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This paper concerns the determination of an axially symmetric 
harmonic function that is a function u(r, ~7) satisfying the equation 

ulr + ~rQ.4, + urg = 0 in y<o O<Y, (E) 

when II is subject to the mixed boundary conditions, 

u(y, 0) = g(y) O<r<l, (N 

%(Y, 0) = 0 r > 1. P) 

This problem, which physically corresponds to the potential of a disk in 
an external field, has a long history dating back to Kelvin. There are 
several known methods of solution all quite complicated. Of these we 
mention the dual integral equation method of Titchmarsh [l] and a 
later method of Copson [2]. It is the purpose of this note to point out 
that these methods are not necessary but that the problem is easily 
reduced to an elementary boundary-value problem for a harmonic func- 
tion of two variables. 

\Ve suppose, 

u(y, v) -0 as 1’2 + ?‘2 -+ cm. 
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Then z~(Y, y) can be represented in the integral form, 

1 2n 

ti(r, y) = (24-l 
55 

[r2 + p2 - 2rp cos 8 + y2]-1’2p~Y(p,0) dfldp. 

00 
From this we have 

1 

40, Y) = 
5 

(p” + ~~)-~‘~p~y(p, 0) dp. 

0 

(1) 

While Eq. (1) is derived initially for y real we observe that the integral 
on the right side is an analytic function for complex y = r + ir. Accord- 
ingly ~(0, y) is extended analytically to complex y. Let us denote the 
extension by 

From Eq. (1) we find immediately then that 

Re U(Y) = q(q,t) = 0 for ?j = 0 ItI > 1. (2) 

Note also that U(y) equals ~(0, r/) on t = 0 hence is real there and we 
have, 

W) = WY) or &,I, - 4 = P(% .tL 44% - 4 = - $4% 4. (3) 

Finally, it follows from Eq. (1) that 

U(y) -0 as IYI - cQ* (4) 

Now it is known that solutions of equation (E) are determined by 
their values on r = 0, the axis of symmetry, provided those values are 
analytic. In fact the answer may be written down [3] in the integral 
form, 

+r 

u(r, y) = n-l 
5 

(r2 - ~2)-l’~ U(y + it) dt, 
--I 

or, using (3), 

u(r, y) = 2(74-l (r2 - 22)-I/2 tp(y, t) dt. 
0 

Let us now enter the boundary condition (A). We find, 

(5) 

g(r) = 2(74-l (r2 - ~~)-l/~ ~(0, t) dt O<r<l. 
0 
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This Volterra integral equation is easily inverted to yield (c.f. [41) 

o’(0, 7) = g pg(p) (7” - p2)-lledp 3 h(t) 
i 

0<7<1. 69 

6 

l3v Eq. (3) we have also 

do, 4 = q- 7) - 1 < 5 < 0. (7 

The harmonic function of two variables pj(q, t) is then known from 
Eqs. (2), (6), and (7) on the entire t axis. Further, according to (1) it 
must vanish as q2 + r2 -+ cu. The required function is then given by the 
Poisson integral, 

t1 
cp(q, 7) = (n-1)7j 

I 
h(i) [(7j2 + (7 - t)“]-l fit. 

--1 

Having determined v(q, t) we then find U(Y, y) from Eq. (5). 
The use of the integral representation (5) for an axially-symmetric 

function in terms of its values on the axis of symmetry seems to be a 
rather powerful tool. We remark that the case of a circular disk in a non- 
symmetric field can be handled similarly. One separates the angular 
dependence in a Fourier series. The coefficients of cos 1~0 or sin B& 
are then functions u“(Y, 0) which satisfy instead of (E) equations of the 
form, 

u:, + r-l 14: + uy? - n2r-2 24” = 0. 

Analogs of formula (5) exist for these equations (see [3]) and the whole 
technique can be duplicated. Quite similar although somewhat more 
complicated methods have been successfully employed by the authors 
in the study of acoustic wave diffraction by a circular disk [5]. 
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