On an Integral Equation Approach
for the Exterior Robin Problem
for the Helmholtz Equation

TZU-CHU LIN*

Department of Mathematical Sciences,
University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201

Submitted by C. S. Morawetz

Received September 25, 1985

A boundary integral equation for the exterior Robin problem for Helmholtz's equation is analyzed in this paper. This integral operator is not compact. A proof based on a suitable regularization of this integral operator and the Fredholm alternative for the regularized compact operator was given by other authors. In this paper, we will give a direct existence and uniqueness proof for the boundary non-compact integral equation in the space settings $C^{1,\lambda}(S)$ and $C^{0,\lambda}(S)$, where S is a closed bounded smooth surface.

1. Introduction

The exterior Robin problem for the Helmholtz equation has been discussed, e.g., see Leis [8], Angell and Kleinman [1]. The integral equation approach used by Angell and Kleinman [1] was based on a system of two integral equations derived from Helmholtz's representation formulas. Following the idea of Burton and Miller [4] (also see Lin [9] for a rigorous proof), Angell and Kress [2] investigated a composite integral equation. The integral operator which they used involves the normal derivative of the double layer potential, which is not compact. As they mentioned in [2], a suitable regularization must be introduced before the Fredholm alternative is applicable.

In this paper, we will give a direct existence and uniqueness proof for the composite integral equation in the space settings $C^{1,\lambda}(S)$ and $C^{0,\lambda}(S)$, where S is a smooth closed bounded surface; See Section 2 for definitions. Our

* The author is partially supported by a faculty research grant of the Graduate School, University of Wisconsin-Milwaukee.
analysis is an extension of our previous work for the exterior Neumann problem [9]. Unlike Angell and Kress [2], no regularization of the composite integral operator is needed.

2. Definitions and Preliminary Results

Let S be a closed bounded surface in R^3 which belongs to the class C^2. Let D_-, D_+ denote the interior and the exterior of S, respectively. The exterior Robin problem for Helmholtz's equation is to determine a function u such that

$$\Delta u(A) + k^2 u(A) = 0, \quad A \in D_+, \quad (2.1)$$

$$\frac{\partial u}{\partial n_p} + \sigma(p) u(p) = f(p), \quad p \in S, \quad (2.2)$$

the Sommerfeld radiation condition

$$\left(\frac{\partial}{\partial r} - ik \right) u = o \left(\frac{1}{r} \right), \quad as \quad r = |A| \to \infty, \quad (2.3)$$

where f and σ are given functions in $C_{0, \lambda}^0(S)$, $0 < \lambda < 1$, $\text{Im} k \geq 0$, $\text{Im} \sigma \geq 0$, and n_p is the outward drawn normal with respect to D_-. If a function f is l times continuous differentiable on S and if the lth order derivatives are Holder continuous with exponent λ, we say $f \in C_{1, \lambda}^0(S)$. (See [5, p. 97].) We call

$$L_k u(p) = \int_S u(q) \frac{e^{ik|p-q|}}{|p-q|} dS_q, \quad p \in R^3,$$

a single layer function, and $u(q)$ is called the single layer density function. We call

$$M_k u(p) = -\int_S u(q) \frac{\partial}{\partial n_q} \frac{e^{ik|p-q|}}{|p-q|} dS_q, \quad p \in R^3,$$

a double layer function, and $u(q)$ is called the double layer density function. For simplicity, sometimes we write Lu and Mu only. We also define

$$L_+ u(p) = \lim_{A \to D_+} Lu(A), \quad p \in S,$$

$$L_- u(p) = \lim_{A \to D_-} Lu(A), \quad p \in S,$$
We can similarly define
\[M_e u(p), \quad M_i u(p), \quad \frac{\partial}{\partial n} M_e u(p), \quad \frac{\partial}{\partial n} M_i u(p). \]

When \(u \) is fixed, we only write \(L_e, L_i, (\partial / \partial n) L_e \), etc.

If \(u \) satisfies (2.1) and (2.3), then we have the following well-known Helmholtz formula:
\[
-4\pi u(p), \quad p \in D_+,
-2\pi u(p), \quad p \in S,
0, \quad p \in D_-,
\]
where \(r = |p - q| \).

We proceed formally to obtain our boundary integral equation. From (2.4), we have
\[
\int_S \left\{ u(q) \left(-\frac{\partial}{\partial n_q} e^{ikr} \right) + \frac{e^{ikr}}{r} \frac{\partial}{\partial n_q} u(q) \right\} dS_q = \begin{cases}
-4\pi u(p), & p \in D_+, \\
-2\pi u(p), & p \in S, \\
0, & p \in D_-,
\end{cases}
\]

From (2.4), computing normal derivatives (from the interior), from the jump discontinuity of the normal derivative of single layer we obtain
\[
-2\pi u(p) - M_u(p) + L(\sigma(p) \cdot u(p)) = Lf(p), \quad p \in S.
\]

From (2.4), computing normal derivatives (from the interior), from the jump discontinuity of the normal derivative of single layer
\[
\left(\frac{\partial}{\partial n} L_i u(p) = \frac{\partial}{\partial n} Lu(p) + 2\pi u(p), p \in S \right),
\]
we obtain
\[
\frac{\partial}{\partial n} M_i u(p) - 2\pi \sigma(p) u(p) - \frac{\partial}{\partial n} L(\sigma(p) \cdot u(p))
= -2\pi f(p) - \frac{\partial}{\partial n} Lf(p), \quad p \in S.
\]
From the idea used by Burton and Miller [4] for the Neumann problem, linearly combining (2.6) and (2.7), we obtain our integral equation

\[-2\pi u(p) - M u(p) + L(\sigma(p) \cdot u(p)) + \eta \left(\frac{\partial}{\partial n} M_i u(p) - 2\pi \sigma(p) u(p) - \frac{\partial}{\partial n} L(\sigma(p) u(p)) \right) \]

\[= Lf(p) + \eta \left(-2\pi f(p) - \frac{\partial}{\partial n} Lf(p) \right), \quad p \in S, \quad (2.8)\]

where \(\eta\) is a nonzero real number and such that

\[\eta \cdot R, k \leq 0. \quad (2.9)\]

Because \(\partial M_i/\partial n\) is not defined (in the usual sense) on all of \(C(S)\) (see Günter [5, pp. 71–76]), we choose \(C^{1,\lambda}(S)\) and \(C^{0,\lambda}(S), 0 < \lambda < 1\), instead. We had chosen these spaces for the Burton and Miller integral equation approach for the exterior Neumann problem for the Helmholtz equation; see Burton and Miller [4] and Lin [9]. We also remark that Kussmaul [7] also used these spaces for his integral equation approach for the exterior Neumann problem. From [12, Lemma 4],

\[\frac{\partial M_i}{\partial n} : C^{1,\lambda}(S) \to C^{0,\lambda}(S),\]

and hence from [11]

\[-2\pi I - M + L \sigma + \eta \left(\frac{\partial}{\partial n} M_i - 2\pi \sigma - \frac{\partial}{\partial n} L \sigma \right) : C^{1,\lambda}(S) \to C^{0,\lambda}(S).\]

Remark. Angell and Kress [2] use the condition \(\eta \cdot \text{Re } k \geq 0\) (which evidently was motivated by Brakhage and Werner [3] for their combined single and double layer potentials approach for the exterior Dirichlet problem) which corresponds to our condition (2.9), because our definition of the double layer potential (following Günter [5]) is different from theirs in sign.

Angell and Kleinman [1] used a system of integral equations (2.6) and (2.7) for their approach. Angell and Kress [2] proved the existence and uniqueness theorems for (2.8); their proof depends on the Fredholm alternative. Since the operator \((\partial/\partial n)M_i\) is not compact, a suitable regularization is necessary for their proof. In the next section, we will give a
direct existence and uniqueness proof in the space settings $C^{1,\lambda}(S)$ and $C^{0,\lambda}(S)$, without invoking the regularization and the Fredholm alternative of the composite integral operator.

3. EXISTENCE AND UNIQUENESS

We adopt the same framework as Lin [9]. For the existence, we are motivated by Angell and Kleinman [1] and Kleinman and Roach [6].

Lemma 3.1. For each $f \in C^{0,\lambda}(S)$, there exists a solution $u \in C^{1,\lambda}(S)$ of the integral equation (2.6).

Proof. From [1, Lemma 4.3], there exists a solution $z \in L^2(S)$ of (2.6). Since f is continuous on S, the Regularity Theorem [10, p. 178] implies u is also continuous on S. From (2.6), we obtain

$$u(p) = -(1/2\pi)(Mu(p) - L(\sigma(p) u(p)) + Lf(p)).$$

From [11, Lemmas 2–7], $Mu \in C^{0,\lambda}(S)$, $L(\sigma \cdot u) \in C^{0,\lambda}(S)$, and $Lf \in C^{1,\lambda}(S)$. From (3.1), $u \in C^{0,\lambda}(S)$. From [11, Lemmas 2–7], $Mu \in C^{1,\lambda}(S)$ and $L(\sigma \cdot u) \in C^{1,\lambda}(S)$, therefore $u \in C^{1,\lambda}(S)$.

Lemma 3.2. Suppose that k is not an eigenvalue of the interior Dirichlet problem for the Helmholtz equation. Then for each $f \in C^{0,\lambda}(S)$, there exists a solution of (2.8) in $C^{1,\lambda}(S)$.

Proof. From Lemma 3.1, there exists a solution u of the integral equation

$$-2\pi u(p) - Mu(p) + L(\sigma(p) u(p)) = Lf(p), \quad p \in S, \quad u \in C^{1,\lambda}(S).$$

Define a function V on D_- by

$$V(A) = Mu(A) - L(\sigma(A) u(A)) + Lf(A), \quad A \in D_-.$$

Letting $A \to p^-$, from the continuity of the single layer potential and the jump discontinuity of the double layer potential, we have

$$\lim_{A \to p^-} V(A) = Mu(p) + 2\pi u(p) - L(\sigma(p) u(p)) + Lf(p), \quad p \in S.$$

From (3.2), $\lim_{A \to p^-} V(A) = 0$, $p \in S$; this means that V is a solution of the interior homogeneous Dirichlet problem for Helmholtz's equation with zero boundary data. Since k is not an eigenvalue of the interior Dirichlet
problem, this function \(V \) must vanish identically in \(\overline{D} \) and \(\partial V / \partial n = 0 \) on \(S \). We rewrite (3.3) as
\[
Mu(A) = V(A) + L(\sigma(A) u(A)) - Lf(A), \quad A \in D_-
\]
From this, we obtain
\[
\frac{\partial M_i}{\partial n} u(p) = \frac{\partial}{\partial n} L(\sigma(p) u(p)) + 2\pi\sigma(p) u(p) - \left(\frac{\partial}{\partial n} Lf(p) + 2\pi f(p) \right),
\]
which means that \(u \) is also a solution of (2.7). Linearly combining (3.2) and (3.4), \(u \) is a solution of (2.8).

Lemma 3.3 [1, Lemma 4.6]. The function \(V \) is an eigenfunction of the interior Dirichlet problem with zero boundary data if and only if \(V \) can be represented in the form
\[
V(A) = \frac{1}{2\pi} Mw(A) - \frac{1}{2\pi} L(\sigma(A) w(A)), \quad A \in D_-
\]
where \(w \) satisfies the homogeneous boundary integral equation
\[
2\pi w(p) + Mw(p) - L(\sigma(p) w(p)) = 0, \quad p \in S.
\]

Theorem 3.4 (Existence Theorem). For each \(f \in C^{0,\lambda}(S) \), there exists a solution of (2.8) in \(C^{0,\lambda}(S) \).

Proof. If \(k \) is not an eigenvalue of the interior homogeneous Dirichlet problem, the result follows from Lemma 3.2. Now we only consider the case in which \(k \) is an eigenvalue of the interior homogeneous Dirichlet problem. From Lemma 3.1, there exists a solution \(u_1 \in C^{1,\lambda}(S) \) of the integral equation
\[
-2\pi u(p) - Mu(p) + L(\sigma(p) u(p)) = Lf(p), \quad p \in S.
\]
Define a function \(V \) on \(D_- \) by
\[
V(A) = Mu_1(A) - L(\sigma(A) \cdot u_1(A)) + Lf(A), \quad A \in D_-
\]
As in the proof of Lemma 3.2, \(V \) is either identically zero or is a nontrivial
solution of the interior homogeneous Dirichlet problem. From Lemma 3.3, in either case, we may represent the function \(V \) in the form

\[
V(A) = \frac{1}{2\pi} Mw(A) - \frac{1}{2\pi} L(\sigma(A) w(A)), \quad A \in D_-, \tag{3.7}
\]

where \(w \) satisfies the boundary integral equation

\[
2\pi w(p) + Mw(p) - L(\sigma(p) w(p)) = 0, \quad p \in S. \tag{3.8}
\]

From (3.6) and (3.7), we have

\[
\frac{1}{2\pi} Mw(A) - \frac{1}{2\pi} L(\sigma(A) w(A)) = Mu_1(A) - L(\sigma(A) \cdot u_1(A)) + Lf(A), \quad A \in D_- \tag{3.9}
\]

Define a function \(u \) on \(S \) by

\[
u = u_1 - \left(\frac{1}{2\pi} \right) w. \tag{3.10}\]

We will prove that \(u \) is a common solution of (2.6) and (2.7). From (3.5) and (3.8), we have

\[
-2\pi u(p) - Mu(p) + L(\sigma(p) \cdot u(p)) = Lf(p), \quad p \in S, \tag{3.11}
\]

i.e., \(u \) is a solution of (2.6). From (3.9) and (3.10), we obtain

\[
Mu(A) = L(\sigma(A) u(A)) - Lf(A), \quad A \in D_- \tag{3.12}
\]

From (3.8), we have

\[
w(p) = \frac{1}{2\pi} \left(L(\sigma(p) w(p)) - Mw(p) \right), \quad p \in S. \tag{3.13}
\]

From the regularity theorem [10, p. 178] and (3.8), \(w \) is continuous on \(S \). From [11] and (3.13), \(w \in C^{0,\lambda}(S) \). Again, from [11] and (3.13), \(w \in C^{1,\lambda}(S) \). Therefore \(\partial M_i/\partial n \) exists (e.g., see [5, 11, 12]) and from (3.12),

\[
\frac{\partial M_i}{\partial n} u(p) = \frac{\partial}{\partial n} \left(L(\sigma(p) u(p)) + 2\pi \sigma(p) u(p) \right)
\]

\[
- \left[\frac{\partial}{\partial n} Lf(p) + 2\pi f(p) \right], \quad p \in S, \tag{3.14}
\]

i.e., \(u \) is also a solution of (2.7). From (3.11) and (3.14), \(u \) is a solution of (2.8) in \(C^{1,\lambda}(S) \).
Theorem 3.5 (Uniqueness). For each \(f \in C^{0,2}(S) \), there is at most one solution \(u \) of the integral equation (2.8) in \(C^{1,2}(S) \).

Proof. If suffices to show that the corresponding homogeneous equation

\[
-2\pi u(p) - Mu(p) + L(\sigma(p) \cdot u(p))
+ \eta \left[\frac{\partial}{\partial n} M_i u(p) - 2\pi \sigma(p) u(p) - \frac{\partial}{\partial n} L(\sigma(p) \cdot u(p)) \right] = 0 \tag{3.15}
\]

has only the trivial solution \(u = 0 \) on \(S \). With our notation, (3.15) can be written as

\[
-M_i u(p) + L(\sigma(p) \cdot u(p))
+ \eta \left[\frac{\partial}{\partial n} M_i u(p) - \frac{\partial}{\partial n} L(\sigma(p) u(p)) \right] = 0, \quad p \in S. \tag{3.16}
\]

From (3.16) and Green's theorem,

\[
\eta \int_S \left| \frac{\partial}{\partial n} M_i u(p) - \frac{\partial}{\partial n} L(\sigma \cdot u)(p) \right|^2 dS
= -\int_S \left(M_i u(p) - L(\sigma \cdot u)(p) \right) \cdot \left(\frac{\partial}{\partial n} M_i u(p) - \frac{\partial}{\partial n} L(\sigma \cdot u)(p) \right) dS
= -\left[\int_{D_-} |\nabla(Mu(A) - L(\sigma \cdot u)(A))|^2 dV
+ \int_{D_-} (Mu(A) - L(\sigma \cdot u)(A)) \cdot A(Mu(A) - L(\sigma \cdot u)(A)) dV \right]
= -\left[\int_{D_-} |\nabla(Mu(A) - L(\sigma \cdot u)(A))|^2 dV
- k^2 \int_{D_-} |Mu(A) - L(\sigma \cdot u)(A)|^2 dV \right].
\]

Equating the imaginary part of the above equation, we have

\[
\eta \int_S \left| \frac{\partial}{\partial n} M_i u(p) - \frac{\partial}{\partial n} L(\sigma \cdot u)(p) \right|^2 dS
= 2 \cdot \text{Re} \ k \cdot \text{Im} \ k \cdot \int_{D_-} |Mu(A) - L(\sigma \cdot u)(A)|^2 dV.
\]
Since η is chosen such that $\eta \neq 0$ and $\eta \cdot \Re k \leq 0$, therefore

$$\frac{\partial}{\partial n} M_\eta u(p) - \frac{\partial}{\partial n} L_\eta (\sigma \cdot u)(p) = 0 \quad \text{on } S.$$

From (3.16),

$$-M_\eta u(p) + L(\sigma \cdot u)(p) = 0 \quad \text{on } S.$$

From [1, Lemma 4.4], we have $u = 0$ on S.

REFERENCES

