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This paper concerns the determination of an axially symmetric
harmonic function that is a function «(r, v) satisfving the equation

Uy + 7Yy, + 0y, =0 in y<0 0<r, (E)

when « is subject to the mixed boundary conditions,
u(r, 0) = g(7) 0<r<l, {(A)
uy(r,0) =0 r>1 (B)

This problem, which physically corresponds to the potential of a disk in
an external field, has a long history dating back to Kelvin. There are
several known methods of solution all quite complicated. Of these we
mention the dual integral equation method of Titchmarsh [1] and a
later method of Copson [2]. It is the purpose of this note to point out
that these methods are not necessary but that the problem is easily
reduced to an elementary boundary-value problem for a harmonic func-
tion of two variables.
We suppose,

u(r,y) -0 as r2 4+ v - 0.
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Then u(r, y) can be represented in the integral form,

2n

1
u(r, y) = (27‘5)_1]’ j [r2 + p? — 27p cos O + y2]~Y2 pu,(p,0) dOdp.
00
From this we have

1
(0, y) = j(ﬁz + ¥3)=12 puy(p, 0) dp. (1)
(1}

While Eq. (1) is derived initially for y real we observe that the integral
on the right side is an analytic function for complex ¥y = » 4+ 77. Accord-
ingly #(0, ¥) is extended analytically to complex y. Let us denote the
extension by

(0, y) = U(y) = ¢(n, 7) 4 ¥(n, 7)

From Eq. (1) we find immediately then that
ReU@y)=¢nt)=0 for =0 |7|>1 2

Note also that U(y) equals #(0, ) on 7 = 0 hence is real there and we
have,

U =Uly) or o —1)=e@n1)dn—1)=—4¢n1 6
Finally, it follows from Eq. (1) that
Uy) -0 as ly| — oo. )

Now it is known that solutions of equation (E) are determined by
their values on » = 0, the axis of symmetry, provided those values are
analytic. In fact the answer may be written down [3] in the integral

form,
+7

u(r, y) = n—lj (r® — tH)~12U(y + i1) dr,

or, using (3),

u(r, y) = 2(7;)—15 (r? — 1)~ 12 g(y, 7) dr. (5)
0
Let us now enter the boundary condition (A). We find,
g(r) = 2(n)”1§(72— )~1290,7)dr O0<<r<L
0
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This Volterra integral equation is easily inverted to vield (c.f. [4])

v

#0,70) =\ pelp) (2 — Rl =h(z)  O<T<L ()

(=T

By Eq. (3) we have also
0, 7) = h(— 1) —l<r0. {7)

The harmonic function of two variables ¢(y, 7) is then known from
Egs. (2), (6), and (7) on the entire T axis. Further, according to (4) it
must vanish as 2 + 72 -» co. The required function is then given by the
Poisson integral,

t+1

@(n, 7) = (= Yy jh(t) [(n®+ (z— )2 1at.

-1

Having determined ¢(z, T} we then find u(r, y) from Eq. (5).

The use of the integral representation (5) for an axially-symmetric
function in terms of its values on the axis of symmetry seems to be a
rather powerful tool. We remark that the case of a circular disk in a non-
symmetric field can be handled similarly. One separates the angular
dependence in a Fourier series. The coefficients of cos#f or sin x6
are then functions #"(r, ) which satisfy instead of (E) equations of the
form,

n n n b
Upy + v~ Loty + Uy, — n2— 2" =0,

Analogs of formula (5) exist for these equations (see [3]) and the whole
technique can be duplicated. Quite similar although somewhat more
complicated methods have been successfully employed by the authors
in the study of acoustic wave diffraction by a circular disk [5%.
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