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SUMMARY

Insulin/IGF-1 signaling (IIS) regulates aging in
worms, flies, and mice through a well-character-
ized, highly conserved core set of components.
IIS also regulates early developmental decisions,
the reproductive status of the animal, innate im-
munity, and stress-resistance functions. In C.
elegans, the sole insulin/IGF-1 receptor, DAF-2,
negatively regulates the FOXO transcription fac-
tor, DAF-16. We report here on a new component
of the IIS longevity pathway, SMK-1, which spe-
cifically influences DAF-16-dependent regula-
tion of the aging process in C. elegans by regulat-
ing the transcriptional specificity of DAF-16
activity. Localization analysis of DAF-16 places
SMK-1 downstream of DAF-16’s phosphoryla-
tion-dependent relocation to the nucleus. Physi-
ological and transcription analyses indicate that
smk-1 is required for the innate immune, UV,
and oxidative stress but not the thermal stress
functions of DAF-16. SMK-1 therefore plays
a role in longevity by modulating DAF-16 tran-
scriptional specificity without affecting other
processes regulated by IIS.

INTRODUCTION

Genetic studies in organisms ranging from yeast to mam-

mals have revealed several independent pathways capa-

ble of regulating life span and youthfulness. In the nema-

tode Caenorhabditis elegans, perturbations in at least

three distinct processes—insulin signaling, mitochondrial

respiration, and caloric intake—create long-lived, stress-

resistant, thermotolerant animals (Dillin et al., 2002b; Ken-

yon et al., 1993; Lakowski and Hekimi, 1998; Lee et al.,

2003b). Single-gene mutations affecting these pathways

not only significantly extend life span but also impair larger

signaling networks responsible for regulating multiple

functions. Manipulations of these core pathway compo-

nents result in a wide range of metabolic and physiological

consequences. Because signaling cascades often appear
C

to converge upon a single transcription factor, additional

temporal, spatial, and physical modification of the path-

way is necessary to ensure specificity.

In worms, insulin/IGF-1 signaling (IIS) regulates distinct

functions through a well-characterized, highly conserved,

core set of components. Initiation of the signaling cascade

occurs when DAF-2, the sole insulin/IGF-1 receptor, binds

to an unknown insulin-like ligand. Activated DAF-2 recruits

AGE-1, a phosphatidylinositol 3-kinase (PI(3)K) (Morris

et al., 1996). Subsequent production of PIP3 activates the

AKT-family kinases (Hertweck et al., 2004; Paradis and

Ruvkun, 1998) ina PDK-1-kinase-dependentmanner (Para-

dis et al., 1999). These active AKT-family kinases phosphor-

ylate the forkhead transcription factor DAF-16 (Henderson

and Johnson, 2001; Lee et al., 2001; Lin et al., 2001), pre-

venting DAF-16 from entering the nucleus and rendering it

incapable of promoting or repressing transcription of genes

required for DAF-2-dependent functions. Thus, multiple ef-

fector kinases of the DAF-2 signaling pathway converge to

negatively regulate DAF-16 activity by changing its localiza-

tion within the cell. All known daf-2 mutant phenotypes are

completely dependent upon DAF-16 (Dorman et al., 1995;

Gottlieb and Ruvkun, 1994; Henderson and Johnson,

2001; Kenyon et al., 1993; Larsen et al., 1995; Lee et al.,

2001, 2003a; Tissenbaum and Ruvkun, 1998). Because of

this convergence, careful analysis of the processes that

govern the separate functions of DAF-16 will be critical for

understanding how IIS specificity is achieved in worms

and, by extension, possibly in humans.

The transcriptional targets of DAF-16 include a large

number of genes required for heat-shock response, detox-

ification of oxidative damage, and resistance to bacterial

infection (Lee et al., 2003a; McElwee et al., 2004; Murphy

et al., 2003). Although all of these genes require DAF-16

for their transcription, subsets of these genes are regulated

independently of each other in response to specific envi-

ronmental stressors (Hsu et al., 2003). More dramatically,

the mammalian homolog of DAF-16, FOXO3a, can activate

subsets of genes that function in direct opposition to each

other, promoting both apoptosis and cell survival (Brunet

et al., 2004; Tran et al., 2002).

Lowered DAF-2 activity also influences broader physio-

logical processes such as development and reproductive

timing (Dillin et al., 2002a; Gems et al., 1998; Gottlieb and
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Ruvkun, 1994). In response to low levels of food, high tem-

perature, or overcrowding, C. elegans can alter its devel-

opmental program to enter a state of larval arrest, dauer

diapause (Riddle, 1997). Loss-of-function mutations in

IIS signaling cause precocious entry into diapause and in-

creased longevity (Friedman and Johnson, 1988a, 1988b;

Hertweck et al., 2004; Kenyon et al., 1993; Paradis et al.,

1999; Paradis and Ruvkun, 1998). The dauer diapause

and longevity functions of the IIS pathway are temporally

separable (Dillin et al., 2002a); additionally, not all muta-

tions that alter dauer development increase life span (Ken-

yon et al., 1993). The IIS pathway also controls the timing of

reproduction (Gems et al., 1998; Larsen et al., 1995). Self-

fertile hermaphrodite wild-type animals reproduce over a 5

day period early in adulthood. Reduced IIS prolongs the

period of reproduction for up to 9 days (Gems et al.,

1998). This function of the IIS pathway is also temporally

separable from the dauer and longevity functions and is re-

quired during the L3 larval stage (Dillin et al., 2002a). The

wide range of genes that DAF-16 independently regulates

suggests the existence of additional mechanisms by which

target-gene specificity is achieved.

Previous research has suggested several models by

which DAF-16/FOXO3a may independently target differ-

ent subsets of genes. For example, although nuclear local-

ization of DAF-16 remains a primary requirement for

DAF-16 target-gene transcription, nuclear localization of

DAF-16 is not sufficient for increased life span (Lin et al.,

2001). Robust overexpression of wild-type daf-16 can

only modestly increase longevity (Henderson and John-

son, 2001). Moreover, daf-16 is not transcriptionally upre-

gulated in daf-2 mutant animals (McElwee et al., 2004;

Murphy et al., 2003).

DAF-16 does not appear to be regulated solely by tis-

sue-specific expression. In daf-16;daf-2 mutant worms,

expression of daf-16 is required in neurons to initiate dauer

formation and in intestinal cells to increase longevity (Li-

bina et al., 2003). However, DAF-16 is not in itself differen-

tially excluded from any of these sets of tissues during de-

velopment (Lin et al., 2001). Finally, posttranslational

modification of DAF-16 may play a role in its transcriptional

specificity. In addition to negative regulation of DAF-16/

FOXO3a activity by the AKT and SGK kinases, the histone

deacetylase SIR2, sir-2.1 in worms, modulates DAF-16/

FOXO3a activity (Brunet et al., 2004; Daitoku et al., 2004;

Motta et al., 2004). However, overexpression of sir-2.1 in-

creases dauer diapause, indicating that sir-2.1 is not suffi-

cient to specify the different functions of daf-16 (Tissen-

baum and Guarente, 2001).

Taken together, these observations imply that DAF-16

does not act alone to affect longevity but rather acts in con-

cert with other molecules. In our search for factors that

specify IIS pathway processes, we identified a single

gene, smk-1, which is required for the longevity function

of DAF-16. Using genetic, molecular, and physiological

analysis, we show that SMK-1 is essential for DAF-16-de-

pendent regulation of the aging process in C. elegans but

does not mediate dauer formation or the reproductive func-
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vides transcriptional specificity for the regulation of innate

immunity, UV, and oxidative stress but is not required for

the thermal stress function of DAF-16. We thus report the

discovery of a factor whose activity appears specific to

the regulation of IIS-mediated longevity in C. elegans.

RESULTS

Identification of smk-1

SMEK (suppressor of MEK null) was initially identified in

Dictyostelium discoideum from a second-site suppressor

screen in a DdMEK1 null strain (Mendoza et al., 2005). Ini-

tial studies in mammalian cells show that mammalian

SMEK1 is phosphorylated in response to stress (H.M.

and T.H., unpublished data). In worms, the presence of

a single SMEK1 homolog, smk-1, facilitates its genetic

analysis. To further the analysis of SMEK1, we used RNAi

depletion of worm smk-1 to measure the pathogen resis-

tance as an indication of stress response and found that

animals exposed to the pathogenic bacterium Pseudomo-

nas aeruginosa died rapidly after treatment with smk-1

RNAi, much like animals that were fed daf-16 RNAi (data

not shown). Because daf-2 signaling in worms affects

both innate immunity (Garsin et al., 2003) and stress resis-

tance (Larsen 1993), we were prompted to examine the

role of smk-1 within the insulin/IGF-1 pathway.

SMK-1 Spatially and Temporally Colocalizes

with DAF-16

As a first step in exploring a functional connection between

daf-16 and smk-1, we examined the timing and localization

of SMK-1 within wild-type animals. Using a gfp-tagged

smk-1 cDNA construct under the control of the endogenous

smk-1 promoter to create a stable transgenic line, we ob-

served strong nuclear localization of SMK-1-GFP in intesti-

nal cells (Figure 1A). GFP fluorescence was also detected in

the nuclei of several hypodermal cells and in many neurons

in the head and tail (Figures 1B and 1C). The GFP signal was

reduced upon treatment with smk-1 RNAi (Figure 1D; see

also Figures S1A and S1B in the Supplemental Data avail-

able with this article online), and Western blot analysis

showed that SMK-1 protein levels were reduced upon

smk-1 RNAi treatment (Figure 1E). Endogenous SMK-1

could also be detected in the nuclei of intestinal cells, hypo-

dermal cells, and head and tail neurons by staining with af-

finity-purified SMK-1 antibodies (Figure S2). Examination of

SMK-1-GFP at different larval stages revealed patterns of

consistent nuclear localization throughout development

(Figure S1C). Importantly, these assays indicated that

SMK-1 was temporally and spatially colocalized with active

DAF-16, which is active in transcribing genes when ex-

pressed in the nuclei of these cells (Libina et al., 2003).

smk-1 Is Required for daf-16-Dependent Regulation

of Longevity

daf-16 regulates genes necessary for daf-2-dependent

longevity in worms. Using RNAi against smk-1, we tested



whether smk-1, like daf-16, was required for the extension

of daf-2 mutant life span. Reduced levels of smk-1 com-

pletely suppressed the extended longevity of daf-

2(e1370) mutant animals (Figure 2A; Table 1). However,

smk-1 RNAi only slightly shortened the life span of wild-

type worms (Figure 2B; Table 1). The level of life-span sup-

pression in wild-type animals treated with smk-1 RNAi was

Figure 1. Expression of SMK-1 Is Coincident with DAF-16

(A–C) Using a C-terminal GFP-tagged SMK-1 under control of the en-

dogenous smk-1 promoter, nuclear GFP fluorescence is apparent in all

intestinal cells (red arrows), head (B) and tail (C) neurons (open white

arrows), and several hypodermal cells (closed white arrows).

(D) SMK-1-GFP expression is absent in smk-1 RNAi-treated animals.

Endogenous gut autofluorescence remains. In (A)–(D), (a) is a fluores-

cent and (b) is a composite fluorescent/DIC image.

(E) smk-1 RNAi reduces SMK-1 protein level as indicated by the West-

ern blot using affinity-purified anti-SMK-1 antibody.
C

similar to the reduced life spans observed in daf-16 RNAi-

treated animals (Figure 2B; Table 1).

Because reduced smk-1 gene activity suppressed the

extended life span of daf-2 mutant animals back to wild-

type levels, we tested whether smk-1 RNAi was acting spe-

cifically on the insulin/IGF-1 pathway or whether it caused

a general decline in longevity in all long-lived mutant ani-

mals. Mutation or reduced expression of components of

the mitochondrial electron transport chain (ETC) increases

longevity independently of daf-16 activity (Dillin et al.,

2002b; Feng et al., 2001; Lee et al., 2003b). We tested

whether smk-1 was required for the increased longevity

of animals treated with cyc-1 RNAi or isp-1(qm150) and

clk-1(qm30) mutants. We found that smk-1 RNAi only

slightly suppressed the extended life span of animals

with compromised complex III activity, i.e., the cyc-1

RNAi-treated animals and isp-1(qm150) mutant animals

(Figures 2C and D, respectively; Table 1). Additionally,

smk-1 RNAi did not fully suppress the long life span of

clk-1(qm30) mutant animals (Table 1), defective in mito-

chondrial ubiquinone synthesis (Jonassen et al., 2001;

Miyadera et al., 2001).

It is important to note that in each of these experiments,

smk-1 RNAi-treated animals lived as long or longer than

the same animals treated with daf-16 RNAi. Previous re-

search found that a loss of daf-16 activity in this setting

slightly decreases the life span of mitochondrial mutants,

but life span is still greatly enhanced compared to wild-

type or daf-16 mutant animals (Dillin et al., 2002b; Lee

et al., 2003b). We did notice that both smk-1 and daf-16

RNAi could suppress the life span of the ETC mutants

slightly. However, the degree of life-span suppression

was minor when compared to the effects of these RNAi

treatments on the life span of daf-2(e1370) mutants. For

example, smk-1 RNAi reduced the life span of isp-1 mu-

tants by only 6.7 days, or 20.4% of the total life span,

whereas it reduced the life span of daf-2(e1370) mutants

by a much larger period, 21.6 days, a 48.2% decrease in

longevity (Table 1). Additionally, there was no significant

difference between the life span of worms treated with

cyc-1 RNAi and smk-1 RNAi and those treated with cyc-

1 diluted with vector alone (p = 0.3592; Figure 2C and Table

1). Our results are consistent with hallmarks of daf-16 inde-

pendence of mitochondrial-mediated longevity estab-

lished previously (Lakowski and Hekimi, 1998; Dillin

et al., 2002b; Lee et al., 2003b). The dispensability of

smk-1 in pathways that work independently of daf-16 ac-

tivity confirms that smk-1 RNAi does not cause a general

sickness in long-lived animals but rather specifically af-

fects IIS-regulated life span.

To further define the role of smk-1 in IIS, we asked

whether the function of smk-1 was coincident with or sep-

arable from the requirements for daf-16 in DAF-2-path-

way-mediated longevity. We first tested whether smk-1

RNAi treatment reduced the life span of daf-16(mu86) mu-

tant animals. If reduced smk-1 expression were causing

a general sickness in worms, we would have anticipated

that daf-16 mutants also would show an even further
ell 124, 1039–1053, March 10, 2006 ª2006 Elsevier Inc. 1041



Figure 2. smk-1 Is Required for the Increased Longevity of Insulin/IGF-1 Signaling

In all cases, the blue line depicts animals grown on bacteria with an empty RNAi vector, and the red line depicts animals grown on bacteria producing

smk-1 dsRNA. In cases where daf-16 RNAi was required, the green line depicts animals grown on bacteria expressing daf-16 RNAi.

(A) daf-2(e1370) long-lived mutant animals.

(B) N2, wild-type animals.

(C) Long-lived cyc-1 RNAi (complex III) treated animals. Control life-span experiments to verify the efficiency of double RNAi can be found in Figure S3

and Table S1.

(D) isp-1(qm150) long-lived mutant animals.

(E) daf-16(mu86) null mutant animals.

(F) glp-1(e2141) long-lived mutant animals. Statistical data can be found in Table 1.
reduction in life span upon treatment with smk-1 RNAi. Un-

like its effects on wild-type animals, reduced smk-1 activity

did not reduce the life span of daf-16 null mutant animals

(Figure 2E; Table 1). We did observe that the life span of

daf-16(mu86) animals could be further shortened by the

loss of other life-span regulatory genes such as hsf-1 (Ta-

ble 1), a result that indicated that the short life span of daf-

16(mu86) mutants could be further shortened by genes al-

ready known to regulate the aging process (Hsu et al.,

2003). The inability of smk-1 RNAi to sicken daf-16(mu86)

worms suggests that the requirement for smk-1 in the reg-

ulation of longevity in wild-type animals is coincident with

the requirement for daf-16.
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smk-1 Is Required for the Long Life Span

of Germline-Ablated Animals

The overlapping function of smk-1 with daf-16 in wild-type

animals suggests that smk-1 might also be required for daf-

16-dependent increases in longevity mediated by other

mechanisms. Because daf-16 is essential for the extended

life span observed in wild-type animals lacking a germline

(Hsin and Kenyon, 1999), we asked whether genetically

germline-ablated animals required smk-1 for increased

life span. Using glp-1(e2141) mutant animals that lack

germline cells at the nonpermissive temperature (25ºC),

we found that these long-lived mutant animals required

smk-1 for their increased longevity (Figure 2F; Table 1).



Table 1. Effects of smk-1 RNAi on Life Span

Treatment

Mean Life Span ±
SEM (Days) p Value

75th Percentile

(Days)

(Total Number of

Animals Died/Total)

daf-2(e1370) mutant worms 20ºC

Vector (control) 48.2 ± 1.2 56 49/64

daf-16 RNAi 24.6 ± 0.6 <0.0001a 27 45/65

smk-1 RNAi 26.6 ± 1.5 <0.0001,a 0.0528b 34 57/64

glp-1(e2141) mutant worms 25ºC

Vector (control) 22.1 ± 0.9 28 74/80

daf-16 RNAi 11.5 ± 0.3 <0.0001a 14 76/86

smk-1 RNAi 11.7 ± 0.3 <0.0001,a 0.5459b 14 67/81

isp-1(qm150) mutant worms 20ºC

Vector (control) 32.8 ± 1.8 40 24/55

daf-16 RNAi 20.1 ± 0.9 <0.0001a 24 42/79

smk-1 RNAi 26.1 ± 1.0 0.0001,a <0.0001b 31 31/76

N2 + cyc-1 RNAi 20ºC

Vector (control) 17.5 ± 0.5 20 46/78

cyc-1 RNAi (Complex III) 32.9 ± 1.4 <0.0001a 44 51/80

cyc-1 & Vector RNAi 23.6 ± 1.0 <0.0001a 30 68/82

cyc-1 & daf-16 RNAi 25.7 ± 1.1 <0.0001,a <0.0001,c 0.2303d 33 60/78

cyc-1 & smk-1 RNAi 25.6 ± 0.9 <0.0001,a <0.0001,c 0.6683,e

0.3592d
30 65/79

N2

Vector (control) 18.3 ± 0.6 22 69/100

daf-16 RNAi 14.4 ± 0.4 <0.0001a 18 80/100

smk-1 RNAi 14.5 ± 0.2 <0.0001,a 0.2248b 16 97/100

clk-1(qm30) mutant worms 20ºC

Vector (control) 19.3 ± 1.1 24 66/80

daf-16 RNAi 15.5 ± 0.7 0.0058a 17 55/79

smk-1 RNAi 16.6 ± 0.7 0.1405,a 0.1768b 17 50/80

daf-16(mu86) mutant worms 20ºC

Vector a (control) 10.8 ± 0.4 14 53/80

smk-1 RNAi 10.6 ± 0.3 0.3810a 11 61/80

Vector b (control) 11.0 ± 0.3 12 61/80

hsf-1 (RNAi) 8.0 ± 0.2 <0.0001a 10 63/80

p values were calculated for individual experiments, each consisting of control and experimental animals examined at the same

time. The 75th percentile is the age when the fraction of animals alive reaches 0.25. The total number of observations equals

the number of animals that died plus the number censored. Animals that crawled off the plate, exploded, or bagged were censored
at the time of the event. Control and experimental animals were cultured in parallel and transferred to fresh plates at the same time.

The log-rank (Mantel-Cox) test was used for statistical analysis.
a Compared to worms grown on HT115 bacteria harboring the RNAi plasmid vector, which were analyzed at the same time.
b Compared to worms cultured continuously on HT115 bacteria harboring the daf-16 RNAi at 20ºC, which were analyzed at the

same time.
c Compared to worms cultured continuously on HT115 bacteria harboring the cyc-1 RNAi plasmid, which were analyzed at the

same time.
d Compared to worms cultured continuously on HT115 bacteria harboring the cyc-1 RNAi plasmid and the empty RNAi plasmid,

which were analyzed at the same time.
e Compared to worms cultured continuously on mixed cultures of HT115 bacteria harboring the cyc-1 and daf-16 RNAi plasmid,

which were analyzed at the same time.
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Figure 3. SMK-1 and DAF-16 Are Not Codependent for Nuclear Entry

(A) Using a complementing daf-16::gfp fusion gene, DAF-16-GFP localization is nuclear in animals treated with daf-2 RNAi. Expanded insets show

several intestinal nuclei indicated with red arrows.

(B) DAF-16-GFP is absent in animals simultaneously treated with daf-2 and daf-16 RNAi; background gut autofluorescence is observed.

(C) DAF-16-GFP is nuclear in animals simultaneously treated with daf-2 and smk-1 RNAi (indicated with red arrows). Exposure times for (A)–(C) are

identical.
1044 Cell 124, 1039–1053, March 10, 2006 ª2006 Elsevier Inc.



Again, like daf-16 RNAi, smk-1 RNAi reduced the longevity

of these worms by 47% of their normal life span, a much

greater reduction than was seen with any of the mitochon-

drial mutants (Table 1).

Nuclear Localization of DAF-16 and SMK-1

In wild-type animals, DAF-16 is predominantly localized

in the cytoplasm as a result of inhibitory phosphorylation

of Ser/Thr residues by the AKT and SGK kinases

(Figure S4). However, in long-lived daf-2 mutant animals,

DAF-16 accumulates in the nucleus due to a lack of inhib-

itory phosphorylation at these sites (Henderson and John-

son, 2001; Hertweck et al., 2004; Lin et al., 2001). We

tested whether SMK-1 was required for the nuclear accu-

mulation of DAF-16. Using a complementing daf-16::gfp

fusion gene (Henderson and Johnson, 2001), wild-type an-

imals treated with daf-2 RNAi readily accumulated DAF-

16-GFP protein within intestinal nuclei, as monitored by

the nuclear accumulation of the GFP fluorescence signal

(Figures 3A and 3B). Interestingly, animals treated simulta-

neously with daf-2 and smk-1 RNAi accumulated DAF-16-

GFP in nuclei to the same degree as animals treated with

an equally diluted mixture of daf-2 and control RNAi plas-

mid (Figures 3C and 3D). Additionally, smk-1 RNAi did

not alter the cytoplasmic localization of DAF-16 in wild-

type animals (Figure S4). Thus, in response to decreased

insulin/IGF-1 signaling, DAF-16 can still enter the nucleus

of cells that have reduced smk-1 activity. It is important

to note, however, that despite the nuclear accumulation

of DAF-16, in the absence of smk-1, nuclear DAF-16 did

not result in increased life span, supporting previous con-

clusions that nuclear entry of DAF-16 is not sufficient for in-

creased longevity (Lin et al., 2001).

Because nuclear entry of DAF-16 was not dependent

upon smk-1, we asked whether nuclear entry of SMK-1

was dependent upon daf-16. Using the smk-1::gfp strain,

we found that treatment of animals with either daf-16 or

daf-2 RNAi did not alter nuclear accumulation of SMK-1-

GFP (Figures 3E and 3F, respectively). The localization of

SMK-1-GFP appears constitutively nuclear throughout

the life span of the worms (Figure S1C).

SMK-1 Is Required for DAF-16-Dependent

Transcriptional Activity

Because fluorescence levels of our smk-1::gfp overex-

pression lines did not appear visibly altered upon treat-

ment with daf-16 RNAi (Figure 3E; compare to worms

grown on vector alone, Figure 1A, which was taken at the

same exposure), and levels of DAF-16 observed using

a daf-16::gfp fusion gene were not diminished in animals

treated with smk-1 RNAi (Figures 3A and 3C and Figures
C

S4A and S4C), it did not appear that either gene directly

or indirectly regulated one another. Moreover, a loss of

smk-1 did not affect other autonomous functions of daf-

16 (see below). Based on the smk-1 RNAi life-span data,

however, one would predict that loss of smk-1 should re-

duce transcription of DAF-16-dependent genes. There-

fore, we asked whether smk-1 RNAi could influence the

mRNA levels of well-characterized DAF-16 target genes.

In long-lived daf-2(e1370) mutants, genes required for the

defense against oxidative stress such as superoxide dis-

mutase (sod-3) are upregulated (Honda and Honda, 1999).

Using daf-2(e1370) mutant worms expressing an integrated

sod-3::gfp reporter construct, we discovered that smk-1

RNAi reduced the normally robust GFP reporter expression

of this strain (Figure 4A). These effects were quantified using

a fluorimeter to measure the levels of sod-3::gfp expression

in an entire population of worms (Figure 4B). These results

were also confirmed using quantitative PCR to analyze

the endogenous sod-3 transcript of daf-2(e1370) animals

treated with either daf-16 or smk-1 RNAi (Figure 4C). We

also examined whether SMK-1 was required for the repres-

sor activity of DAF-16. Using Q-PCR, we tested whether

daf-15, a gene that is transcriptionally repressed by DAF-

16 (Jia et al., 2004), was also repressed in the absence of

smk-1. Reduced smk-1 resulted in increased expression

of daf-15 mRNA, suggesting that SMK-1 is required for

the transcriptional repressor activity of DAF-16 (Figure 4D).

SMK-1 Uncouples Oxidative, UV, and Innate

Immune Functions from the Thermal Stress

Function of DAF-16

Previous research has demonstrated a correlation be-

tween the upregulation of genes required for stress re-

sponse and increased longevity. Additionally, overexpres-

sion of several stress-response genes has been shown to

result in slight increases in life span (Hsu et al., 2003; Lee

et al., 2003a; Murphy et al., 2003). Because a loss of

smk-1 completely suppressed the longer life span of daf-

2(e1370) mutants, we hypothesized that it might be re-

quired for the regulation of multiple stress-response path-

ways that affect longevity in worms. The abolition of these

stress responses might cumulatively result in the restora-

tion of daf-2 mutants to a wild-type life span. Alternatively,

smk-1 might regulate the specific stress responses abso-

lutely required for daf-2(e1370) longevity. We conducted

physiological tests to measure the effects of smk-1 RNAi

on resistance to challenges of oxidative stress, ultraviolet

(UV) damage, pathogens, and heat shock. We found that

smk-1 was required for the increased resistance of daf-

2(e1370) mutant animals to the oxygen free-radical-pro-

ducing drug paraquat (Figure 5A), a result consistent with
(D) Quantification of nuclear accumulation of DAF-16-GFP of animals used in experiments in (A) and (C).

(E) Using a smk-1::gfp fusion gene under control of the endogenous smk-1 promoter, SMK-1-GFP is nuclear in animals treated with daf-16 RNAi.

(F) Using the same strain in (E), SMK-1-GFP is nuclear in animals treated with daf-2 RNAi. Exposure times of (E) and (F) are identical. In (A)–(C) and (E)

and (F), (a) is a fluorescent image and (b) is a composite fluorescent/DIC image; red arrows indicate nuclei of intestinal cells. Error bars represent

standard errors of the mean (SEM).
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Figure 4. SMK-1 Is Required for DAF-16-Mediated Transcription

(A) Fluorescent micrograph of sod-3::gfp reporter in daf-2(e1370) mutant animals treated with vector only (a), daf-16 RNAi (b), or smk-1 RNAi (c).

(B) Quantitative fluorometric analysis of animals from (A).

(C) Quantitative real-time PCR (Q-PCR) of endogenous sod-3 in daf-2(e1370) mutant animals.

(D) Treatment of daf-2(e1370) mutant animals with either daf-16 (green bar) or smk-1 (red bar) RNAi results in upregulation of daf-15 mRNA, as de-

termined by Q-PCR. Error bars represent standard errors of the mean (SEM).
smk-1’s requirement in sod-3 expression. smk-1 was also

required for the increased resistance of daf-2(e1370) mu-

tants to ultraviolet irradiation (Figure 5B). During our initial

characterization of smk-1, we discovered that reduced ex-

pression of smk-1 decreased the life span of wild-type

worms exposed to the pathogenic bacterium P. aerugi-

nosa (data not shown). We tested this effect on daf-

2(e1370) worms as well and found that loss of smk-1 sup-

pressed the immune response of daf-2(e1370) mutants to

this pathogenic bacterium (Figure 5C). Thus, physiological

evidence supports a requirement for smk-1 in the DAF-16-

mediated pathway that protect cells from oxidative stress,

DNA damage, and bacterial infection.

We also tested whether smk-1 was involved in resis-

tance to heat stress, a common correlate with increased

longevity. Because the innate immune response and resis-

tance to oxidative damage, UV damage, and heat stress

are tightly coupled to increased longevity regulated by

the IIS pathway, we were surprised to find that reduced

smk-1 activity did not affect the thermal stress response

of daf-2(e1370) mutant animals; however, daf-16 RNAi

did (Figure 5D).

We sought to determine whether DAF-16 transcriptional

targets were affected in a manner that corresponded with

our physiological stress data. Using semiquantitative

PCR, we found that, in daf-2(e1370) mutant animals, daf-

16 RNAi reduced expression of DAF-16 target genes re-

quired for protection against oxidative damage (sod-3 and

ctl-1) (Furuyama et al., 2000; Honda and Honda, 1999), in-

duced by pathogenic bacteria (lys-8) (Mallo et al., 2002;
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Murphy et al., 2003), and induced by heat stress (mtl-1

and hsp-12.6) (Moilanen et al., 1999; Walker and Lithgow,

2003). Like daf-16, reduced smk-1 activity reduced expres-

sion of sod-3 (Figures 4A–4C), ctl-1, and lys-8, but reduced

smk-1 activity did not reduce the expression of heat-stress-

inducible genes such as mtl-1 or hsp-12.6 (Figure 5E).

These physiological and transcriptional data indicate

that SMK-1 specifies the longevity function of DAF-16 by

affecting the efficiency of transcription of DAF-16 target

genes involved in oxidative and UV stress response and in-

nate immunity but is not required for DAF-16 regulation of

heat-stress-response genes. We believe that HSF-1, heat

shock factor 1, is required for the induction of this last class

of DAF-16 target genes, consistent with earlier findings

(Hsu et al., 2003). It is important to note that reduced

smk-1 activity completely suppressed the long life span

of daf-2(e1370) mutant animals but did not reduce the ther-

mal stress resistance of these mutants, suggesting that in-

creased thermal stress resistance is not sufficient to confer

increased longevity.

smk-1 Regulates Longevity Independently

of the Role of Insulin/IGF-1 in Development

and Reproduction

In worms, the insulin/IGF-1 pathway independently regu-

lates dauer development, reproductive timing, and longev-

ity (Dillin et al., 2002a). Because smk-1 is required for daf-

16-dependent longevity, we tested whether smk-1 was

also required for daf-16 to regulate the dauer development

and reproductive functions. To our surprise, we found that



Figure 5. smk-1 Acts Specifically to Affect daf-16 Physiological Functions and Target-Gene Specificity

(A–C) daf-2(e1370) animals require smk-1 for resistance to paraquat (oxidative damage) (A), UV resistance (DNA damage) (B), and pathogenic chal-

lenge to Pseudomonas aeruginosa (innate immunity) (C).

(D) smk-1 is not required for resistance to heat stress of daf-2(e1370) mutant animals. In all cases, blue line represents daf-2(e1370) animals treated

with vector only, green line represents animals treated with daf-16 RNAi, and red line represents animals treated with smk-1 RNAi. Stress conditions

are described in the Experimental Procedures.

(E) Semiquantitative RT-PCR analysis indicates that smk-1 is required for expression of ctl-1 (sod-3 shown in Figure 4) and lys-8, genes required for

oxidative stress and induced in response to pathogenic challenge, respectively. Reduced expression of smk-1 did not affect expression of either mtl-1

or hsp-12.6 DAF-16-induced genes in response to heat stress. Animals treated with daf-16 RNAi serve as positive controls for induction, and animals

grown on the empty vector serve as negative controls. In all experiments, act-1 served as control for PCR conditions. Wedges indicate serial dilution

of input cDNA for PCR reaction.
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Figure 6. Reduced Expression of smk-1 Does Not Decrease

the Susceptibility of daf-2(e1370) Mutants to Dauer Formation

(A) Percentage dauer formation of wild-type animals and daf-2(e1370)

mutants treated with empty vector, smk-1 RNAi, or daf-2 RNAi. Anal-

ysis was performed at 20ºC (semipermissive temperature, blue bars)

and 25ºC (restrictive temperature, red bars).

(B) Reproductive profiles of daf-2(e1370) mutant animals treated with

empty vector (blue bars), smk-1 RNAi (red bars), or daf-16 RNAi (green

bars).

(C) Model of SMK-1 regulation of DAF-16-dependent transcription.

SMK-1 remains constitutively nuclear and genetically interacts with
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reduced smk-1 activity did not alter dauer development or

reproductive timing. While wild-type animals treated with

smk-1 RNAi did not enter dauer diapause at 25ºC, daf-

2(e1370) mutant animals treated with smk-1 RNAi arrested

as dauers at 25ºC. In fact, we observed a slight but repro-

ducibly higher incidence of daf-2 mutant animals (as well

as daf-7, TGF-b mutant animals, data not shown) preco-

ciously entering dauer at the permissive temperature

when treated with smk-1, but not daf-16, RNAi (Figure 6A).

We were also surprised to find that reduced smk-1 activ-

ity in either wild-type or daf-2(e1370) mutant animals did

not affect the timing of reproduction. For example, wild-

type animals treated with smk-1 RNAi reproduced at the

same rate as animals on control bacteria (Figure S5), and

daf-2(e1370) mutant animals had a protracted reproduc-

tive schedule that was nearly identical to daf-2(e1370) mu-

tant animals treated with smk-1 RNAi, in contrast to the

shortened reproductive schedule of the same animals

treated with daf-16 RNAi (Figure 6B; Figures S1A and

S1B). Animals treated with smk-1 RNAi exhibited a de-

crease in brood size when compared to animals treated

with vector alone, a phenotype consistent with the loss

of a gene mediating DNA damage and repair.

Thus, consistent with previous studies, the insulin/IGF-1

pathway can diverge to regulate the timing of reproduction

independently of longevity (Dillin et al., 2002a). SMK-1 is

not required for DAF-2-dependent entry into dauer or

DAF-2-dependent extension of reproduction. SMK-1 ap-

pears to be unique in being a factor that is solely required

for the longevity function of DAF-16.

DISCUSSION

Collectively, our data suggest a model in which SMK-1 is

an essential nuclear coregulator of DAF-16 (Figure 6C). In

this model, DAF-16 interacts with different coregulators,

at different times and in different tissues, to specify the dif-

ferent processes mediated by IIS. SMK-1 acts specifically

with DAF-16 to promote longevity. Our genetic analysis in-

dicates that smk-1 is required for the increased longevity

due to reduced insulin/IGF-1 signaling and somatic gonad

signaling, both of which require intact daf-16. Reduced ex-

pression of smk-1 shortened the life span of wild-type an-

imals but did not further shorten the life span of daf-

16(mu86) null mutant animals, although hsf-1 RNAi did.

smk-1 RNAi did not cause a general sickness in animals,

as it did not restore the long life span of animals with com-

promised mitochondrial activities back to wild type levels.

DAF-16 to affect longevity. Additional as of yet unidentified factors

may interact with DAF-16 to regulate dauer development and repro-

duction. The role of SMK-1 in longevity is dependent upon the prior nu-

clear localization of DAF-16. Genetic interaction of SMK-1 with DAF-16

leads to regulation of genes specific for oxidative stress, UV stress,

and infectious challenge (shown as expanded inset). SMK-1 is not re-

quired for heat stress, but, instead, heat shock factor 1 (HSF-1) inter-

acts genetically with DAF-16 to mediate expression of this gene set.

Error bars represent standard errors of the mean (SEM).



SMK-1 is highly expressed in intestinal cells during adult-

hood and localized within the nuclei of these cells, the

site of action for DAF-16 to mediate longevity (Libina

et al., 2003). Our molecular data indicate that SMK-1 is

a coregulator of DAF-16 that mediates both transcriptional

activator and repressor activities of DAF-16. In worms, we

found that smk-1 was essential for upregulation of the

DAF-16-activated genes sod-3, ctl-1, and lys-8 and re-

pression of daf-15, a DAF-16-repressed gene.

We also discovered, surprisingly, that loss of smk-1

function in daf-2 mutant animals suppressed some forms

of stress resistance, such as oxidative, UV, and innate im-

mune responses, but was not required for the heat-stress

response. Intriguingly, we found that resistance to in-

creased heat stress is not sufficient to confer increased

longevity since daf-2(e1370) mutant animals treated with

smk-1 RNAi were resistant to heat stress but were not

long lived. Our transcriptional analysis indicated that

smk-1 was dispensable for the heat-stress-induced DAF-

16 target genes mtl-1 and hsp-12.6. Finally, and equally

surprisingly, we found that smk-1 was not required for

the dauer developmental and reproductive functions of

DAF-16. These data collectively suggest that SMK-1 func-

tions to specify the longevity function of DAF-16 without af-

fecting other DAF-16 functions, and, more specifically,

smk-1 acts to regulate the oxidative, UV, and innate im-

mune responses but not the heat-stress response.

SMK-1 Is Conserved from Yeast to Mammals

Homologs of SMEK proteins exist in diverse eukaryotic or-

ganisms, including yeasts, flies, worms, plants, and mam-

mals. C. elegans SMK-1 is most closely related to human

SMEK1 and shares 38% amino acid identity (Figure S6).

Several functional domains are conserved between

SMK-1 and the mammalian SMEK1, including an EVH1 do-

main; a conserved domain of unknown function (DUF625);

a third conserved region (CR3); and two conserved LXXLL

(LDALL) and LLXXL (LLSTL) motifs, used by mammalian

transcriptional coactivators such as PGC-1a and p300/

CBP to bind to either PPAR-g, a nuclear hormone receptor,

or the forkhead transcription factor FOXO1 (Puigserver

et al., 2003; Puigserver and Spiegelman, 2003).

The high degree to which smk-1 is conserved from yeast

to mammals suggests that smk-1 may affect longevity and

stress responses in other organisms as well. Mutant

strains defective in the yeast ortholog of smk-1, psy2, are

viable but are sensitive to platinum and some anticancer

drugs (Wu et al., 2004), while mutations in the fly ortholog,

flfl, are lethal (Spradling et al., 1999). Recent publications

have identified psy2 as having a role in mediating DNA

damage responses in a potentially Rad53-dependent

manner (Gingras et al., 2005). This work suggests that, in

some cases, psy2 may physically interact with a PP4 ser-

ine/threonine protein phosphatase complex to mediate

transcription. Furthermore, a similar ternary complex con-

taining PP4 is found in human cells (Cohen et al., 2005).

This offers a potentially intriguing model by which smk-1

could mediate longevity. smk-1 could be involved in insulin
signaling by recruiting a phosphatase to the DAF-16/

FOXO3a complex to regulate DAF-16 function either by di-

rect dephosphorylation of DAF-16 or by dephosphoryla-

tion of other accessory proteins of the complex. If the

PP4 phosphatase/SMK-1 complex is indeed recruited to

DAF-16, it is unlikely that the phosphatase regulates

DAF-16 through the dephosphorylation of the AKT/SGK

sites of DAF-16 because depletion of smk-1 does not

cause DAF-16 nuclear exit in a daf-2 mutant strain. In-

stead, SMK-1 could be a scaffolding protein that, together

with PP4, is recruited to DAF-16 directly or indirectly (per-

haps via its LLXXL motifs) to promote specific dephos-

phorylation events that affect not its localization but rather

its ability to regulate transcription.

Tissue-Specific Requirements for DAF-16

Intestinal expression of daf-16 is required for its aging-re-

lated functions. daf-16(mu86);daf-2(e1370) double-mu-

tant worms are not long lived unless wild-type daf-16 ex-

pression is restored using an intestine-specific promoter

to drive daf-16 expression. Neuronal expression of daf-

16 expression only slightly rescues daf-2-dependent lon-

gevity in these double mutants while completely restoring

dauer formation (Libina et al., 2003). Thus, both temporal

and spatial regulation of daf-16 may contribute toward its

specificity.

In this study, we find that smk-1 is expressed in the nu-

clei of intestinal cells and in subsets of neurons. The pres-

ence of SMK-1, a protein that affects longevity but not

dauer formation, in subsets of neurons suggests that neu-

ronal DAF-16 may be important in initiating a cell-non-

autonomous response to stress. More detailed studies are

needed to determine whether DAF-16 and SMK-1 can also

cooperate to regulate longevity from within the same sub-

sets of neurons and to determine whether the DAF-2 sig-

naling pathway can regulate the activity of SMK-1 inde-

pendently of DAF-16.

Regulation of DAF-16 by Interaction

with Additional Factors

The colocalization of SMK-1 and DAF-16 within neuronal

and intestinal cells suggests that the tissue-specific ex-

pression of SMK-1 may help to coordinate DAF-16-depen-

dent transcription within those cells. However, it is also

possible that the specificity of transcriptional targets

achieved by SMK-1 depends less upon its expression in

target tissues than it depends upon its interaction with ad-

ditional unidentified factors. Consistent with this idea, we

find that overexpression of smk-1 alone is not sufficient

to increase longevity (Tables S2 and S3). While SMK-1

function is required for both transcriptional activation and

repression by DAF-16, it appears that it cannot act as

a general mediator of FOXO-like transcription factors be-

cause it does not affect either the dauer or reproduction

functions of DAF-16. We speculate that there are other fac-

tors that function in parallel to SMK-1 during the early larval

stages to regulate the dauer and reproductive activities of

DAF-16 (Figure 6C). Further work is needed to elucidate
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how SMK-1 can mediate both stimulation and repression

of DAF-16 target genes.

Potential Mechanisms for the Regulation

of SMK-1 Activity

Evolutionary theories of aging predict that levels of SMK-1

might be tightly regulated in order to balance out ensuing

negative effects on the physiological stability of the organ-

ism with increased longevity. In our attempts to overex-

press smk-1 in worms, we found that transgenic worms

created using high doses of smk-1 could not be maintained

as stable lines, resulting in F1 progeny that died during

early embryogenesis (data not shown). Only by using

very low doses of injected DNA were we able to obtain sev-

eral transgenic lines. These lines had reduced brood sizes

and a large portion of dead embryos. Furthermore, these

lines did not have an extended life span (Tables S2 and

S3). These results suggest that it may be difficult to ex-

press higher-than-normal levels of smk-1 under normal

physiological conditions.

If levels of SMK-1 remain fairly constant within the cell,

how is the activity of the protein regulated? The protein

appears constitutively nuclear; thus, its regulation is inde-

pendent of spatial localization. However, our initial identifi-

cation of SMK-1 occurred in part because it was phos-

phorylated upon stress (H.M. and T.H., unpublished

data). It is possible that phosphorylated SMK-1 might be

more efficiently recruited to a DAF-16-containing complex,

which will enhance transcription of targets differentially

regulated upon stress.

SMK-1 appears to be the first coregulator of DAF-16 that

acts specifically to regulate longevity. The coordinate

function of SMK-1 and DAF-16 in regulating the aging pro-

cess suggests a possible means by which IIS signaling can

be modulated to positively influence longevity without

negatively influencing other aspects of insulin/IGF-1 sig-

naling. In the future, it will be imperative to understand

how DAF-16 function can be diverged to regulate such di-

verse processes as development and aging. Knowledge

gained through these studies will shed light on the mecha-

nisms by which the aging program is set by insulin/IGF-1

signaling.

EXPERIMENTAL PROCEDURES

C. elegans Methods and Generation of Transgenic Lines

CF1037: daf-16(mu86)I, CF1041: daf-2(e1370)III, CB4037: glp-

1(e2141)III, MQ887: isp-1(qm150)IV, MQ167: clk-1(qm30)IV, CF1580:

daf-2(e1370)III;muIs84[pAD76(sod-3::gfp)] (Libina et al., 2003),

CF1553: muIs84[pAD76(sod-3::gfp)] (Libina et al., 2003), TJ356:

zIs356[pGP30(DAF-16:GFP)] (Henderson and Johnson, 2001). Wild-

type C. elegans (N2) strains were obtained from the Caenorhabditis Ge-

netics Center. Nematodes were handled using standard methods

(Brenner, 1974). For generation of AD24, AD25, and AD26 transgenic

animals, plasmid DNA containing the pAD187 (smk-1::gfp) construct

was mixed at 18 mg/ml with 20 mg/ml of pRF4(rol-6) construct (Mello

et al., 1991). Worms used as controls in life-span experiments against

smk-1-overexpressing strains contained 75 mg/ml of pRF4(rol-6) in-

jected with 75 mg/ml of pAD158 (ges-1::gfp). Mixtures were microin-

jected into the gonads of adult hermaphrodite animals by using stan-
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dard methods (Mello et al., 1991). Transgenic F1 progeny were

selected on the basis of roller phenotype. Individual transgenic F2 an-

imals were isolated to establish independent lines.

Life-Span Analysis

Life-span analyses were performed as described previously (Dillin

et al., 2002a). All life-span analyses were conducted at 20ºC unless oth-

erwise stated. Statview 5.01 (SAS) software was used for statistical

analysis and to determine means and percentiles. In all cases, p values

were calculated using the log-rank (Mantel-Cox) method.

Dauer Formation Assays

Eggs from daf-2(e1370) reproductive animals were transferred to

plates seeded with RNAi bacteria and were either kept at 20ºC or

shifted to 25ºC for 3 days. Dauer formation was determined based

upon morphology using a dissecting microscope.

Reproductive Assays

Reproductive profiles of N2 or daf-2(e1370) animals grown on daf-2,

daf-16, or smk-1 RNAi were performed as described previously (Dillin

et al., 2002a). For RNAi treatments that resulted in embryonic lethality,

eggs were counted instead of hatched progeny.

RNA Isolation, Semiquantitative RT-PCR,

and Quantitative RT-PCR

Total RNA was isolated from synchronized populations of approxi-

mately 15,000 day 1 reproductive animals. Total RNA was extracted us-

ing TRIzol reagent (GIBCO). cDNA was created using Superscript II RT

(Invitrogen) and oligo dT primers. For semiquantitative PCR, serial dilu-

tions of 5�, 10�, and 20� were used for PCR reactions. For each

primer pair, cycle times and primer concentrations were optimized to

ensure linear amplification. Quantification was completed using Gel-

Doc software, normalizing to control levels of act-1 cDNA. SybrGreen

real-time qPCR experiments were performed as described in the man-

ual using ABI Prism7900HT (Applied Biosystems). Primers and probes

are listed below.

Semiquantitative PCR Primers

ctl-1 forward, AGGTCACCCATGACATCACCAAGT; ctl-1 reverse, GAT

TGCGCTTCAGGGCATGAATGA; lys-8 forward, TCCGTCAAGGTCCT

TCCATTCGTT; lys-8 reverse, TCCGAGTCCAGCGTTATACGCATT; act-1

forward, GTGTGACGACGAGGTTGCCGCTCTTGTTGTAGAC; act-1

reverse, GGTAAGGATCTTCATGAGGTAATCAGTAAGATCAC; mtl-1

forward, ATGGCTTGCAAGTGTGACTGCAAAAACAAGC; mtl-1 reverse,

TTAATGAGCCGCAGCAGTTCCCTGGTGTTGATGGG; hsp-12.6 for-

ward, ATGATGAGCGTTCCAGTGATGGCTGACG; hsp-12.6 reverse,

TTAATGCATTTTTCTTGCTTCAATGTGAAGAATTCC.

Quantitative PCR Primers

act-1 forward, GAGCACGGTATCGTCACCAA; act-1 reverse, TGTCAT

GCCAGATCTTCTCCAT; sod-3 forward, CTAAGGATGGTGGAGAACC

TTCA; sod-3 reverse, CGCGCTTAATAGTGTCCATCAG; daf-15 for-

ward, GCAATGTGTTCCCGTTTTTAGTG; daf-15 reverse, TAAGTCAG

CACATGTTCGAAGTCAA.

GFP Localization and Quantification

Paralyzed day 1 reproductive adult transgenic animals were assayed

for GFP expression at 10� or 63� magnification using a Leica 6000B

digital microscope. When comparing fluorescence between samples

of differentially RNAi treated animals, only nonsaturating pictures using

fixed times of exposure were taken. Images were acquired using Leica

FW4000 software.

For quantification of GFP localization, eggs from TJ356 animals were

transferred to plates seeded with RNAi bacteria or empty vector con-

trols. Using a blind assay, worms were scored for the presence or ab-

sence of GFP accumulation within the intestinal nuclei on D1 of adult-

hood (n = 180 or greater for all treatments). An animal was scored

as having nuclear GFP if one or more intestinal nuclei contained DAF-

16-GFP.



Fluorimetry

Eggs from daf-2 (e1370);sod-3::gfp reproductive animals were trans-

ferred to plates seeded with RNAi bacteria or empty vector controls.

Upon day 1 of adulthood, three populations of 40 worms for each treat-

ment were picked and placed in wells containing M9 buffer. All mea-

sures of fluorescence occurred immediately after transfer. Fluores-

cence was measured using the HTS 7000 Plus BioAssay Reader at

a fixed gain of 110. Fluorescence was determined for each population

in triplicate after shaking of the well to redistribute the worms. Fluores-

cence was measured using a six-spot check. Levels of fluorescence

were normalized to background levels seen in a nonfluorescent strain.

The experiment was repeated at least three times using independently

grown populations of worms.

RNAi Constructs

RNAi-treated strains were fed E. coli (HT115) containing an empty

control vector pAD12 or E. coli expressing double-stranded RNAi

against the genes daf-16 (pAD43), daf-2 (pAD48; Dillin et al., 2002a),

smk-1 (Simmer et al., 2003), or cyc-1 (Simmer et al., 2003). A second

smk-1 RNAi construct was created by digesting both pAD12 and

the smk-1 cDNA plasmid pRP4 (see below) with BamHI and EcoRI.

This 2.8 kb fragment was then ligated into pAD12 and tested for its ef-

fects on GFP knockdown and life span.

Stress Assays

Paraquat assays were performed as described (Dillin et al., 2002a). For

UV irradiation assays, eggs from sterile strains of daf-2(mu150) con-

taining the fer-15(b26);fem-1(hc17ts) mutation (CF596) were trans-

ferred to plates seeded with various RNAi treatments. Worms were

grown past the L1 stage at 20ºC, at which point they were shifted to

25ºC to ensure infertility and grown to D1 adulthood. Worms were

then transferred to plates without food and exposed to 1200 J/m2 of

UV using an UV Stratalinker. Worms were transferred back to fresh

plates seeded with the appropriate RNAi treatments and scored daily

for viability. For heat-shock assays, eggs from daf-2(e1370) worms

were transferred to plates seeded with various RNAi treatments and

grown to D1 adulthood. Worms were then transferred to plates without

food and heat shocked at 35ºC. Worms were checked every 2 hr for vi-

ability. For the innate immunity assay, eggs from daf-2(e1370) worms

were transferred to plates seeded with various RNAi treatments and

grown to D1 adulthood. Worms were then transferred to plates seeded

with Pseudomonas aeruginosa. Worms were check daily for viability.

Creation of smk-1::gfp Constructs

To construct the plasmid expressing SMK-1-GFP driven by smk-1 en-

dogenous promoter (pRP4), sequences 3 kb upstream of the smk-1

coding region were amplified from genomic DNA by PCR and inserted

upstream of GFP sequences in the worm expression vector pPD95.77.

Full-length smk-1 cDNA was amplified as N0- and C0-fragments from

a first-strand worm cDNA by PCR. The N0 fragment was digested

with NotI and BglI, and the C0 fragment was digested with BglII and

KpnI, respectively. Both fragments were ligated and inserted down-

stream of the promoter sequences in frame with the GFP sequence

at the C terminus. Primers for the N0 fragment: forward, GTTTTGCGG

CCGCATGTCGGACACAAAAGAGGTATC; reverse, AGTGCCAGATCT

CGCCGACG. Primers for the C0 fragment: forward, TGCTGCCCTCCC

GGCATCTC; reverse, GTTTTGGTACCCTGGCCTGCGAAACTGTGGC.

Creation and Affinity Purification of SMK-1 Antibody

A rabbit polyclonal antiserum against worm SMK-1 was generated us-

ing a GST fusion protein containing the C-terminal 114 residues of

SMK-1. To affinity purify the SMK-1 antibody, rabbit anti-SMK-1 serum

was incubated overnight at 4ºC with the corresponding antigen immo-

bilized on PVDF membrane and eluted with 100 mM glycine (pH 2.5) fol-

lowed by neutralization with Tris (pH 8.4).
C

Western Blot Analysis of Worm Lysates

Wild-type and daf2(e1370) worms were grown for 3–4 days in the pres-

ence of vector or smk-1 RNAi, respectively. Worms were harvested and

washed in M9 buffer, followed by boiling in equal volume of 2� sample

buffer for 5 min. After spinning at 15,000 rpm for 10 min, 10 ml of super-

natant from each sample was resolved using SDS-PAGE. The Western

blot analysis was performed with purified rabbit anti-SMK-1 antibody

using monoclonal anti-a-tubulin antibody (Sigma) to detect a-tubulin

as a loading control.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

three tables, and six figures and can be found with this article online

at http://www.cell.com/cgi/content/full/124/5/1039/DC1/.
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