).35 Fifty-nine samples at the tails

of the distribution of insulin sensitivity were selected in

the study. The expression levels on adipose and muscle tis-

sues and genotype data are available on those 59 samples.

We considered 229 genes with preserved Ensembl IDs in

both GTEx and the IS-MA study. Such genes are likely to

have completely preserved gene structure across the two

datasets. We normalized the expression levels of each

gene within each study. We focused on imputing the

expression levels of those 229 genes in the muscle tissues

from the IS-MA samples.

We compared the performance of the following analyses

to impute the muscle-tissue expression levels in the IS-MA

samples: (1) imputing with GTEx reference and adipose

expression levels and eQTLs from the IS-MA study; (2)

imputing with GTEx reference and adipose expression

levels from the IS-MA study, but not eQTLs; and (3)

imputing on the basis of the eQTLs, but not GTEx as a refer-

ence, from the IS-MA study. We calculated the imputation

correlations of measured muscle-tissue expression levels

and the imputed values on the basis of the three sets of an-

alyses. Figure S3 shows the quantile-quantile plot of the

three sets of imputation correlations against the null corre-

lations. Including GTEx as a reference greatly improved the

imputation performance, and the mean imputation corre-

lation of those 229 genes according to analysis 1 was
The Am
0.313. When imputation was based only on tissue-tissue

expression-level correlations (analysis 2) or eQTLgenotypes

(analysis 3), the imputation correlations substantially

deviated from the null correlations. This implies that both

tissue-tissue expression-level correlations and eQTL geno-

types help in multi-tissue imputation. MixRF with GTEx

as a reference combines the two sources of information

and improves the overall imputation.
Discussion

The joint analysis of transcriptome data from multiple

tissues would enhance the power of analyzing expres-

sion data and ultimately improve our understanding of

biological mechanisms from a systems perspective. The

bottleneck that limits the feasibility and scale of studies

of multi-tissue expression is tissue accessibility. When a

tissue is not accessible in an individual, the gene-expres-

sion levels in that tissue are not available and are con-

sidered ‘‘missing.’’ We propose algorithms for imputing

multi-tissue expression data. The proposed approaches

can be used for imputing expression on uncollected tissues

in the GTEx project to facilitate downstream analyses and,

moreover, for imputing inaccessible tissues in other

expression studies while using GTEx as a reference.

Different from methods that predict expression levels on

the basis of eQTL information,20 our proposed methods

impute multi-tissue expression levels on the basis of

eQTLs, tissue-tissue expression-level correlations, and

tissue-specific PCs of expression data and harness genetic

factors, major developmental biological factors, and
erican Journal of Human Genetics 98, 697–708, April 7, 2016 705



environmental factors. Additionally, our MixRF approach

captures the dominant and recessive eQTL effects, as well

as the interactions among eQTLs, tissue types, and other

factors. Most existing single-tissue imputation methods

rely on gene-gene correlations, which can be unstable.

Our methods outperform existing imputation methods in

multi-tissue imputation.

Multi-tissue imputation can be helpful when direct mea-

surements in the desired tissues are uncollected or difficult

to collect, and one can use the imputed data as supplement

data to support scientific findings from observed data.

Within the GTEx project, we can impute the expression

in the uncollected tissues and use imputed expression

data to enhance the detection of protein QTLs or facilitate

the construction of integrative genomics networks. More

importantly, by using GTEx as a reference, we can poten-

tially impute inaccessible tissues inother expression studies,

impute and recapitalize on existing data, design effective

multi-tissue expression studies in other populations or eth-

nicities, and further informdisease-related tissues.We antic-

ipate that our multi-tissue imputation method will initiate

researchonmethodsdevelopment andenable thediscovery

of scientific findings with the use of multi-tissue expression

data within and beyond the GTEx project.

One caveat of the current analyses is that we used only

cross-tissue eQTLs in the imputation. The sample size in

the GTEx pilot data limits the power to detect tissue-spe-

cific eQTLs. We believe that a larger sample size in the later

phase of GTEx data will bring increased power to detect

both cross-tissue and tissue-specific eQTLs and thereby

substantially improve imputation performance. An alter-

native strategy for selecting eQTLs is to combine the eQTLs

reported in other studies, which ideally involve multiple

tissue types.

We anticipate that the later phase of GTEx data will

bring additional challenges to methods development,

e.g., the scalability of the approaches and the selection of

the accessible tissues for maximizing imputation accuracy.

In addition to enabling multi-tissue imputation, it is desir-

able to develop methods that account for observed and

imputed expression values in the subsequent disease- or

trait-related analyses and to enable multi-tissue network

and integrative analyses.
Appendix A

Algorithm 1: MixRF, a Mixed-Model-Based Random-

Forest Approach for Imputing Multi-tissue Expression

1. For each gene, use externally defined eQTLs or select

eQTLs on the basis of the currently observed data.

Obtain the adaptive weights (wkt) for each eQTL in

each tissue type.

2. Initialize the random-effects estimate in Equation 2,

bgð0Þ
i ¼ 0.

3. At the jth iteration, let u
ðjÞ
it ¼ yit � bgðj�1Þ

i . Build a

random forest with u
ðjÞ
it as the response and weighted
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genotypes in each tissue and other covariates (ci) as

predictors, u
ðjÞ
it ¼ f ðw1tx1i;.;wKtxKi; ciÞ þ dit : Obtain

the predicted value buðjÞ
it .

4. Let u
ðjÞ
it ¼ yit � buðjÞ

it . Fit a linear random-effects-only

model with u
ðjÞ
it as the response, u

ðjÞ
it ¼ g

ðjÞ
i þ eit :

Obtain the estimated random effect bgðjÞ
i .

5. Iterate through steps 3 and 4 until the change in the

likelihood is small.

Algorithm 2: MixRF þ iPC, a MixRF Extension

Incorporating PCs of Expression Data

0. Select eQTLs.

1. For each tissue type, construct the top PCs of com-

bined observed and imputed expression data on

selected genes to capture unknown sample charac-

teristics and tissue-specific major developmental

patterns and environmental effects.
01
i. Impute the selected gene-expression levels (here,

we imputed the expression levels of ~1,000 genes

with at least three eQTLs) by using MixRF with

adaptively weighted eQTL genotypes and other

known covariates as predictors.

ii. For each tissue type, perform SVD on the com-

bined observed and imputed data on the selected

genes, and keep the top five PCs. (Note that the

results based on the top ten PCs are similar.)

2. Apply MixRF to each gene by using gene expression

as the response and using adaptively weighted eQTL

genotypes, other known covariates, and the con-

structed tissue-specific PCs from step 1 as predictors.
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R software package for MixRF and MixRF þ iPC, https://github.
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