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Abstract

The possible zoonotic spread of antimicrobial-resistant bacteria is controversial. This review discusses global molecular epidemiological

data combining both analyses of the chromosomal background, using multilocus sequence typing (MLST), and analyses of plasmid (epi-

somal) extended-spectrum b-lactamase (ESBL)/AmpC genes in Escherichia coli present in humans and animals. For consideration of major

epidemiological differences, animals were separated into livestock and companion animals. MLST revealed the existence of ESBL-produc-

ing isolates thoughout the E. coli population, with no obvious association with any ancestral EcoR group. A similar distribution of major

ESBL/AmpC types was apparent only in human isolates, regardless of their geographical origin from Europe, Asia, or the Americas,

whereas in animals this varied extensively between animal groups and across different geographical areas. In contrast to the diversity of

episomal ESBL/AmpC types, isolates from human and animals mainly shared identical sequence types (STs), suggesting transmission or

parallel micro-evolution. In conclusion, the opinion that animal ESBL-producing E. coli is a major source of human infections is oversim-

plified, and neglects a highly complex scenario.
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Introduction

Escherichia coli is a particularly complex species, having diver-

sified into commensals of the intestinal microbiota and path-

ogenic strains, grouped into pathotypes of partly zoonotic

intestinal pathogenic E. coli and extraintestinal pathogenic

E. coli (ExPEC) [1,2]. Only recently has the role of ExPEC in

severe infections received attention, both from a veterinary clini-

cal perspective and regarding their zoonotic potential [2–5].

The increase in antimicrobial-resistant (AMR) bacteria of

animal origin resembles the process in humans a decade ago

[6–8]. Since the late 1990s, extended-spectrum b-lactamase

(ESBL)-producing and AmpC b-lactamase-producing Entero-

bacteriaceae, in particular E. coli, have emerged globally.

Whereas early ESBLs from humans mainly evolved from

TEM and SHV b-lactamases, the significance of CTX-M-type

enzymes has increased over the last decade. Currently they

represent the most common and still rising ESBL type in

humans [9–11]. Since 2000, the European Antimicrobial

Resistance Surveillance Network has reported a steady

increase in the rates of invasive E. coli and Klebsiella pneumo-

niae isolates resistant to third-generation and fourth-genera-

tion cephalosporins. ESBLs confer resistance to oxyimino-

cephalosporins, and often express a multidrug-resistant phe-

notype, leaving only limited therapeutic options [10]. In addi-

tion, plasmid-mediated AmpC b-lactamases (e.g. CMY and
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CIT) and carbapenemases—so far only seen in human iso-

lates (e.g. KPC, NDM, and OXA-48)—are contributing to

the worrying situation regarding antimicrobial resistance, as

they mediate resistance against almost all available b-lactam

agents [2].

Initially, ESBL/AmpC-producing bacteria were only

observed in human medical practice, but the recent observa-

tion of these bacteria, first in companion animals and increas-

ingly in livestock, has initiated monitoring studies

concentrating on livestock [6,7]. ESBL/AmpC-producing

E. coli isolates are now being found in increasing numbers in

food-producing animals [7,12], leading to the hypothesis that

animals might become infection sources or even reser-

voirs—the natural persistent source of infection—contribut-

ing to the spread of these bacteria. Companion animals are

putatively involved in this vicious cycle, as they often live in

close contact with their owners. As the term reservoir is

used imprecisely, not distinguishing between a temporary

and a persistent infection source, it is hard to follow the

literature [6,8]. Fig. 1 illustrates the transmission path-

ways of AMR bacteria and the possible impact of different

habitats.

This review is mainly dedicated to the habitat ‘animal’

(companion animals and livestock) and its complex interplay

with the habitat ‘human’. Published data on ESBL/AmpC-

producing E. coli and other Enterobacteriaceae are summa-

rized and evaluated, with a focus on available molecular

epidemiological and phylogenetic data for both the chromo-

somal background and acquired episomal b-lactamase types.

The conclusion is that we are far from giving simple and

exhaustive answers to the questions concerning the precise

role of animals in the transfer of ESBL/AmpC-producing

E. coli to humans. However, to the best of our knowledge,

this is currently the most comprehensive consideration of

the occurrence of ESBL/AmpC types and their linkage to

phylogenetic E. coli lineages, with respect to host and

geographical distribution.

General Aspects of the Use of

Antimicrobials and Transfer of AMR

Bacteria

The prudent use of antimicrobials in veterinary and human

medicine is a prerequisite for the successful treatment of

serious infectious diseases, and is thus also a matter of ani-

mal welfare. b-Lactam antibiotics, especially cephalosporins,

also select for ESBL-producing Enterobacteriaceae in animals,

enhancing the risk of the zoonotic transmission of ESBL-car-

rying bacteria and plasmids [13–15]. However, increases in

the numbers of ESBL/AmpC-producing strains of E. coli and

Salmonella spp. also occur without any prior use of cephalo-

sporins [15,16]. The reasons for this are not fully under-

stood, as co-selection and co-resistance do only contribute

partially. In companion animals, as in humans, treatment with

fluoroquinolones has led to an increase in the number of

FIG. 1. Diagram illustrating the transmission

pathways of antimicrobial resistance among

different habitats.
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multiresistant strains [17], and its use on farms would be

expected to exert selective pressure [13]. In contrast, the

impacts of different steps in livestock production needs con-

sideration. In chickens, the percentages of ESBL-producing

E. coli decrease from grandparents to parents and again to

the production level, showing the complexity of the influence

of antimicrobial treatment and the maintenance of AMR bac-

teria in food-producing animals [18].

The use of antimicrobials in livestock needs to be distin-

guished from that in companion and exotic animals, for two

reasons: (i) in general, companion animals live as individuals

or in small groups, leading to individual therapeutic interven-

tions, whereas livestock, in general, is kept in larger groups,

so population-based therapeutics are mostly appropriate; (ii)

companion animals often live in intimate contact with their

owners, enabling the spread of multiresistant and zoonotic

agents between owners and animals much more efficiently,

whereas livestock is raised for the production of food, raising

safety issues, in particular in terms of possible food contamina-

tion [19].

In addition, the infection epidemiology of humans, com-

panion animals and livestock differs significantly, suggesting

different risk factors [6,19–21]. The lack of comparative

monitoring or surveillance studies incorporating both human

and veterinary medicine in the same geographical area hin-

ders the identification of risk factors. Furthermore, the

impact of antimicrobials and resistant bacteria in companion

animals has so far been largely neglected [22]. Despite this

lack of knowledge, policies aimed at reducing the amount of

multiresistant bacteria have been implemented. In the veteri-

nary area, these are (i) monitoring programmes, which are

mostly restricted to livestock, (ii) an EU-wide ban on the use

of growth promoters, initiated in 1999; and (iii) guidelines

for the prudent use of antibiotics. We are not aware of true

surveillance studies, in that the results of monitoring directly

impact on the later use of antimicrobials. Another issue is

the use of distinct antimicrobial classes, both in veterinary

and in human medicine, and the prioritization of each class in

the respective area. A catalogue of criteria identified the

most critical important antimicrobials as cephalosporins

(third and fourth generation), macrolides, and quinolones.

Basically, these should be used in human medical practice

only [23]. Again, these recommendations neglect the differ-

ences between companion/exotic animals and livestock.

The availability and usage of antimicrobials differ between

livestock and companion animals. For small animal popula-

tions or for rare infectious diseases, effective antimicrobials

may simply not be available, owing to lack of approval. Thus,

there is a need for off-label use under specific circumstances,

meaning that, if no medicine is authorized, veterinarians have

to use a particular antimicrobial that is approved in another

country or in the medical area [19]. Any other practice is in

conflict with animal welfare.

Distribution of ESBL/AmpC-producing

E. coli in Livestock and Companion Animals

Until the 1990s, the majority of ESBLs identified in human

clinical isolates were SHV or TEM types [2]. Almost one

decade later, ESBL and AmpC b-lactamases have emerged

worldwide, and CTX-M enzymes have now become the

most widespread type of ESBL [9,10]. A number of studies

have described the occurrence of E. coli producing ESBL/

AmpC in food-producing animals, and strains relevant to

human health are increasingly being isolated also from com-

panion animals [6,7,12,24,25]. The most frequent genes asso-

ciated with this resistance among both groups of animals

encode various CTX-M enzymes, followed by blaTEM-52 and

blaSHV-12; other TEM and SHV types are also observed

(Table S1) [6,7,25]. Among the AmpC b-lactamases, blaCMY-2

is by far the most common, other types having only rarely

been identified (Table S1) [12,25].

Although the first ESBL in humans was identified during a

K. pneumoniae outbreak in a German hospital in 1982, one of

the first clinical ESBLs observed in animals dates back to 2000,

from an SHV-12-producing E. coli isolate from a dog with

recurrent urinary tract infection [26]. The earliest description

of poultry as carriers of ESBLs was by Briñas et al. [27], who

observed CTX-M-14-producing, SHV-12-producing and CMY-

2-producing E. coli in the faeces of healthy chickens in Spain

between 2000 and 2001. At almost the same time, in 1999–

2002, the isolation of bacteria carrying CTX-M-14, CTX-M-2

and CMY-2 from healthy poultry was reported in Japan [28].

Studies documenting the occurrence of various ESBL types in

pigs and cattle followed soon after [29].

An overview of studies performed on the occurrence and

the nature of b-lactamase types in various animal species and

humans, respectively, is provided in Tables S1 and S2.

Although by no means complete, these data indicate the

development of AMR bacteria roughly within the last decade.

Based on this, the distribution of ESBL/AmpC enzymes among

E. coli, as the most studied bacterial organism, is illustrated

with respect to geographical and host origin in Fig. 2.

Although most studies are still dedicated to human samples

(Table S2), the second most numerous reports (Table S1; 52

cited publications) concern poultry. Most of these studies are

from European countries, with a prevalence of various ESBL/

AmpC types ranging between 0.6% and 44.7% (Table S1;

Fig. 2). There are also quite a number of reports from Asia,
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with rates from 1.7% to 11.8% of ESBL/AmpC-producing

E. coli and Salmonella spp. in poultry. Data from North and

South America and from African countries seem to be rather

limited, and thus are not included in Fig. 2. However, these

studies ascertain the global occurrence of ESBL/AmpC-pro-

ducing bacteria in poultry (Table S1). Other food-producing

animals, including cattle and pigs, are also either colonized or

infected by such bacteria to varying degrees (Table S1).

The occurrence of ESBL-producing bacteria in companion

animals has been neglected for a long time, but a growing

burden is now being observed, especially in dogs, cats, and

horses, with most of the 30 studies listed in Table S1 having

been published within the past 5 years [6,8,30–32]. Initial

data on the prevalence, in particular, of ESBL-producing

E. coli from companion animals indicate high carriage and

infection rates (Table S1). Both diseased and healthy animals

are affected, raising animal welfare and public health issues.

This deserves more attention in future surveillance, as the

extent and genetic basis of AMR bacteria in companion ani-

mals are poorly understood.

ESBL/AmpC Types Reported in E. coli
From Livestock and Companion Animals

It is far too early to judge the direction of transmission of

ESBL/AmpC-producing bacteria between humans and animals

in general. An important part of the global success of, for

example, CTX-M ESBLs is the wide dissemination of particu-

lar plasmids or bacterial clones [9]. Thus, apart from a com-

mon ancestry of ESBL carriers, a central issue is the sharing

of identical plasmid b-lactamase types by humans and animal

hosts, which has recently been reviewed [15,33]. Therefore,

this review will focus on ESBL/AmpC types only.

Fig. 2 shows the distribution of ESBL/AmpC types in E. coli

originating from four different habitats and three different

geographical regions. Irrespective of the group considered,

two to a maximum of three ESBL/AmpC types always pre-

dominate, without overall congruence. The most frequent

types are CTX-M-1, CTX-M-14, CTX-M-15, SHV-12, and

CMY-2. A similar distribution of ESBL/AmpC types is only

FIG. 2. Spatial and host distribution of Escheri-

chia coli extended-spectrum b-lactamase

(ESBL)/AmpC types with regard to data and

the references given in Tables S1 and S2.

With the exception of the category ‘Compan-

ion animals—Asia’, all pie charts presented are

based on a minimum number of eight studies.
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seen in humans, CTX-M-14 and CTX-M-15 being the major

types regardless of geographical origin. One type is broadly

disseminated among animals in Europe, namely CTX-M-1

(companion animals, 28%; poultry, 28%; cattle and pigs, 72%),

whereas it is only rarely reported in other regions and habi-

tats. In general, CTX-M-14 is among the most prevalent b-

lactamase types in companion animals and poultry in Asia

(30–33%), and to a lesser extent in cattle and pigs (14%). It

is less prevalent in livestock (4–7%) in Europe, and is even

absent in companion animals.

CTX-M-15, which has spread pandemically in humans [9],

was only detected incidentally in poultry in European coun-

tries, whereas companion animals (15%) and cattle/pigs (8%)

are frequently associated with this type. In Asian and Ameri-

can countries, this enzyme is present in bacteria from all

groups of animals studied. Although ESBL types are highly

diverse, one episomal AmpC variant, CMY-2, has been

described in all areas and hosts investigated (Table S1;

Fig. 2), its frequency ranging from 2% to 31%.

Hence, a similar distribution of ESBL types is only found in

humans; for the animal groups, the observed patterns are

highly diverse and incongruent. The same is true in terms of

geography. With the exception of CTX-M-14 in Asia, none

of the ESBL types predominates over all other animal and

human groups in one particular area.

CTX-M-1, as a major ESBL type in cattle and pigs in Europe,

amounts to 72% of all ESBLs, and is also frequent in poultry

and companion animals. CTX-M-1-producing E. coli accounts

for 7% of all types identified among humans in Europe only.

Nevertheless, two recent studies from The Netherlands iden-

tified CTX-M-1 as the most prevalent ESBL type shared by

human patients, healthy carriers, poultry, and retail chicken

meat, suggesting recent cross-transmission between human

and avian hosts [24,34]. A relationship between contamination

of chicken meat and the appearance of ESBL genes in humans,

and thus transmission of ESBL-producing E. coli from poultry to

humans, was also suggested, although without unequivocal proof.

The literature gives limited evidence for the spread of ESBL/

AmpC-carrying organisms via direct contact with livestock [15].

In summary, the collective data of the available studies reveal

considerable differences in ESBL types between poultry and

humans in Europe, leaving the question open as to what extent

livestock contributes to the spread of ESBL in humans.

Human and Animal ESBL/AmpC-producing

E. coli Share Identical Phylogenetic Lineages

Partial overlap of b-lactamase types and/or plasmid scaffolds

from human ESBL/AmpC-producing E. coli with those of ani-

mal origin might indicate ongoing interspecies transmission,

but also parallel independent micro-evolution. A sound anal-

ysis of the putative zoonotic nature of such isolates is only

possible by additional typing of the chromosomal back-

ground. Multilocus sequence typing (MLST) reflects micro-

evolution of the E. coli core genome, providing a true

sketch of the population structure of this bacterial species

[35].

In 2008, MLST investigation revealed a pandemic clone,

B2-O25b:H4-ST131-CTX-M-15, with high extraintestinal vir-

ulence, causing urinary tract infections, bacteraemia, urinary

sepsis, and neonatal sepsis [36,37]. Sequence type (ST)131 is

the most studied phylogenetic lineage in terms of antimicro-

bial resistance in E. coli (Figs 3 and 4). Soon after the first

discovery of ESBL-producing ST131 E. coli in human clinical

isolates, it disseminated to various animal species, including

poultry, cattle, pigs, wildlife, and companion animals, and sev-

eral studies suggested transmission from poultry or retail

chicken, but without clear evidence [11,24,38–40].

With the increasing awareness that companion animals

suffer from extraintestinal infections caused by E. coli phylo-

types identical to those that infect humans, the recovery of

ST131, in fact a typical ExPEC lineage, from this animal group

is reasonable [11,41]. Accordingly, we recently confirmed

the presence of CTX-M-15-producing and SHV-12-producing

ST131 E. coli in dogs, cats, and one horse [39]. Ongoing typ-

ing of clinical strains from companion animals (unpublished

data) have demonstrated similar rates of ST131 in the past

2 years, whereas the diversity of CTX-M types is increasing

over time and with the number of isolates (Table 1). This

corroborates data indicating that, in the past few years,

although still mainly associated with CTX-M-15, human clini-

cal ST131 strains have acquired various ESBL genes linked to

plasmids of growing complexity, as assessed by Inc/rep typing

and plasmid MLST, and have diversified in terms of other

transferable resistance elements [37].

ST131 ancestrally derived from EcoR B2, which contains

highly virulent ExPEC, and its combination of multiresistance

and virulence is discussed as likely reason for the pandemic

success of this ST [2,37,41]. The paradigm that maintenance

of antibiotic resistance and high levels of virulence ultimately

lead to loss of bacterial fitness is false for ST131, corrobo-

rating numerous reports on bacteria that have ameliorated

the costs of resistance, e.g. by compensatory mutations

[41,42]. However, attributing the success of ST131 simply to

its virulence would draw a distorted picture [43]. If virulence

is a major driver of the emergence and supposed repeated

selection of AMR ST131 and local variants, why, then, have

other highly virulent ExPEC lineages failed to benefit from

this combination? For example, B2-ST complex (STC)95,
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which is currently represented by 351 strains either depos-

ited in the web-hosted database (http://mlst.ucc. ie/mlst/mlst/

dbs/Ecoli/) or reported in publications, represents one of the

most virulent groups of globally distributed ExPEC strains

[4,5,35,44]. However, only marginal proportions (4%) of

STC95 strains harbour ESBL genes (Table 1; Fig. 4). This is

also the case for B2-STC73 (3.6%) and for other ExPEC-B2

strains known to express a comparable set of ExPEC-related

virulence determinants as observed in ST131 strains, such as

STC127 (4.3%), STC141 (1.1%), and STC372 (0%) (propor-

tions calculated according to the MLST database, data given

in Table 1, and our own unpublished data) [43]. Humans and

poultry are the main hosts of STC95 strains, accounting for

74.4% and 24.2% of all recorded strains, respectively. Septi-

caemia is the main clinical outcome that is relevant for

human patients and poultry flocks, and a zoonotic nature of

avian pathogenic E. coli of STC95 is frequently discussed [45].

If antimicrobial agents favoured the selection of ESBL/AmpC-

producing bacteria in the poultry host, this would, in turn,

lead to an increased risk of humans acquiring these strains

via consumption of contaminated food. Why is STC95, which

is such a well-established and clinically successful phyloge-

netic lineage, less prone to such an event than its B2-ExPEC

‘relative’ STC131? Clearly, future detailed investigations are

needed to answer this question.

Taking a closer look at the distribution of ancestral groups

and the occurrence of ESBL/AmpC-producing bacteria in the

phylogenetic background of >7700 E. coli strains shown in

Fig. 3, it becomes apparent that multiresistant strains are dis-

persed over the entire population. Different STs have

recently been identified among ESBL-producing E. coli linked

to various ancestral groups, such as D (STC38, ST405, and

FIG. 4. Proportion (%) of extended-spectrum b-lactamase (ESBL)/

AmpC/NDM-producing Escherichia coli among the total number of

strains recorded among various sequence type complexes (STCs).

FIG. 3. Minimum spanning tree (MSTree, calculated with Bionumerics 6.6 (Applied Maths, Sint-Martens-Latem, Belgium)) showing the population

structure of 7766 Escherichia coli strains based on allele sequence combinations of genes adk, fumC, purA, recA, gyrB, icd, and mdh. The distribution

of the phylogenetic/ancestral groups, as determined by structure analysis and based on the concatenated sequences of the seven allele sequences,

is shown on the left, and the distribution of extended-spectrum b-lactamase (ESBL)/AmpC/NDM-1-producing E. coli (n = 1863) in the back-

ground of the E. coli population is presented on the right. For multilocus sequence typing (MLST) data and information about the ESBL status of

the strains, see the MLST database (http://mlst.ucc.ie/mlst/mlst/dbs/Ecoli/) (Table S3 (including relevant references), Data S1 (providing available

references for MLST data), and own unpublished results.
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STC69), A (ST10, ST167, and ST617), B1 (ST410), and

hybrid ABD (ST648) (Tables 1 and S3). However, similar to

the situation observed among group B2 complexes, the accu-

mulation of multiresistant strains in certain non-B2 STCs

known to cover strains of intermediate (ancestral group D,

ABD) or low extraintestinal virulence (groups B1 and A) dif-

fers noticeably (Fig. 4) [35,41]. Although the data presented

are just a snapshot of a highly complex and dynamic process,

they highlight the fact that some groups, such as STC648

(ancestral group ABD; 71.1% ESBL/AmpC-producing strains),

STC405 (D; 71.6%), and STC38 (D; 73.6%), have a higher

proportion of multiresistant strains than others, e.g. STC69

(D; 9.4%), STC23 (B1; 29.3%), and STC10 (A; 24.9%). With

respect to the varying virulence gene content of the phyloge-

netic lineages discussed, one might speculate about common,

so far unidentified, genetic factors located in the core gen-

ome that give rise to the increased ability of such strains to

acquire and retain resistance plasmids. As the clinical rele-

vance of most of the non-B2 ExPEC groups has significantly

increased only with the recognition of their multiresistant

phenotype (Table 1), we are just at the very beginning of

unravelling the underlying mechanisms.

As strains of various clonal groups are circulating widely,

they are prone to acquire whatever resistance plasmids are

TABLE 1. Phylogenetic lineages associated with the spread of extended-spectrum b-lactamase (ESBL), and AmpC b-lactamase

genes in Escherichia coli according to the multilocus sequence typing database (http://mlst.ucc.ie/mlst/mlst/dbs/Ecoli), published

data (for references see Table S3), and own unpublished results

Sequence type
complex (STC) and
sequence type (ST) (no.
of strains reported)

Type of
b-lactamase
gene

Confirmed presence (x) in: Spread in:

Companion
animals

Livestock
animals Wildlife Humans Animals Humans

STC131 (n = 995)
ST131 (B2) (n = 983)
Nine other STs (n = 12)

blaCTX-M-3,9,14,15,27,32

blaSHV-5,7,12

blaCIT type

blaNDM-1

xa x x x Globala Global

STC648 (n = 119)
ST648 (ABD) (n = 101)
Ten other STs (n = 18)

blaCTX-M-14,15,32

blaCIT type

blaNDM-1

xa xa x x Globala Global

STC405 (n = 101)
ST405 (D) (n = 94)
Six other STs (n = 7)

blaCTX-M-3,14,15

blaCTX-M group 1

blaCIT type

blaNDM-1

xa x x Europea Global

STC38 (n = 81)
ST38 (D) (n = 68)
ST315 (D) (n = 13)

blaCTX-M-1,9,14,15,27

blaOXA-48

blaNDM-1

xa x x Europea Global

STC101 (n = 43)
ST101 (B1) (n = 21)
ST359 (AxB1) (n = 17)
Two other STs (n = 5)

blaCTX-M-14,15

blaCTX-M group 1

blaCIT type

blaNDM-1

xa x x Europea Europe, Asia, Africa

STC31 (n = 30)
ST393 (D) (n = 28)
Two other STs (n = 2)

blaCTX-M-14,15 xa x Germanya Global

STC23 (n = 85)
ST410 (B1) (n = 42)
ST23 (B1) (n = 10)
ST88 (B1) (n = 10)
ST90 (B1) (n = 9)
11 other STs (n = 14)

blaCTX-M-1,3,14,15

blaSHV-12,44

blaNDM-1

blaTEM-52

x x x x Europea Global

STC117 (n = 18)
ST117 (ABD) (n = 16)
Two other STs (n = 2)

blaCTX-M-1,2,14,15 xa x x Europea Europe, Asia

STC10 (n = 174)
ST10 (A) (n = 56)
ST167 (A) (n = 33)
ST617 (A) (n = 25)
47 other STs (n = 60)

blaCTX-M-1,2,14,15

blaSHV-5,12

blaTEM-52

xa xa x x Globala Global

STC69 (n = 15)
ST69 (D) (n = 12)
ST106 (D) (n = 3)

blaCTX-M-1-14 xa xa x x Europea Global

STCs of non-STC131 B2 lineages only sporadically associated with the spread of ESBL-producing E. coli
STC95 (n = 14)

ST95 (B2) (n = 10)
Three other STs (n = 4)

blaCTX-M-3,14,15 x – Global

STC73 (n = 11)
ST73 (B2) (n = 6)
ST638 (B2) (n = 4)
ST458 (B2) (n = 1)

blaCTX-M-14,15 xa xa x Germanya Global

aAccording to our own unpublished data, marked STCs also occur in various animal species throughout Europe: STC648 (blaCTX-M-1,3,14,15,61; group 9) and STC23 (blaCTX-M-

1,2,14,15,32) in dogs, cats, horses, and cattle; STC10 (blaCTX-M-1,2,14,15,32) in dogs, cats, horses, cattle, pigs, and birds; STC405 (blaCTX-M-3,14,15,61; group 9) and STC131 (blaCTX-M-

1,2,14,15,27,55) in dogs, cats, horses, and cattle; STC38 (blaCTX-M-3,14) in dogs; STC69 (blaCTX-M-1,15) in dogs and cattle; STC73 (blaCTX-M-1) in cats and cattle; STC117
(blaCTX-M-1) in cats; STC101 (blaCTX-M-14) in cats and dogs.
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locally prevalent [46]. Accordingly, although distributions

may differ from case to case, an exclusive linkage of one bla

gene or a distinct host with a certain ST or STC is not evi-

dent (Table 1). Given that animal strains constitute only a

low proportion (<20%) of ESBL-producing E. coli isolates

analysed with MLST, it is even more intriguing that these iso-

lates mainly share identical phylotypes with human strains,

suggesting frequent and continuous interspecies transmission.

However, only more discriminative typing tools can provide

further support for this hypothesis. The schedule of events,

i.e. the first appearance of ESBL-producing bacteria in the

medical context and the earlier recovery of prominent phyl-

otypes, such as ST131, from humans, might (mis)lead us into

thinking that the initial transfer of multiresistant strains was

from humans to animals. The molecular epidemiological data

are just as tentative as the growing discussion about live-

stock as the primary infection source of such bacteria.

Conclusions

We have discussed global molecular epidemiological data on

ESBL/AmpC-producing E. coli by comparing phylotypes with

episomal resistance genes in different hosts. Owing to the

lack of data on incompatibility groups of plasmids in concert

with MLST and ESBL/AmpC types, these were not included.

Also, data from single continents were excluded because of

a limited number of publications. Most importantly, the simi-

larity of major ESBL/AmpC types and STs in humans regard-

less of their geographical origin points towards person-to-

person transmission as the most important route of antimi-

crobial resistance distribution. Whether the initial spread of

such strains from humans as original carriers was the source

of the latter enrichment of CTX-M-producing E. coli in ani-

mals remains unknown. However, the primary occurrence of

CTX-M-1 points in this direction, at least in Europe.

Apart from this, the analysed data raise more questions

than answers. Defining routes and directions of transmission

is possible, as all of the molecular methods needed are at

hand, up to whole genome next-generation sequencing.

However, these methods need to be applied in parallel in

medical and veterinary areas. If harmonized protocols are

used within a given time and geographical area, the flow of

ESBL-producing E. coli can be traced. At the same time,

detailed knowledge of antimicrobial usage in humans,

livestock and companion animal populations should be

recorded. As such data are currently missing, improved par-

allel monitoring and surveillance programmes are desperately

needed.

Furthermore, a more sound understanding of horizontal

gene flow between different E. coli and related Enterobacteria-

ceae strains is needed. Our collection of MLST data of

>7700 E. coli strains revealed plasmids encoding ESBL/AmpC

genes over the whole E. coli population, showing highly pro-

miscuous gene transfer, which can hardly be controlled.

Would competitive exclusion with probiotics be an option

to reduce intestinal ESBL/AmpC-producing strains? Or could

we even vaccinate against these bacteria? To tackle this chal-

lenge, we also need a more comprehensive understanding of

the mechanisms of colonization as well as antimicrobial resis-

tance. Currently, the increase in ESBL/AmpC-producing

E. coli is mainly considered to be a consequence of the over-

use of antimicrobials. Although we do not argue against this

obvious fact, which makes the prudent use of antimicrobials

mandatory, the additional factors involved need to be unrav-

elled. Pandora’s Box has been opened, but rather than

continuing with the ‘name, shame and blame’ approach, it is

more straightforward to encourage interdisciplinary and

novel strategies in the spirit of ‘One Health’.
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