
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Advances in Applied Mathematics 37 (2006) 19–30

www.elsevier.com/locate/yaama

A neural network wave formalism

Willard L. Miranker

Department of Computer Science, Yale University, PO Box 208285, New Haven, CT 06520-8285, USA

Received 14 April 2005; accepted 20 July 2005

Available online 15 November 2005

Abstract

Using his path integral methodology, Feynman derived the constructs of quantum mechanics from
the Lagrangian form of Newtonian mechanics. By employing a novel Lagrangian form of the canon-
ical neural network equations, we derive analogously a complete wave formalism for the information
transmission in neural networks.
© 2005 Elsevier Inc. All rights reserved.
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It was as a student of Joseph B. Keller at Courant’s Institute that I learned by
example the joy of exploring nature with the language of mathematics.

On the fiftieth anniversary of those lessons, this work is dedicated to him.

1. Introduction

There are a number of models that describe the flow of information in neural networks,
models at various scales of phenomenology (from sub-neuron to neural assembly), Haykin
[5], Hoppensteadt [8], McKenna, Davis, and Zornetzer [11], Valiant [19], etc. Most such
models, involving as they do, input–output equations, circuit equations, etc., are expressed
in terms of the methods of traditional mathematics and physics, and so, for the purposes
of analogy, could be viewed as counterparts to classical mechanics. Non-classical meth-
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ods, such as quantum effects, are also used for such modeling (Hameroff and Penrose [4],
Penrose [17], and Miranker [13,14], Stapp [18]). The development here demonstrates a
mathematical connection between these two types of approaches.

While classical and quantum mechanics have differing scales of relevance and differ-
ent analytic modeling developments, Feynman showed that the formalism of quantum
mechanics is derivable from the Lagrangian form of classical mechanics through use of
a path integral methodology that he invented (Feynman, Hibbs [3]). We show that this
derivation can be extended to neural networks. Starting with the Hopfield model of neural
networks [7], we show that a path integral methodology can be used to derive a wave func-
tion and a Schrödinger equation for neural networks. Note that the methods used here are
applicable to dissipative dynamical systems other than those arising out of neural networks.

Key to Feynman’s result is the Lagrangian formulation of mechanics with its notions
of kinetic and potential energy as well as the principle of least action. These features of
mechanics have been shown to exist for the canonical neural network model (Mjolsness,
Miranker [16]), and we begin with a brief review of those ideas. Feynman showed that a
stationary phase perturbation analysis of the path integral (as h̄ → 0) delivers the New-
tonian path as the location of the stationary phase. (See also Keller [9], Miranker [12].) We
show that an analogous perturbation result prevails for neural networks.

The derivation of a Schrödinger equation for the newly derived wave function of neural
transmission motivates introduction of a virtual particle (corresponding to a neuron) of an
appropriately specified mass in duality to the wave formalism. De Broglie relations are then
introduced and used to suggest a way to determine the scales at work in our development.
Finally we derive an uncertainty principle for the transmission of neural information.

2. A Lagrangian theory of neural networks

2.1. Neuronal input/output

Let w = (w1, . . . ,wn) be the vector of the n synaptic weights of a model neuron, and
let va = (va

1 , . . . , va
n) be the vector of inputs. The total neuronal input u is the weighted

sum

u =
n∑

k=1

wkv
a
k , (2.1)

and the neuronal output, ve, is a gain function, g (with threshold), of the total input:

ve = g(u). (2.2)

2.2. A Lagrangian formulation of neural net dynamics

Since neural net dynamics are dissipative, a so-called greedy variation is used (Mjols-
ness and Miranker [16]) to generate a Lagrangian formulation of neural net dynamics
including a principle of least action.
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In correspondence with the use of the variable v to represent the neural output, we use
v to express the position variable and v̇ the velocity for the Lagrangian

L(v̇, v) = K(v̇) − P(v). (2.3)

Here K = K(v̇) is the kinetic energy and P = P(v) is the potential energy. (Examples of
K and P are given presently.) The action S is given by

S =
∞∫

−∞
Ldt. (2.4)

We extremize S as follows.

δGS

δGv
= δ

δv

t∫
−∞

L(v̇, v) dt. (2.5)

δG/δGv is called a greedy variation since it specifies extremization, not merely for the
trajectory as a whole, but for the trajectory at every instant of time. Then we can show (see
Appendix A) that

δGS

δGv
= ∂L(v̇, v)

∂v̇
. (2.6)

This should be contrasted with the conventional variation (not greedy) of the action, namely

δS

δv
= ∂

∂t

(
∂L

∂v̇

)
− ∂L

∂t
. (2.7)

Suppose the Lagrangian has the form (a form of relevance to neural net applications)

L = K(v̇) + dE(v)

dt
= K(v̇) + ∂E(v)

∂v

dv

dt
. (2.8)

Then using (2.6), the greedy variation of the corresponding action is

∂L

∂v̇
= ∂K

∂v̇
+ ∂E

∂v
. (2.9)

In equilibrium (where the velocity v̇ vanishes), we have ∂K(v̇ = 0)/∂v̇ = 0. Then ex-
tremization of the action S yields extremal points of E. That is,

δGS

δGv
= ∂L

∂v̇
= 0 ⇒ ∂E

∂v
= 0. (2.10)
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2.3. Application to neural nets, the neural net principle of least action

The relaxation neural net is associated with an energy (a Lyapunov) function E(v). For
example, take

E = E(v) = −1

2

∑
ij

Tij vivj −
∑

i

fivi +
∑

i

Φi(vi) (2.11)

(see Hertz, Krogh and Palmer [6, Section 3.3]), and take

K = 1

2

∑
i

u̇2
i g

′(ui), (2.12)

where

vi = g(ui). (2.13)

In (2.11) Tij corresponds to the synaptic weight between neuron i and neuron j, fi is
the exogenous input to the network at neuron i, and Φ ′ = g−1 (see (2.2)). With the choices
(2.11)–(2.13), extremization of the action S via greedy variation (using (2.10)) yields

u̇i = − ∂E

∂vi

= −
∑
j

Tij vj − fi + Φ ′
i (vi). (2.14)

(2.14) is precisely the customary neural net dynamics. So (2.3), (2.4), (2.12) and (2.14) are
the (dissipative) neural net analogs of the Lagrangian, the action, the kinetic energy and the
equations of motion in classical mechanics, respectively. The form of the potential energy
is obtained from the last term in (2.8). From (2.10) we see that the neural net principle of
(greedy) least action is

δGS

δGv
= 0. (2.15)

3. The wave function

3.1. The neural net as a path generator

Consider a layered feed-forward net. We shall use a more representative label xk(xk =
0,1, . . .) for indexing neurons in the kth layer, k = 0,1, . . . ,N − 1. For clarity, take the
gain g to be linear and homogeneous. Then from the I/O relations (2.1), (2.2), the output
of a neuron, as it depends on propagation of signals from N − 1 preceding neuronal layers,
is expressible as follows.

g
∑

· · ·g
∑ N−1∏

wxkxk−1v
e
x1x0

. (3.1)

x0 xN−1 k=1
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ve
x1x0

is the output of neuron x0 in layer zero transmitted to neuron x1 in layer one. For

clarity this term is dropped in (3.1). The expression gN
∏N−1

k=1 wxkxk−1 from (3.1) represents
a succession of outputs strung along a path through N neuronal layers, the kth vertex of
the path being at neuron xk in layer k.

3.2. Modeling the neuron as a frequency encoder

(2.1), (2.2) are a simplification of actual neuronal information processing that is in fact
frequency encoded (see Curtis, Barnes [1, Fig. 41–12, p. 589]). Namely, what is called
the neuronal activity models the frequency of the actual output, a spiky waveform. So we
formally replace the neuronal output in the model by exp i(vkt + 2πyk/λk). Here vk is the
output frequency of the action potential of the kth neuron, t is the time, xk is distance along
its axon (and associated relevant branching processes) and λk is the signal wavelength. For
clarity we shall drop the term 2πyk/λk . Then the kth neuron’s output is written simply as

exp(ivkt). (3.2)

3.3. The path integral

Using the frequency encoding of Section 3.2, the product in (3.1) becomes the expo-
nential sum exp(i

∑N−1
k=1 wxkxk−1). Now introducing two time scales, Δx/A (representing

the time to execute the gain function) and (tk − tk−1)/h (representing the time to convey
the signal between neuronal layers), where A and h are appropriate scaling factors, (3.1)
becomes

∑
x0

g
Δx

A
· · ·

∑
xN−1

g
Δx

A
exp

[
i

N−1∑
k=1

wxkxk−1(tk − tk−1)/h

]
. (3.3)

The value of A is specified in (4.6), but the value of h (that in quantum mechanics is the
Planck constant h̄) is unknown. A value for h is discussed in Section 5.2.

For clarity, replace wxkxk−1 in (3.3) with w(xk −xk−1), a function of one variable. Since
we shall be taking the limit as the neural network becomes dense, w(xk − xk−1) will be
replaced by w(ξ), a spatially continuous version of the synaptic weights. Then (3.3) has
the form of a collection of Riemann sums corresponding to the following collection of
integrals

∞∫
−∞

· · ·
∫

e
i
h
Sg

dx1

A
· · ·g dxN−1

A
(3.4)

where

S =
t∫
w(ξ)dξ. (3.5)
0
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These relations define a path integral as N → ∞ (Feynman, Hibbs [3, Section 2-4]). In
(3.4), (3.5), t is a fixed value of time. The relation t = NΔt , where tk − tk−1 = hΔt ,
k = 1, . . . ,N connects the tk in (3.3) with t in (3.5). So taking the limit in (3.3) as N → ∞
formally defines a path integral (with respect to an appropriate functional measure μ) that
expresses propagation in a (continuum) neural net, namely

∫
paths

e
i
h
Sμ(dx). (3.6)

3.4. The kernel Γ (b;a)

Let a = (va, ta) and b = (vb, tb) denote points between which a path (as defined in
Section 3.1) of the neural net dynamics passes (say from a to b as time increases). Then
for h and A = A(ε) as suitable constants, define the kernel Γ (b;a) by means of a path
integral as follows:

Γ (b;a) = lim
ε→0

1

A

∞∫
−∞

· · ·
∞∫

−∞
e

i
h
S[b,a] dv1

A
· · · dvN−1

A
. (3.7)

Here v1, . . . , vN−1 is a uniform partition of (va, vb) with mesh width ε = (va − vb)/N ,
and

S[b, a] =
tb∫

ta

L(v̇, v) dt. (3.8)

To interpret (3.7), (3.8), replace the right-hand side of (3.8) by a Riemann sum with respect
to a partition of (ta, tb) also with mesh width ε, in particular by

N−1∑
j=0

L
(vj+1 − vj

ε
,
vj+1 + vj

2

)
ε. (3.9)

Then the integral dvi within (3.7) becomes

∞∫
exp

i

h

[
L

(vi+1 − vi

ε
,
vi+1 + vi

2

)
+ L

(vi − vi−1

ε
,
vi + vi−1

2

)]
dvi

A
. (3.10)
−∞
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Recall that in the case of the neural net dynamics at hand, L = K +dE/dt , E = E(v), and
K = (1/2)

∑
i u̇

2
i g

′(ui) with vi = g(ui). Now suppose that the limit in (3.7) exists. Then it
defines a path integral (with an appropriate functional measure μ) denoted by

Γ (b;a) =
b∫

a

e
i
h
S[b,a]μ(dv). (3.11)

3.5. The wave function

Let ψ(v, t) denote the wave function of the neural net. It is defined by the condition that
it have the following property of evolution in time.

ψ(v2, t2) =
∞∫

−∞
Γ (v2, t2;v1, t1)ψ(v1, t1) dv1, t2 > t1, (3.12)

where the kernel Γ is given in (3.7). ψ(v,0) is prescribed as an arbitrary probability amp-
litude, namely,

∞∫
−∞

∣∣ψ(v,0)
∣∣2

dv = 1. (3.13)

This normalization property will be maintained for all t > 0 (conservation of probability).
A proof follows as in the case of mechanics, since up to a phase, ψ(v, t) is seen to satisfy
the Schrödinger equation (see (4.10) and (4.11)).

3.6. The classical limit

In the case of mechanics, the Lagrangian has the form L = mẋ2/2 − V (x, t). In this
case, h, which appears in the exponential in (3.11), is the Planck constant h̄, and the cor-
responding path integral is used to define the Schrödinger wave function. It is shown by
means of a stationary phase argument (Feynman, Hibbs [3, Section 2-3]) that in the limit
as h̄ → 0, the contributions to the value of the path integral cancel except where the ac-
tion S is stationary (i.e., where δS/δx = 0). To implement the stationary phase calculation,
a variation in the action is performed, and using the result in (2.7), the Lagrangian form
of the equations of classical mechanics emerge. In this way, classical mechanics emerges
from wave mechanics in the limit as h̄ → 0.

The same argument can be applied to the path integral (3.11), except that we make
the action stationary (i.e., we conduct the stationary phase calculation, corresponding to
h → 0) by performing a greedy variation (where δGS

δGv
= ∂L(v̇,v)

∂v̇
= 0 (cf. (2.6), (2.15)).

Using L as given in (2.8) and in the neural net case (2.11)–(2.13), we recover the neural
net dynamics (2.14) by this limiting process. So the (customary) equations of neural net
dynamics emerge from the path integral wave description of the neural net in the limit
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as h → 0, provided that the action is appropriately defined and extremized (in the greedy
sense) as in Section 2.

4. A neural net Schrödinger equation

A neural net Schrödinger equation that describes the time evolution of the neural net
wave function ψ(v, t) is derivable, moreover along the lines in Feynman, Hibbs [3]. We
give a summary of the results.

Let Γ (i + 1; i) denote the kernel of (3.7) corresponding to the passage of information
in an infinitesimal time interval ε between two locations (two v values) indexed by i + 1
and i, respectively. Then consider the following approximation for Γ (i + 1; i):

Γ (i + 1; i) = 1

A
exp

[
i

h
εL

(vi+1 − vi

ε
,
vi+1 + vi

2

)]
. (4.1)

Using (3.12) and (4.1), take the following approximation for ψ(v, t + ε):

ψ(v, t + ε) = 1

A

∞∫
−∞

exp

[
i

h
εL

(v − v1

ε
,
v + v1

2

)]
ψ(v1, t) dv1. (4.2)

The Lagrangian (cf. (2.8)) is analogously approximated:

L
(v − v1

ε
,
v + v1

2

)
= 1

2g′(u)

(v − v1

ε

)2 + Ev

(v + v1

2

)v − v1

ε
. (4.3)

Note that g′(u) = g′(g−1(v)) ≈ g′(g−1( v+v1
2 )). Then inserting (4.3) into (4.2) gives

ψ(v, t + ε) =
∞∫

−∞

1

A

{
exp

[ i

2hg′(u)

(v − v1)
2

ε

]}

×
{

exp
[ i

h
(v − v1)Ev

(v + v1

2

)]}
ψ(v1, t) dv1. (4.4)

Setting v1 = v + η, (4.4) becomes

ψ(v, t + ε) =
∞∫

1

A
exp

[
i

2hg′(u)

η2

ε
− i

h
ηEv

(
2v + η

2

)]
ψ(v + η, t)dη. (4.5)
−∞
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By expanding (4.5) in a Taylor series in ε, and then equating terms of equal order in ε, we
find the following results. (Details are given in Miranker [15].) The zeroth-order equation
determines A. Namely

A =
(

2πihε

m(v)

) 1
2

, (4.6)

where m(v) is an appropriate mass. In particular,

m = m(v) = 1/g′(g−1(v)
)
. (4.7)

The first order equation in ε is vacuous. The second-order equation in ε yields the wave
equation sought (a neural net Schrödinger equation). Namely

h

i

∂ψ

∂t
= h2

2m(v)

∂2ψ

∂v2
+ h

i
Ev

∂ψ

∂v
− V ψ. (4.8)

Here

V = V (v) = E2
v(v)

2m(v)
+ ih

2m(v)
Evv(v). (4.9)

Setting

ϕ = ψ exp

[
h

4im(v)

v∫
Ev(v

′)
m(v′)

dv′
]
, (4.10)

a calculation shows that ϕ satisfies the Schrödinger equation of quantum mechanics. In
particular,

∂ϕ

∂t
= − h

2im(v)

∂2ϕ

∂v2
+ U(v)ϕ, (4.11)

where U(v) is the following complex valued potential:

U(v) = 1

m

(
E2

v + 1

2
Evv

)
+ i

2m

(
hmv

m2
Ev − 1 − 4m

h
E2

v − hEvv

)
. (4.12)

(For an example of a complex valued quantum potential, see Kleinert [10, Section 14.5].)

5. An uncertainty principle

We give two derivations of an uncertainty principle associated with our neural net wave
function. The first follows from the Heisenberg inequality and the quantum mechanical
measurement hypothesis, and the second from de Broglie relations.
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Fig. 5.1. The uncertainty principle illustrated.

5.1. From the quantum mechanical measurement and the Heisenberg inequality

The Heisenberg inequality is a universal result concerning L2-functions and their
Fourier transforms. This inequality delivers the uncertainty principle directly from the
wave function in its role of probability amplitude when the measurement of a variable
in quantum mechanics is taken to be the expected value of the variable’s corresponding
operator. See Dym, McKean [2] for a succinct presentation of these ideas. So having de-
rived a neural net wave function, we can apply the same argument to derive an uncertainty
principle associated with our neural net wave function.

5.2. From de Broglie relations

De Broglie relations permit the association of a particle in dual correspondence to the
wave formalism thus far developed. The mass of this putative particle, m(v), specified in
(4.7), is v (wave frequency) dependent. The de Broglie relations are

E = h

2π
v and p = h

λ
, (5.1)

where recall that v denotes the wave frequency, and p denotes the particle momentum.
Using E = p2/2m to combine these relations, and setting k = 2π/λ, we find

h

2π
= 2vm(v)

k2
. (5.2)

With a notion of a particle and of momentum (from (5.1)) to associate with the position
x, we have an uncertainty principle, namely

ΔxΔp ≈ h. (5.3)

Of course the value of h is as yet unknown, but the relation (5.2) suggests how it may be
determined. Note that the wave number k = k(v) is frequency dependent. To see how this
uncertainty principle comes about, use (5.1) and write x/λ as xp/h. Then an uncertainty
in simultaneous measurement of x and p corresponds to an uncertainty in simultaneous
measurement of x and λ. To measure x and λsimultaneously, we must measure two values
of x(x1 and x2 say, where λ = x2 − x1). Figure 5.1 shows a ruler being used to simultane-
ously measure the location of two points noted on the x-axis. In the figure, the zero point
of the ruler is lined up with x1. Then x2 will almost always fall between two ruler tic marks
as illustrated. The distance between these marks is the uncertainty in the measurement in
question. If we knew the ruler, we would know h.
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Appendix A

In this appendix we shall demonstrate (2.6), namely that

δGS

δGv
= ∂L(v̇, v)

∂v̇
. (A.1)

Let us take the greedy variation of S about a function v∗. Let v = v∗ + εu, where ε > 0
and u is an arbitrary function. We have

δGS

δGv
= δ

δv

t∫
−∞

L(v̇∗, v∗) dτ

= lim
ε→0

t∫
−∞

L(v̇∗ + ε∗u̇, v∗ + ε∗u) − L(v̇∗, v∗)
ε

dτ

=
t∫

−∞

(
∂L(v̇∗, v∗)

∂v
u − ∂L(v̇∗, v∗)

∂v
u

)
dτ

= ∂L

∂v̇
u|t−∞ +

t∫
−∞

(
∂L

∂v
− ∂

∂v

(
∂L

∂v̇

))
dτ. (A.2)

(The point of departure of this derivation of greedy variation from the customary one is the
replacement in the upper limit of integration of ∞ by t .)

Choose u(τ) to be the function u(τ) = exp(−(t − τ)2/a), where a > 0. We see that

u(t) = 1, lim
a→0

u(τ) = 0, and u(−∞) = 0. (A.3)

Then (A.2) gives

δGS

δGv
= δ

δv

t∫
−∞

L(v̇∗, v∗) dτ

= ∂L

∂v̇
u(t) − ∂L

∂v̇
u(−∞) +

t∫
−∞

(
∂L

∂v
− ∂

∂τ

(
∂L

∂v̇

))
udτ. (A.4)

Taking the limit here as a → 0 and using (A.3), we obtain

δGS

δGv
= δ

δv

t∫
−∞

L(v̇∗, v∗) dτ = ∂L(v̇∗, v∗)
∂v̇

, (A.5)

demonstrating (2.6).



30 W.L. Miranker / Advances in Applied Mathematics 37 (2006) 19–30
References

[1] H. Curtis, N. Barnes, Biology, Worth, New York, 1989.
[2] H. Dym, H.P. McKean, Fourier Series and Integrals, Academic Press, New York, 1972.
[3] R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw–Hill, New York, 1965.
[4] S. Hammeroff, R. Penrose, Conscious events as orchestrated time–space selections, J. Consc. Studies 3

(1996) 36–53.
[5] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, 1999.
[6] J. Hertz, A. Krogh, R. Palmer, Introduction to the Theory of Neural Computation, Addison–Wesley, Red-

wood City, 1991.
[7] J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, PNAS,

USA 79 (1982) 2554–2558.
[8] F. Hoppensteadt, Introduction to the Mathematics of Neurons, Cambridge Univ. Press, Cambridge, 1986.
[9] J. Keller, The geometrical theory of diffraction, in: Proc. Symp. Microwave Optics, in: Eaton Elec. Lab.,

vol. 1, McGill, Montreal, 1953.
[10] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics, World Scientific, Singa-

pore, 1995.
[11] T. McKenna, J. Davis, S. Zornetzer (Eds.), Single Neuron Computation, Academic, Boston, 1992.
[12] W.L. Miranker, Parametric theory of Δu + k2u = 0, Arch. Rational Mech. Anal. 1 (1957) 139–153.
[13] W.L. Miranker, Interference effects in computation, SIAM Rev. 39 (1997) 630–643.
[14] W.L. Miranker, A quantum theory of consciousness, J. Consc. Studies 9 (2002) 3–14.
[15] W.L. Miranker, Path Integrals of Information, Yale Univ. DCS/TR-1215, 2002.
[16] E. Mjolsness, W.L. Miranker, A Lagrangian formulation of neural networks, Part I. Theory and analog

dynamics; Part II. Clocked objective functions and applications, Neural Paral. Sci. Comp. 6 (1998) 297–
333, 334–372.

[17] R. Penrose, The Large, the Small and the Human Mind, Cambridge Univ. Press, Cambridge, 1997.
[18] H. Stapp, The hard problem: a quantum approach, J. Consc. Studies 3 (1998) 194–210.
[19] L. Valiant, Circuits of the Mind, Oxford Univ. Press, New York, 1994.


