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SUMMARY

microRNAs regulate developmental cell-fate deci-
sions, tissue homeostasis, and oncogenesis in
distinct ways relative to proteins. Here, we show
that the tumor suppressor microRNA miR-34a is
a cell-fate determinant in early-stage dividing colon
cancer stem cells (CCSCs). In pair-cell assays,
miR-34a distributes at high levels in differentiating
progeny, whereas low levels of miR-34a demarcate
self-renewing CCSCs. Moreover, miR-34a loss of
function and gain of function alter the balance
between self-renewal versus differentiation both
in vitro and in vivo. Mechanistically, miR-34a seques-
ters Notch1 mRNA to generate a sharp threshold
response where a bimodal Notch signal specifies
the choice between self-renewal and differentiation.
In contrast, the canonical cell-fate determinant
Numb regulates Notch levels in a continuously
graded manner. Altogether, our findings highlight
a unique microRNA-regulated mechanism that
converts noisy input into a toggle switch for robust
cell-fate decisions in CCSCs.

INTRODUCTION

microRNAs silence gene expression by binding to the 30 untrans-
lated regions (30 UTRs) of target mRNAs, inhibiting their transla-

tion or marking them for degradation (Pauli et al., 2011).

microRNAs often target genes that regulate cell-fate decisions

(Ivey and Srivastava, 2010; Pauli et al., 2011). Recent studies

show that microRNAs confer robustness to biological processes

in distinct ways relative to proteins, such as suppressing fluctu-

ations in gene regulation (Ebert and Sharp, 2012). microRNAs

also frequently form feedback and feedforward loops with other

microRNAs and proteins to enhance robustness (Osella et al.,
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2011; Tsang et al., 2007). microRNA expression is globally

altered in tumors relative to normal tissues, which potentially

contributes to the lack of control for differentiation and arrest in

cancer cells (Loboda et al., 2011).

Originally identified as a p53 target, the microRNA miR-34a

acts as a tumor suppressor in many types of solid tumors (He

et al., 2007; LaPointe et al., 2008; Li et al., 2007; Liu et al., 2011;

Wurbel et al., 2011; Youn et al., 2001). miR-34a also regulates

multiple developmental cell-fate mechanisms, including the

differentiation of mouse and human embryonic stem cells and

somatic cell reprogramming, among others (Choi et al., 2011;

Guardavaccaro and Clevers, 2012; Sampieri and Fodde, 2012;

Sikandar et al., 2010). Among the regulatory mechanisms tar-

geted by miR-34a, the Notch pathway plays a prominent role in

cell-fate determinationduringdevelopment andoncogenesis (Ali-

son et al., 2012). miR-34a binds to the 30 UTR mRNA sequences

of Notch receptors, which causes reduced Notch protein levels

and dampens downstream Notch signaling (Li et al., 2009).

The Notch pathway is a critical regulator of asymmetric divi-

sion in many types of normal stem cells. Asymmetric cell division

is a mechanism commonly used by stem cells to generate both

a daughter stem cell for self-renewal and a more differentiated

daughter cell to create cellular diversity (Neumüller andKnoblich,

2009). Stem cells perform asymmetric division to maintain stem

cell number and tissue homeostasis in a robust and precise way

(Sánchez-Tilló et al., 2011). Certain types of cancer cells also

perform asymmetric division (Dey-Guha et al., 2011; Lathia

et al., 2011; O’Brien et al., 2012; Pece et al., 2010; Pine et al.,

2010). Similar to the situation in normal stem cells, the disruption

of asymmetric division can alter the balance between self-

renewal and differentiation in cancer stem cells and impact

tumor growth (Cicalese et al., 2009; Sugiarto et al., 2011).

However, despite the importance of the Notch pathway in the

regulation of asymmetric division, it remains unknown whether

individual microRNAs, such as the Notch-targeting miR-34a,

play any role in determining cell-fate asymmetry in normal and

cancer stem cells.

Notch signaling is known to play essential roles in promoting

the self-renewal of intestinal and colon stem cells (ISCs) and in
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Table 1. Colon Cancer Stem Cell Lines and Primary Human Colorectal Cancers Used in the Study

ID Age/Sex Stage miR-34aa Numba p53 mutation Kras mutation % of C/Cb % of C/Db % of D/Db % of amb

CCSC1 57/M I 16.7 7.2 NO NO 57.6 14.1 26.1 2.2

CCSC2 51/M II 14.3 5.8 NO NO 59.3 12.7 24.5 3.5

CCSC3 74/F I 13.2 4.7 NO YES 61.4 13.4 25.2 0

CCSC4 54/M III 3.7 3.5 NO NO 89.3 0 9.5 1.2

CCSC5 61/M IV 1.0 1.0 YES NO 96.3 0 3.2 0

CCSC6c 47/M II 11.3 4.2 NO NO 41.2 19 31.8 8

CCSC7c 87/M III 2.5 4.1 NO NO 82.6 0 11.3 6.1

CCSC8c 50/M III 5.2 2.2 YES YES 69.7 6.1 18.2 6

CCSC9c 86/M IV 1.7 3.1 NO NO 80.8 0 19.2 0
aThe expression level of miR-34a and Numb were measured by qRT-PCR relative to CCSC5 sphere.
bThe pair-cell assay was performed in CCSC spheres by coimmunofluorescence of ALDH1 and CK20. C/C, symmetric self-renewal (CCSC/CCSC);

C/D, asymmetric division (CCSC/differentiated cell); D/D, symmetric differentiation (differentiated cell/differentiated cell).
cThe cell lines are freshly isolated CCSCs from primary CRC.
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specifying the choice between absorptive or secretory lineage

differentiation (de Sousa E Melo et al., 2011; Taketo, 2011; van

Es et al., 2005). ISCs undergo both symmetric and asymmetric

divisions, probably at different stages, during development and

crypt homeostasis (Goulas et al., 2012; Itzkovitz et al., 2012;

Potten et al., 2002; Quyn et al., 2010). Colon cancer stem cells

(CCSCs) from colorectal cancer (CRC) are thought to arise

from, or at least share common properties with, normal colon

stem cells (Arrowsmith, 2011a; Clevers, 2011; Dalerba et al.,

2007; O’Brien et al., 2007; Ricci-Vitiani et al., 2007). Tumors

formed by xenotransplanted CCSCs show heterogeneity in

morphology and are populated by cell types reflecting the histo-

pathology of the parental tumor. Like ISCs, CCSCs also require

Notch signaling for self-renewal (Sikandar et al., 2010; van Es

et al., 2005).

Here, we show that, similar to ISCs, CCSCs from early-stage,

well-differentiated CRC tumors can perform both self-renewing

symmetric division (producing two CCSC daughter cells) and

asymmetric division (producing a CCSC daughter cell and

a differentiated non-CCSC daughter cell). The decision of

a CCSC to perform either symmetric or asymmetric division is

tightly controlled by the miR-34a level. High miR-34a levels

dampen Notch signaling and promote daughter cells to become

non-CCSCs, whereas low miR-34a levels upregulate Notch

signaling and promote daughter cells to remain CCSCs. Investi-

gation of regulation kinetics demonstrated a critical role for miR-

34a to convert ‘‘noisy’’ signaling inputs into clean bimodal Notch

levels that enable robust binary daughter cell-fate decisions.

This role of miR-34a is distinct from that of the canonical cell-

fate determinant protein Numb, which regulates Notch levels in

a continuously graded manner. These studies provide new

insights into asymmetric cell division mechanisms, highlighting

unique regulatory roles performed by microRNAs.

RESULTS

Characterization of Early-Stage, Well-Differentiated
CCSCs
Using the established CCSC markers CD133, CD44, and alde-

hyde dehydrogenase 1 (ALDH1) (Emmink et al., 2011; Huang

et al., 2009; Ricci-Vitiani et al., 2007; Todaro et al., 2007), we
isolated two CCSC lines, CCSC1 and CCSC2, from early-stage,

well-differentiated CRC patient specimens (Table 1) (see Exper-

imental Procedures). Consistent with previous reports (Huang

et al., 2009; O’Brien et al., 2007; Sikandar et al., 2010), both

CCSC1 and CCSC2 efficiently formed xenograft tumors that

maintained the histopathology of their primary human CRCs

upon xenografting in immunodeficient mice (Figure S1A avail-

able online).

Both CCSC1 and CCSC2 propagate as spheres in ultralow-

attachment flasks and are capable of generating cellular diversity

in vitro. From dissociated spheres, fluorescence-activated cell

sorting (FACS) identified a CD133+CD44+ CCSC subpopulation

and a CD133�CD44� non-CCSC subpopulation (Figure S1B).

Isolated CCSCs became heterogeneous again in spheres and

reached a similar equilibrium between CCSCs (CD133+CD44+)

and non-CCSCs (CD133�CD44�) as they proliferated (Fig-

ure S1B). Consistent with previous studies of ALDH1 andCCSCs

(Huang et al., 2009), FACS analysis confirmed that CCSCs were

ALDH1+, whereas non-CCSCs were ALDH1� (Figure S1C).

Then, we compared the tumorigenic capacity of CCSCs and

non-CCSCs using the limiting dilution assay. Also consistent

with previous studies of CCSCs, for both CCSC1 or CCSC2,

as few as 1,000 CCSCs were sufficient to form subcutaneous

xenograft tumors, whereas non-CCSCs failed to form tumors

during the observed period (2 months) even when up to 1 3

106 cells were injected (Figure S1D; data not shown). Sphere

propagation assays confirmed that, unlike CCSCs, non-CCSCs

were incapable of forming and serially propagating spheres

in vitro (Figures S1E–S1G). To evaluate the differentiation poten-

tial of CCSCs, we cultured dissociated sphere cells in differenti-

ation medium (DMEM with 10% fetal bovine serum [FBS]). After

10 days in culture, CD133 and CD44 expression significantly

decreased, whereas the expression of cytokeratin 20 (CK20),

a marker of mature normal colonocytes and non-CCSCs,

increased (Figures S1H–S1K). Consistent with these findings,

the tumorigenic ability of CCSCs cultured in differentiation

medium was greatly reduced (Figure S1L).

miR-34a Inhibits CCSC Self-Renewal In Vitro
microRNA profiling previously identified miR-34a, but not miR-

34b or -34c, as being expressed in cultured CRC spheres (Jahid
Cell Stem Cell 12, 602–615, May 2, 2013 ª2013 Elsevier Inc. 603
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et al., 2012). Given that miR-34a can cause cell differentiation by

inhibiting Notch signaling, we examined how miR-34a expres-

sion levels differ between CCSCs and non-CCSCs. Quantitative

RT-PCR (qRT-PCR) studies showed that miR-34a expression

was downregulated in CCSCs and upregulated in non-CCSCs

(Figure 1A). Infection of CCSC1 and CCSC2 sphere cells with

lentivirus driving miR-34a constitutive overexpression (miR-34a

OE) increased the proportion of non-CCSCs relative to CCSCs

(Figures 1B and 1C). Overall, these data are consistent with

miR-34a promoting CCSC differentiation into non-CCSCs.

Then, we performed serial sphere propagation assays to

examine the impact of miR-34a on self-renewal. For both

CCSC1 and CCSC2 lines, we analyzed cells with the stably inte-

grated lentiviral miR-34a OE expression cassette as described

in the preceding paragraph. In addition, we also created

CCSC1 and CCSC2 lines with a stably integrated miR-34a

‘‘sponge’’ construct (miR-34a KD). This construct drives the

transcription of a decoy mRNA containing multiple tandem

binding sites for miR-34a, which reduces levels of free miR-

34a available to bind its endogenous mRNA targets (Ebert

et al., 2007). The efficiency of the miR-34a KD construct was

validated by a luciferase miR-34a reporter assay (Figure S2A).

After selection for cells containing the miR-34a KD cassette,

single cells were allowed to form spheres in vitro. Subsequently,

spheres containing the miR-34a KD or control cassettes were

dissociated and passaged for several generations (Figure 1D).

Although spheres from CCSC1 and CCSC2 cells with the control

sequence maintained a stable level of sphere-forming ability,

miR-34a KD cells had significantly increased sphere-forming

ability; in contrast, spheres from CCSC1 and CCSC2 cells with

the stably integrated miR-34a OE cassette had diminished

sphere-forming activity (Figures 1E, 1F, S2B, and S2C). Further-

more, cells frommiR-34a OE spheres lost the ability to form new

spheres serially after being passaged for several generations,

whereas cells from untransduced or miR-34a KD-expressing

spheres could be passaged significantly longer (for at least

12 months).

Similarly, miR-34a OE sphere cells had lower proliferation

rates (Figure S2D), which was consistent with high miR-34a

levels promoting differentiation (Figures 1B and 1C). These

observations are also consistent with non-CCSCs having lower

proliferative potential than CCSCs (Figure 2D). Finally, high

miR-34a levels also increased cell-cycle arrest and senescence

(Figures S2E and S2F).

miR-34a Suppresses CCSC Xenograft Tumor Formation
Using mouse xenograft models, we examined whether miR-34a

affects tumor formation in vivo. We constructed a CCSC1 line

that stably expressed a lentiviral miR-34a reporter cassette

with three miR-34a binding sites cloned into the 30 UTR of

a D2EGFP reporter gene. In this reporter line, FACS identified

two distinct sphere subpopulations: miR-34ahigh and miR-

34alow cells (Figure S2K). Of the six mice that were subcutane-

ously injected with miR-34alow cells, all six formed tumors.

In contrast, in the six mice injected in parallel with miR-34ahigh

cells, only one formed a tumor , and the volume of this tumor

was much smaller than those generated by miR-34ahigh cells

(Figures 1I and 1J). Analysis of the disaggregated tumors by

FACS showed that tumors developing from miR-34alow cells
604 Cell Stem Cell 12, 602–615, May 2, 2013 ª2013 Elsevier Inc.
had a higher percentage of CCSCs than those from miR-34ahigh

cells (Figure 1K).

Next, to confirm the inhibitory role of miR-34a in CCSC self-

renewal and tumor growth, we subcutaneously injected immu-

nodeficient mice with cells isolated from CCSC1 spheres ex-

pressing basal (control), constitutively high (miR-34a OE), or

constitutively low (miR-34a KD) miR-34a levels. Only two of the

six mice injected with high miR-34a-expressing sphere cells

(integrated with the miR-34a OE cassette) developed tumors,

whereas all six mice in the control group (injected with cells inte-

grated with the control cassette) developed tumors (Figures 1L

and 1M). Additionally, tumors that grew from injected high

miR-34a-expressing cells were smaller than those arising from

control cells. Consistent with these data, all six of the tumors

that grew from subcutaneously injected lowmiR-34a-expressing

cells (integratedwith themiR-34a KD cassette) were consistently

larger in size than those in the control group (Figures 1O and 1P).

Similar results were observed from xenograft tumors arising from

CCSC2 spheres with basal, high, or low miR-34a levels (Figures

S2G and S2H). FACS analysis of disaggregated xenograft

tumors further showed that high miR-34a levels (miR-34a OE)

reduced the ratio of CCSC to non-CCSCs, whereas low miR-

34a levels (miR-34a KD) increased this ratio, suggesting that

miR-34a suppressed CCSC self-renewal (Figures 1N and 1Q).

Next, to confirm these findings, we isolated CCSCs from xeno-

graft tumors and assayed the impact of miR-34a levels on self-

renewal. For both CCSC1 and CCSC2 tumors, serial sphere

propagation assays confirmed that low miR-34a-expressing

CCSCs from miR-34a KD tumors had increased self-renewal

ability versus control CCSCs with basal miR-34a expression

levels; in contrast, CCSCs with high miR-34a levels from miR-

34a OE tumors had a significantly lower self-renewal capacity

than control CCSCs (Figures 1G, 1H, S2I, and S2J).

Early-Stage CCSCs Perform Both Symmetric and
Asymmetric Division
To understand the mechanism of miR-34a suppression of CCSC

self-renewal, we used in vitro pair-cell assay to assess how

CCSCs and non-CCSCs divide (Bultje et al., 2009) (Figure S3A).

When CCSCs were plated as single cells and allowed to prog-

ress through one cell division, coimmunofluorescence staining

for ALDH1 and CK20 revealed that 65% of cell divisions were

symmetrical, producing two CCSC (ALDH1+) daughter cells;

whereas 28% were asymmetrical, producing one CCSC

daughter cell and one non-CCSC (CK20+) daughter cell. In

contrast, 87% of non-CCSCs plated in parallel divided, giving

rise to two non-CCSC daughter cells (Figures 2A and 2B). The

few ‘‘non-CCSCs’’ that produced CCSC daughter cells were

presumably CCSCs with borderline CD44 and CD133 expres-

sion that were sorted into the non-CCSC population by FACS.

These findings demonstrate that early-stage CCSCs can

perform both symmetric and asymmetric division, whereas

non-CCSCs largely divide into non-CCSCs (Figure 2C). This

result was confirmed by additional pair-cell assays with immuno-

fluorescence staining for other CCSC and differentiation

markers, including the ISC marker Lgr5 (Arrowsmith, 2011b)

(Figures S3B–3G). Furthermore, coimmunofluorescence staining

for ALDH1 and CD44 or CD133 confirmed that the expression

of CCSC markers in daughter cells was consistent between
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Figure 1. miR-34a Regulates CCSC Self-Renewal and Tumor Formation

(A) qRT-PCR showing miR-34a expression in CCSCs and non-CCSCs. Error bars denote the SD between triplicates.

(B and C) FACS plots showing CK20, CD44, and CD133 levels in spheres after ectopic miR-34a expression (miR-34a OE). In (B), the red histograms represent

isotype controls, and the blank histograms represent CK20+ cells.

(D) Representative images of CCSC spheres after ectopic miR-34a expression (miR-34a OE, top) and miR-34a knockdown (miR-34a KD, bottom).

(E and F) Sphere formation during serial passages after ectopicmiR-34a expression (E) andmiR-34a knockdown (F). Error bars denote the SDbetween triplicates.

(G and H) Serial sphere formation of CCSCs from xenografts of miR-34a OE (G) and miR-34a KD (H) cells. An equal number of cells were passaged for three

generations for the formation of spheres. Error bars denote the SD between triplicates.

(I and J) miR-34alow sphere cells were more tumorigenic than miR-34ahigh sphere cells in vivo, as shown by tumor growth curves (I) and images of xenograft

tumors (J). Error bars denote the SD derived from six mice per group.

(K) FACS showing the percentages of tumor cells that are CCSCs.

(L and M) Ectopic expression of miR-34a (miR-34a OE) reduces tumorigenicity, shown by tumor growth curves (L) and images of xenograft tumors (M). Error bars

denote the SD derived from six mice per group.

(N) FACS showing the percentages of tumor cells that are CCSCs.

(O and P) Knockdown of miR-34a (miR-34a KD) enhances tumorigenicity, shown by tumor growth curves (O) and images of xenograft tumors (P). Error bars

denote the SD derived from six mice per group.

(Q) FACS showing the percentages of tumor cells that are CCSCs. Gen, generation. **, p < 0.01; ***, p < 0.001.

See also Figures S1 and S2.
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Figure 2. miR-34a Regulates CCSC Division

(A) Representative images of sphere cell division. Immunofluorescence for ALDH1 (red) and CK20 (green) illustrates three types of division: CCSC/CCSC (C/C),

CCSC/non-CCSC (C/D), and non-CCSC/non-CCSC (D/D).

(B) Percentages of division types between the CCSC (CD133+CD44+) and non-CCSCs (CD133�CD44�) subpopulations.

(C) Schematic illustration of CCSC divisions.

(D) A functional assay showing that cell-fate asymmetry leads to distinct proliferation capacity. Left, a schematic representation of the experimental approach.

Single sphere cells were allowed to divide once in 24 hr (first division). Then, cells were treated with BrdU for 3 hr to label cells that were entering the second

division before being costained for BrdU and ALDH1 and for BrdU and CK20. Right, representative images showing that the CCSC daughter cell (ALDH1+ or

CK20�) was more proliferative and incorporated BrdU.

(E) Pair-cell assays with ALDH1 and CK20 coimmunofluorescence showing ectopic miR-34a expression promotes differentiation (D/D) at the expense of

asymmetric division (C/D) and symmetric self-renewal (C/C).

(F) Pair-cell assay with ALDH1 and CK20 coimmunofluorescence showing that miR-34a knockdown increases symmetric self-renewal (C/C) at the expense of

asymmetric division (C/D) and differentiation (D/D).

(G and H) Immunofluorescence for ALDH1 and CK20 in pair-cell assays showing the percentages of symmetric CCSC/CCSC (C/C), asymmetric (C/D), and non-

CCSC (D/D) divisions in sphere cells, which were cultured from CCSCs isolated from the xenografts of miR-34a OE (G) and miR-34a KD (H) spheres. Am,

ambiguous. DAPI staining of the nucleus is shown in blue. Error bars denote the SD between triplicates. **, p < 0.01; ***, p < 0.001.

See also Figure S3.
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the two during symmetric and asymmetric division, given that the

CCSC daughter cells always express CD44, CD133, and ALDH1

(Figures S3H and S3I).

To understand whether the balance between symmetric and

asymmetric division changes during CRC tumor progression,

we performed pair-cell assays on three other CCSC lines

(CCSC3–CCSC5) and CCSCs sorted from primary cells freshly

isolated from CRC tumors (CCSC6–CCSC9). Asymmetric divi-

sions of CCSCs happen more frequently in early-stage CRC

tumors than in late-stage CRC tumors (Table 1 and Figure S3J).

Hence, asymmetric division is negatively correlated with tumor-

igenicity and invasiveness.

Then, we examined whether CCSC and non-CCSC daughter

cells have different proliferation rates (Sugiarto et al., 2011).
606 Cell Stem Cell 12, 602–615, May 2, 2013 ª2013 Elsevier Inc.
After culturing CCSC1 and CCSC2 spheres in proliferative

medium (DMEM with 10% FBS) for 24 hr, we plated single cells

and allowed them to divide once in proliferative medium for

another 24 hr (first division). Then, we treated cells with BrdU

for 3 hr in order to label the cells entering the second division

before costaining for BrdU and ALDH1 and for BrdU and

CK20. The CCSC (ALDH1+) daughter cells entered the second

division immediately and incorporated BrdU; in contrast, the

non-CCSC (CK20+) daughter cells did not immediately enter

the second division and did not incorporate BrdU (Figures 2D

and S3K). This experiment indicates a higher proliferative rate

of CCSC versus that of non-CCSC daughter cells, similar to

the rapidly dividing Lgr5+ ISCs in the intestine (Arrowsmith,

2011b).
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(A) A representative image of symmetric and asymmetric distribution of miR-34a (green) during division shown by RNA FISH.

(B) A representative image of asymmetric expression of miR-34a shown by a miR-34a GFP reporter in living cells. A high-GFP fluorescent signal indicates a low

miR-34a expression level.

(C) Representative images showing that miR-34a (RNA FISH) and ALDH1 are mutually exclusive (M.E., top row) or are coexpressed (C.E., bottom row).

(D) Percentages of CCSC divisions wherein miR-34a and ALDH1 are M.E. or C.E.

(E) Top, a representative image of time-lapse images of asymmetric miR-34a expression during CCSC division with a miR-34a GFP reporter. Bottom, CCSCs

infected with a D2GFP control vector divided GFP symmetrically.

See also see Movie S2.

(F) The miR-34alow daughter cell has more proliferative potential. Left, a schematic representation of the experimental approach. Single cells were allowed to

divide once in 24 hr (Division 1). Cells were then treated with BrdU for 3 hr for the labeling of cells that were entering the second division (Division 2) before being

costained for BrdU and miR-34a. Right, a representative image showing that the miR-34alow daughter cell was more proliferative and incorporated BrdU. DAPI

staining of the nucleus is shown in blue. The scale bar represents 8 mm. Error bars denote the SD between triplicates. ***, p < 0.001.

See also Figure S4.
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Both High and Low miR-34a Levels Inhibit Asymmetric
Division
Pair-cell assays with CCSC1 and CCSC2 cells showed that high

miR-34a levels (miR-34a OE) decreased both symmetric CCSC-

CCSC division and asymmetric division (Figures 2E and S3L),

whereas low miR-34a levels (miR-34a KD) increased symmetric

CCSC-CCSC division but still decreased asymmetric division

(Figures 2F and S3M). To verify that miR-34a regulates primary

tumor cells in the sameway, we isolated CCSCs from xenografts

arising from high- and low-miR-34a-expressing CCSC1 and

CCSC2 spheres. These tumor-derived CCSCs were cultured

as spheres and plated as single cells in the pair-cell assay. These

experiments confirmed that CCSCs isolated from low miR-34a-

expressing (miR-34a KD) tumors more frequently performed

symmetric CCSC-CCSC division, whereas CCSCs from high

miR-34a-expressing (miR-34a OE) tumors less frequently per-

formed symmetric CCSC-CCSC division. Interestingly, both per-

formed lower rates of asymmetric division than CCSCs isolated

from basal miR-34a-expressing (i.e., control) xenografts (Figures

2G, 2H, S3N, and S3O). These data support a model in which

miR-34a balances self-renewal and differentiation in CCSC as
they populate growing tumors: higher miR-34a levels promote

differentiation to produce non-CCSCs, whereas lower miR-34a

levels promote self-renewal through symmetric CCSC-CCSC

divisions.

CCSCs from late-stage CRC tumors have lower miR-34a

expression levels than CCSCs from early-stage tumors, accord-

ing to qRT-PCR (Table 1). Consistent with our data from CCSC1

and CCSC2 that miR-34a knockdown promotes symmetric

CCSC-CCSC division while suppressing asymmetric division,

CCSCs from late-stage CRC tumors have higher rates of

symmetric CCSC-CCSC division and lower rates of asymmetric

division than CCSCs from early-stage CRC tumors (Table 1).

miR-34a Levels Correlate with Cell-Fate Asymmetry
Next, we evaluated whether miR-34a levels are regulated differ-

entially depending on whether a daughter cell adopts a CCSC or

non-CCSC identity. We observed asymmetric distribution of

miR-34a in pair-cell assays of early-stage CCSCs using RNA

fluorescent in situ hybridization (FISH) with a miR-34a probe

(Figures 3A and S4A). In contrast, the expression of miR-34c,

another member of the miR-34 family, always remained low
Cell Stem Cell 12, 602–615, May 2, 2013 ª2013 Elsevier Inc. 607
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Figure 4. miR-34a Targets Notch to Determine Cell-fate

(A and B) Western blot (A) and qRT-PCR (B) showing that ectopic miR-34a expression (miR-34a OE) downregulates Notch1 expression. Error bars denote the SD

between triplicates.

(C) Notch signaling (NICD and Hes1) is upregulated in CCSCs and downregulated in non-CCSCs isolated by FACS.

(D) Notch signaling (NICD and Hes1) is upregulated in CCSCs and downregulated in differentiation medium-induced differentiated cells. Diff, differentiation

medium-induced differentiated cells.

(E) The g-secretase inhibitor DAPT inhibits Notch signaling (NICD and HES1) in CCSCs.

(F) Notch inhibition by DAPT depletes CCSCs (CD133+CD44+) from spheres compared to the control (DMSO).

(G) Notch inhibition by DAPT induces differentiation. The red histograms represent isotype controls, and the blank histograms represent CK20+ cells.

(legend continued on next page)
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(data not shown). Asymmetric distribution of miR-34a in dividing

pairs was further confirmed with the use of miR-34a D2EGFP

reporter lines described previously (Figure 3B). Time-lapse

movies of CCSCs from the reporter line showed that during divi-

sion, one daughter cell started to express miR-34a, which in-

hibited GFP expression. In contrast, CCSCs infected with the

D2GFP control vector (i.e., no 30 UTR miR-34a binding sites)

always expressed GFP symmetrically during division (Figure 3E

and Movie S1).

Coimmunofluorescence showed that miR-34a and ALDH1

expression were mutually exclusive in daughter cells during

88% of CCSC1 divisions (Figures 3C and 3D) and 83% of

CCSC2 division (Figures S4B and S4C), consistent with miR-

34alow daughter cells being mostly CCSCs and miR-34ahigh

daughter cells being mostly non-CCSCs. Furthermore, pair-cell

assays with CCSC1 and CCSC2 spheres incubated with BrdU

showed that miR-34alow daughter cells have higher proliferative

rates than miR-34ahigh daughter cells (Figures 3F and S4D). This

observation is consistent with the previous finding that CCSC

(ALDH1+) daughter cells have higher proliferative rates than

non-CCSC (CK20+) daughter cells after asymmetric division

(Figures 2D and S3K).

miR-34a Suppresses Notch Signaling to Promote
Daughter Cell Differentiation
miR-34a has been reported to suppress Notch1 protein levels

(Li et al., 2009). qRT-PCR and western blot confirmed that

miR-34a downregulates Notch1 expression in early-stage

CCSCs (Figures 4A and 4B). Notch signaling has been shown

to promote CCSC self-renewal (Sikandar et al., 2010). CCSCs

have high levels of Notch activity, expressing high levels of

Notch intercellular domain (NICD) and the Notch target gene

Hes1 (Figures 4C and 4D). High Notch activity is specific to

CCSCs, given that depletion of CCSCs by either FACs sorting

or FBS-induced differentiation significantly reduced Notch

activity (Figures 4C and 4D). Inhibition of Notch by the

g-secretase inhibitor DAPT reduced the CCSC population

and increased the non-CCSC population (Figures 4E-4G), con-

firming that Notch promotes CCSC self-renewal. Then, we

constitutively expressed small hairpin RNAs (shRNAs) that tar-

geted against the canonical Notch transcription factor RBPJk,

which efficiently inhibited Notch signaling, as shown by western
(H and I) Inhibition of Notch signaling by anti-RBPJk shRNA reduced tumorigenici

bars denote the SD derived from six mice per group.

(J) Representative images of immunofluorescence for NICD and ALDH1. Notch s

(K) DAPT inhibits asymmetric division (C/D) and increases differentiation (D/D). C/C

CCSC/non-CCSC daughter pair; Am, ambiguous. Error bars denote the SD betw

(L) Representative time-lapse images of a Notch GFP reporter cell line showing

immediately after Movie S2 confirmed that the Notch+ daughter cells were ALDH

(M) Representative time-lapse images showing that ectopic miR-34a expression

knockdown increases symmetric Notchhigh-Notchhigh cell division (bottom).

(N) Western blot showing Numb levels in CCSCs and non-CCSCs.

(O) A representative image of symmetric and asymmetric segregation of endoge

(P) A representative image of asymmetric segregation of the Numb-GFP fusion p

(Q) A representative image showing Numb and ALDH1 are mutually exclusive (M.E

row) during division.

(R) Percentages of CCSC divisions wherein Numb and ALDH1 areM.E. or C.E. in d

nucleus is shown in blue. The scale bar represents 8 mm. **, p < 0.01; ***, p < 0.0

See also Figure S5.
blot (Figure S5A). RBPJk knockdown and downstream Notch

signaling inhibition significantly reduced the ability of CCSC

to form xenograft tumors in vivo (Figures 4H and 4I). Given

that miR-34a suppresses Notch, these findings are consistent

with previous observations that ectopic expression of miR-

34a inhibited CCSC self-renewal and tumor formation (Figures

1B, 1C, 1L, 1M, and 1N).

Because differential Notch signaling levels enable asym-

metric division of certain normal stem cells, we asked whether

Notch signaling levels are differentially regulated during CCSC

asymmetric division and whether they are correlated with

daughter cell-fate outcomes. Coimmunofluorescence staining

of CCSCs in pair-cell assays showed that NICD was distributed

asymmetrically, appearing in the CCSC (ALDH1+) daughter cell

only (Figure 4J). The inhibition of Notch signaling by DAPT

suppressed asymmetric division and reduced symmetric

CCSC-CCSC division significantly (Figure 4K), similar to the

effect of ectopic miR-34a expression on CCSC division

(Figure 2E).

Then, we integrated a lentiviral Notch pathway EGFP reporter

into CCSC spheres and performed time-lapse microscopy

to visualize directly the distribution of Notch signaling during

cell division. This reporter contained multiple RBPJk response

elements upstream of a basal promoter that drove expression

of EGFP to measure endogenous Notch signaling activity.

As shown in Movies S2, Notch(EGFP)+ cells either divided

symmetrically into two Notch(EGFP)+ daughter cells or divided

asymmetrically into a Notch(EGFP)+ daughter cell and

a Notch(EGFP)� daughter cell, whereas Notch(EGFP)� cells

mostly divided into two Notch(EGFP)� daughter cells (Figure

4L). Coimmunofluorescence staining of the same daughter

pairs immediately after time-lapse imaging verified that

Notch(EGFP)+ daughter cells were CCSCs (ALDH1+CK20�)

and Notch(EGFP)� daughter cells were non-CCSCs

(ALDH1�CK20+) (Figure 4L).

Because differential miR-34a levels (Figures 3A, 3B, and 3E)

can potentially contribute to differential Notch signaling levels

through suppression of Notch1 expression, we examined

whether the disruption of differential miR-34a levels interferes

with differential Notch signaling levels. Indeed, ectopic expres-

sion of miR-34a increased Notch(EGFP)� pairs, whereas

knockdown of miR-34a increased Notch(EGFP)+ pairs during
ty of the sphere cells as shown by tumor images (H) and growth curves (I). Error

ignaling (NICD, green) is only expressed in ALDH1+ (red) cells.

, CCSC/CCSC daughter pair; C/D, CCSC/non-CCSC daughter pair; D/D, non-

een triplicates.

the three types of division. Immunofluorescence of the same daughter pairs

1+ and the Notch� daughter cells were CK20+ .

increases symmetric Notchlow-Notchlow cell division (top), whereas miR-34a

nous Numb (green) as shown by immunofluorescence with Numb antibodies.

rotein in living cells.

., top row) or are coexpressed (C.E) in at least one of the daughter cells (bottom

aughter cells. Error bars denote the SD between triplicates. DAPI staining of the

01.
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Figure 5. miR-34a Generates Bimodal Notch Levels

(A) FACS plots of sphere cells showing bimodal Notch in CCSC sphere cells. The cutoff threshold was determined by the negative control in the top panel with

isotype-matched IgG followed by FITC- or PE-conjugated secondary antibodies. Cutoff thresholds for the remaining FACs plots in Figure 5 were determined in

a similar way.

(B) A schematic representation showing that signaling bimodality is important for robust cell-fate decision. Bimodal signals enable the majority of cells to

determine their fate unequivocally, whereas unimodal signals leave a big portion of the population undecided and subject to stochastic variations.

(C and D) FACS plots showing miR-34a (C) and Numb (D) distribution in CCSC sphere cells.

(E) A FACS plot showing GFP levels from Notch1 30 UTR reporters with native (top) and mutated (bottom) miR-34a binding sites.

(F) FACS plots showing the distribution of miR-34a and Notch levels in Numb knockdown (KD) and control CCSC sphere cells. Numb was knocked down by an

shRNA vector.

(G) FACS plots showing the distribution of Numb and Notch levels in miR-34a KD and control CCSC sphere cells. miR-34a was knocked down by microRNA

sponges.

(H) A schematic illustrating the inducible miR-34a construct used in the experiments shown in (J).

(I) A schematic illustrating the inducible Numb construct used in the experiments shown in (K) and (L).
(legend continued on next page)
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cell division. In both cases, asymmetric distribution of Notch

signaling was significantly reduced (Figure 4M). Overall, these

time-lapse movies indicated that, in miR-34ahigh daughter

cells, miR-34a suppresses Notch signaling to promote

differentiation.

Numb Localization Correlates Less Closely with
Daughter Cell-Fate Outcomes than miR-34a
Awell-knownmechanism for enabling asymmetric division is the

cell-fate determinant Numb, which, like miR-34a, also

suppresses Notch signaling (Neumüller and Knoblich, 2009).

During asymmetric division, Numb localizes to one side of the

dividing cell and causes the degradation of membrane-bound

Notch receptors and NICD (McGill and McGlade, 2003;

Schweisguth, 2004). Numb protein levels are slightly upregu-

lated in non-CCSCs relative to CCSCs (Figure 4N). Immunofluo-

rescence staining of dividing pairs shows that endogenous

Numb localized asymmetrically during �20% of CCSC divisions

(Figure 4O). Analysis of a CCSC line stably expressing a Numb-

GFP fusion protein from a weak ubiquitinC (UbC) promoter

confirmed that, even before the completion of cell division,

Numb-GFP localizes to one side of the dividing cell (Figure 4P).

Interestingly, despite being a better-characterized cell-fate

determinant, Numb and ALDH1 were mutually exclusive in only

61%of CCSC1 divisions and 55%of CCSC2 divisions, whereas,

in 39% of CCSC1 divisions and 45% of CCSC2 divisions, they

were coexpressed in at least one daughter cell (symmetric

Numb versus asymmetric ALDH1 or vice versa) (Figures 4Q,

4R, S5B, and S5C). miR-34a and ALDH1 expression, on the

other hand, were mutually exclusive in daughter cells during

88% of CCSC1 divisions and 83% of CCSC2 divisions, as

previously described (Figures 3C, 3D, S4B, and S4C). Therefore,

miR-34a correlates more closely with CCSC daughter cell

differentiation than Numb.

miR-34a Generates a Bimodal Notch Distribution
To understand whymiR-34a is more closely correlated with non-

CCSC daughter cells than Numb after asymmetric division, we

measured the distribution of endogenous Notch1, a direct target

of both miR-34a and Numb. FACS of CCSC1 sphere cells

showed that Notch1 displayed a bimodal distribution with well-

separated peaks (Figure 5A, bottom). The bimodal distribution

of Notch was also confirmed in other early-stage CCSC lines,

including CCSCs freshly isolated from CRC tumors (Figure S6A).

Notch1 bimodality is important for robust cell-fate decisions,

because bimodal signals enable the majority of daughter cells

to specify their CCSC versus non-CCSC identity unequivocally,

whereas nonbimodal signals leave a substantial portion of the

population undecided and are subject to stochastic variations

(Figure 5B).

Next, we addressed whether miR-34a or Numb was respon-

sible for Notch1 bimodality in sphere cells. FACS of sphere cells

with both miR-34a FISH probes and Numb antibodies showed
(J) Notch1 displayed a bimodal on/off response when miR-34a expression was i

were measured by qRT-PCR and are shown on top of the FACs plots.

(K and L) FACS plots showing Notch1 distribution in wild-type CCSC sphere c

incrementally induced by doxycycline. The Numb levels were measured by qRT-

See also Figure S6.
that both miR-34a and Numb distribution in sphere cells were

semibimodal, though not to the same extent as Notch1 (Figures

5C and 5D). Given that miR-34a suppresses Notch1 posttran-

scriptionally whereas Numb suppresses Notch1 posttranslation-

ally, we delineated their respective effects by constructing a cell

line that stably expressed a lentiviral reporter in which the 30 UTR
of Notch1 was fused to the EGFP gene. In this system, Notch

30 UTR-EGFP expression displayed a similar bimodal distribution

as Notch1, confirming that a posttranscriptional mechanism

acting on the Notch1 30 UTR is sufficient to generate bimodality

(Figure 5E, top panel). Mutation of the miR-34a binding sites in

the 30 UTR abolished EGFP bimodality (Figure 5E, bottom panel).

Altogether, these data indicate that miR-34a contributes to

Notch1 bimodality.

Then, we tested whether knockdown of miR-34a or Numb

affects Notch1 bimodality in CCSC1 and CCSC2 spheres.

Two-color FACS with miR-34a FISH probes and Notch1 anti-

bodies revealed that Numb knockdown (Numb KD) by a lentiviral

shRNA vector did not completely abolish Notch1 bimodality

(Figures 5F and S6B) (Numb knockdown efficiency was vali-

dated by western blot [Figure S6C]). In contrast, miR-34a knock-

down completely abolished Notch bimodality, even though the

distribution of Numb in the population remained similar (Figures

5G and S6D). Combined, these results indicate that in CCSC

miR-34a plays a more important role than Numb in causing

Notch1 bimodality.

To characterize quantitatively the contribution of miR-34a

and Numb to Notch bimodality, we induced miR-34a and

Numb expression and monitored how they affected the distribu-

tion of Notch1 in CCSC1 and CCSC2 spheres. First, we con-

structed a CCSC line integrated with a Tet-inducible lentiviral

vector that can incrementally increase miR-34a expression

levels (Figure 5H). Instead of gradually reducing Notch1 levels

in all cells, an incremental increase of miR-34a levels (confirmed

by qRT-PCR) switched off Notch1 expression sharply in indi-

vidual cells, thus maintaining Notch1 bimodality (Figures 5J

and S6E). Furthermore, FACS with FISH probes showed that

the induced miR-34a levels do not need to be bimodal to cause

Notch bimodality (Figures 5J and S6F). Next, we generated

CCSC lines that stably expressed Tet-inducible Numb (Figure 5I).

In contrast to the effect of miR-34a overexpression, increasing

Numb levels reduced Notch1 levels in all cells gradually and

shifted the entire Notch1 distribution in a continuously graded

manner without creating two separate populations (Figures 5K

and S6G). Furthermore, after we knocked down miR-34a to re-

move potential crosstalk between Numb and miR-34a, Notch1

remained unimodal throughout the induction of Numb (Figures

5L and S6H).

Collectively, these experiments support a model in which both

Numb and miR-34a regulate Notch1, but miR-34a has an

intrinsic ability to causeNotch1 bimodality. This role is consistent

with our previous findings that miR-34a correlates with cell-fate

asymmetry more strongly than Numb does.
ncrementally induced by doxycycline, as shown by FACS. The miR-34a levels

ells (K) and miR-34a KD CCSC sphere cells (L) when Numb expression was

PCR and are shown on top of the FACs plots.
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Figure 6. miR-34a Generates Notch1

Threshold Response

(A) A cartoon illustration of the mutual sequestra-

tion between miR-34a and Notch1 mRNA.

(B) Mutual sequestration leads to a sharp

threshold response in simulation. M.S., mutual

sequestration.

(C) A schematic of a two-color fluorescent

reporter. The reporter contains a bidirectional Tet-

inducible promoter driving the expression of

nuclear localization sequences (NLS)-tagged

mCherry and enhanced yellow fluorescent protein

(eYFP). Notch 30 UTR or four repeats of the bugled

miR-34a binding sequence were cloned into the

30 UTR of mCherry.

(D) Representative images of single cells ex-

pressing eYFP and mCherry. Their two-color

reporters contain Notch 30 UTR (bottom), miR-34a

binding sequence (middle), or neither (top). The

reporters containing Notch 30 UTR or miR-34a

binding sites show a sharper turn-on response

with a threshold-like response.

(E) Transfer function relating eYFP to mCherry

generated by binning the imaged cells according

to eYFP intensity and plotting the mean mCherry

level in each bin (a.u., arbitrary units).

(F) A schematic illustration of the model. Mutual

sequestration generates a threshold response that

separates bimodal populations.

See also Figure S7.
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Mutual Sequestration between miR-34a and Notch1
Creates a Sharp Threshold Response
To understand how miR-34a generates Notch1 bimodality, we

constructed a mathematical model of miR-34a regulation based

on published measurements and equations of microRNA regula-

tion (Osella et al., 2011; Vohradsky et al., 2010) (see Supple-

mental Information). This analysis revealed a potential mecha-

nism for microRNAs to generate bimodality without feedback.

Incorporated in the RNA-induced silencing complex (RISC),

a given microRNA and its target mRNA sequester each other

when they bind together (Levine et al., 2007; Liu et al., 2005) (Fig-

ure 6A). The strength of this mutual sequestration is dependent

on kinetic factors, including binding and disassociation rates,

degradation rates, the number and matching sequences of

microRNA binding sites, and the recycling time of the microRNA.

If the mutual sequestration is sufficiently strong, microRNAs will

quickly turn off target genes when the activity level of microRNAs

exceeds the target mRNA level (Figure 6B). This leads to

a threshold response of target gene expression to the microRNA

level, which has been demonstrated with synthetic constructs in

HeLa cells (Mukherji et al., 2011).

Using a similar experimental approach as Mukherji et al.

(2011), we tested specifically whether miR-34a generates

a threshold response in Notch1 expression in CCSC1 and

CCSC2 spheres. Briefly, we generated CCSC lines that stably

express a two-color fluorescent reporter. This reporter contains

a bidirectional Tet-inducible promoter that drives the expression

of two genes encoding the fluorescent proteins mCherry and

enhanced yellow fluorescent protein (eYFP) (Figure 6C). The

30 UTR of mCherry contains either the Notch1 30 UTR sequence
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or four repeats of miR-34a binding sites. The eYFP fluorescence

indicates baseline transcriptional activity and the mCherry fluo-

rescence reflects the level of a miR-34a target gene (such as

Notch1 or a miR-34a reporter). By normalizing the mCherry fluo-

rescence with the eYFP fluorescence, the effect of miR-34a

regulation in single cells can be compared.

After induction by Doxycycline, the levels of eYFP and

mCherry in individual cells were measured with fluorescence

microscopy. Without miR-34a binding sites in its 30 UTR, the
expression level of mCherry was proportional to the level of

eYFP expression. When the mCherry 30 UTR contained either

theNotch1 30 UTRor tandemmiR-34a binding sites, themCherry

level initially showed no significant increase in comparison to

increasing eYFP levels until a threshold was reached. After this

point, the mCherry level increased rapidly (Figures 6D and

S7A). This threshold behavior was quantitatively characterized

by plotting the transfer function between the mCherry and

eYFP levels (Mukherji et al., 2011) (Figure 6E). The transfer func-

tion confirmed the threshold response of miR-34a target genes,

because of the level of mCherry, which represents the target

gene expression, does not significantly rise until a threshold level

of eYFP is reached.

Stochastic simulations confirmed that the threshold response

can generate the observed Notch1 bimodality from the

measured miR-34a distribution (Figures S7B and S7C). Hence,

the data collectively support a model that mutual sequestration

between miR-34a and Notch1 mRNA generates a sharp

response with a threshold, which separates the bimodal Notch+

andmiR-34a�CCSC and the Notch� and miR-34a+ non-CCSC

subpopulations (Figure 6F).
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A caveat is that microRNA regulation does not always

generate such thresholds. As mentioned previously, the strength

of mutual inhibition depends on multiple factors. Mukherji et al.

(2011) showed that the existence of a threshold depends on

both the number and affinity of the microRNA binding sites in

the target mRNA. For example, Mycn, another target of miR-

34a (Choi et al., 2011), does not display a bimodal distribution

(Figure S6I). Therefore, miR-34a may selectively target a subset

of genes for bimodal outputs.

DISCUSSION

By analyzing the properties of cultured human CRC cells, we

determined that themicroRNAmiR-34a acts as a bimodal switch

to target Notch in early-stage CCSCs. This switch controls the

choice of daughter cells to self-renew or to differentiate during

division. The ability of miR-34a to generate robust binary signals

may contribute to its stronger correlation with cell-fate markers

during CCSC division than Numb. However, the extent of corre-

lation between Numb and cell-fate markers may be confounded

by other factors. First, the phosphorylation state of Numb plays

a major role in its localization during asymmetric cell division

(Neumüller and Knoblich, 2009), so the level of active Numb,

rather than the total level of Numb, may be a better indicator of

its function. Second, our characterization of CCSC differentia-

tion may be simplistic. Normal ISCs first differentiate into trans-

amplifying (TA) progenitor cells, which then become more

terminally differentiated cells. It is possible that there is a progen-

itor cell population in the CCSC spheres as well, although, to

date, there is no identified marker that can distinguish this

progenitor subgroup. Alternatively, CRC cells may have ‘‘lost’’

this intermediate state, unlike normal ISCs. If distinct CRC TA

progenitors do exist, it is conceivable that these cells might

have distinct Numb levels that affect the correlation between

Numb and CCSC markers.

Our studies demonstrate that miR-34a’s ability to generate

a threshold response in its target genes allows it to regulate

Notch as a bimodal switch. This switch determines cell-fate

asymmetry in a robust and precise way during CCSC division.

In addition, miR-34a most likely targets multiple targets besides

Notch to further enforce cell-fate determination. Given that

various microRNAs are expressed in different types of stem

cells, it will not be surprising if some of those microRNAs also

act as bimodal switches like miR-34a. Important parameters to

generate these switches will include the number and sequence

matching of the microRNA binding sites in target mRNAs. In

electrical circuit design, switches are widely used because

they can function in the presence of environmental and intrinsic

noises. The fact that cells and electrical circuits share a similar

design principle even though regulatory networks and electronic

devices are vastly different illustrates the fundamental impor-

tance of mechanisms that convert noisy signals into unambig-

uous signals for robust decision making.

The miR-34a switch is necessary and sufficient for Notch

bimodality. However, the bimodality ofmiR-34a andNumb levels

may further contribute to Notch bimodality. In fact, their mutual

correlation with Notch suggests that miR-34a and Numb are

not independent regulators. Instead, they most likely share

common upstream regulators or crosstalk with each other to
determine cell fate synergistically. Hence, the miR-34a switch

is probably part of a complex mechanism to ensure robust

cell-fate decisions.

Pair-cell assays with early-stage CCSC showed that (a) high

miR-34a levels decreased both symmetric CCSC-CCSC division

and asymmetric division, resulting in fewer CCSC daughter cells

and more non-CCSC daughter cells, and (b) low miR-34a levels

increased symmetric CCSC-CCSC division but still decreased

asymmetric division, resulting in more CCSC daughter cells

and fewer non-CCSC daughter cells. Given that CCSC daughter

cells have higher proliferation rates than non-CCSC daughter

cells, low miR-34a levels promote proliferation as well as self-

renewal and symmetric division. Interestingly, asymmetric divi-

sion in this system requires miR-34a levels to reside in a ‘‘sweet

spot’’ in the middle: either too much or too little miR-34a abol-

ishes asymmetric division. These data support a model where

a single microRNA can regulate three distinct cell division

outcome ‘‘states’’: symmetric self-renewal, asymmetric division,

and non-self-renewal. Given this ability of microRNAs to enable

highly precise and nuanced regulation of the relative proportions

of different cell types in a population, we anticipate that future

studies will show important roles for microRNAs to regulate

tissue homeostasis and pattern formation for many normal

stem cell systems that use microRNAs’ ability to ‘‘fine-tune’’

the balance between asymmetric and symmetric stem cell divi-

sion. Restoration of such roles for microRNAs in cancer cells

may represent an important therapeutic strategy for future

cancer treatment.
EXPERIMENTAL PROCEDURES

Isolation and Culture of CCSCs

CCSCs were isolated as described previously (Sikandar et al., 2010). For this

study, CCSCs were derived from three early-stage and two late-stage CRC

patient tumors (Table 1). In brief, after being washed with PBS, fresh human

CRC tumors were dissociated with collagenase and strained with a 40 mm

filter. The tumor cells were initially sorted with anti-CD133 (clone C24B9,

1:50; Cell Signaling) and anti-CD44 (clone156-3C11, 1:100; Cell Signaling)

antibodies and later switched to ALDH1 with the Aldeflour kit (STEMCELL

Technologies). CCSCs were cultured as spheres in ultralow-attachment flasks

(Corning) in DMEM/F12 (Invitrogen) and supplemented with nonessential

amino acids (Thermo Fisher), sodium pyruvate (Thermo Fisher), Penicillin-

streptomycin (Thermo Fisher), N2 supplement (Invitrogen), B27 supplement

(Invitrogen), 4 mg/mL heparin (Sigma-Aldrich), 40 ng/mL epidermal growth

factor (Invitrogen), and 20 ng/mL basic fibroblast growth factor (Invitrogen)

at 37�C and 5% CO2. To propagate in vitro, spheres were collected by gentle

centrifugation, dissociated into single cells, and cultured for the formation of

next generation spheres. All animal experiments were approved by the Cornell

Center for Animal Resources and Education and followed the protocol (2009-

0071).

Immunofluorescence

First, CCSCswere plated on an uncoated glass culture slide (BD Biosciences).

After being fixed in cold methanol, the cells were blocked in 10% normal goat

serum for 1 hr and incubated with antibodies against ALDH1 (clone H-4, 1:100;

Santa Cruz Biotechnology), CD44 (clone156-3C11, 1:400, Cell Signaling),

CD133 (1:200, Abcam), CK20 (clone H-70, 1:100, Santa Cruz Biotechnology),

CEA (1:200, Abcam), Numb (clone C44B4, 1:100 [Cell Signaling] or 1:100

[Abcam]), and NICD (1:100; R&D Systems) overnight at 4�C. Then, the cells

were incubated with Rhodamine Red- or Alexa Fluor 488-labeled secondary

antibody (Invitrogen) for 1 hr at room temperature. After being counterstained

with DAPI (Invitrogen), the slide was observed under a fluorescent microscope

(Olympus).
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RNA FISH

RNA FISH was performed as described by Lu and Tsourkas (2009). These

procedures are described in detail in the Supplemental Experimental

Procedures.

miR-34 Threshold Assay

The threshold assay was performed as described by Mukherji et al. (2011).

These procedures are described in detail in the Supplemental Experimental

Procedures.

Statistical Analysis of Xenograft Tumors

Data were expressed as mean ± SD of no smaller than three biological repeats

and analyzed for statistical significance with the GraphPad Prism 5 software.

Two-way ANOVAwas used to compare the mean responses of different tumor

sizes at different time points, followed by a Bonferroni post-hoc test to deter-

mine statistical significance.

SUPPLEMENTAL INFORMATION

Supplemental Information contains Supplemental Experimental Procedures,

seven figures, and two movies and can be found with this article online at

http://dx.doi.org/10.1016/j.stem.2013.03.002.

ACKNOWLEDGMENTS

We thank Michael Elowitz and members of the Shen, Lipkin, Elowitz, and Jin

laboratories for discussions and advice. We also thank Harley McAdams, Ken-

neth Kemphues, Tudorita Tumbar, and Robert Weiss for their comments on

the manuscript. This work was supported by grants NIGMS R01GM95990,

NSF 1137269, DARPA 19-1091726, NCI R21CA162483, and NCI

R21CA153049 as well as the Cornell Nanobiotechnology Center, the Cornell

Stem Cell Program, and a generous gift from Matthew Bell.

Received: December 20, 2011

Revised: November 25, 2012

Accepted: March 4, 2013

Published: May 2, 2013

REFERENCES

Alison, M.R., Lin, W.R., Lim, S.M., and Nicholson, L.J. (2012). Cancer stem

cells: in the line of fire. Cancer Treat. Rev. 38, 589–598.

Arrowsmith, J. (2011a). Trial watch: Phase II failures: 2008-2010. Nat. Rev.

Drug Discov. 10, 328–329.

Arrowsmith, J. (2011b). Trial watch: phase III and submission failures: 2007-

2010. Nat. Rev. Drug Discov. 10, 87.

Bultje, R.S., Castaneda-Castellanos, D.R., Jan, L.Y., Jan, Y.N., Kriegstein,

A.R., and Shi, S.H. (2009). Mammalian Par3 regulates progenitor cell asym-

metric division via notch signaling in the developing neocortex. Neuron 63,

189–202.

Choi, Y.J., Lin, C.P., Ho, J.J., He, X., Okada, N., Bu, P., Zhong, Y., Kim, S.Y.,

Bennett, M.J., Chen, C., et al. (2011). miR-34 miRNAs provide a barrier for

somatic cell reprogramming. Nat. Cell Biol. 13, 1353–1360.

Cicalese, A., Bonizzi, G., Pasi, C.E., Faretta, M., Ronzoni, S., Giulini, B.,

Brisken, C., Minucci, S., Di Fiore, P.P., and Pelicci, P.G. (2009). The tumor

suppressor p53 regulates polarity of self-renewing divisions in mammary

stem cells. Cell 138, 1083–1095.

Clevers, H. (2011). The cancer stem cell: premises, promises and challenges.

Nat. Med. 17, 313–319.

Dalerba, P., Dylla, S.J., Park, I.K., Liu, R., Wang, X., Cho, R.W., Hoey, T.,

Gurney, A., Huang, E.H., Simeone, D.M., et al. (2007). Phenotypic character-

ization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. USA

104, 10158–10163.

de Sousa E Melo, F., Colak, S., Buikhuisen, J., Koster, J., Cameron, K., de

Jong, J.H., Tuynman, J.B., Prasetyanti, P.R., Fessler, E., van den Bergh,

S.P., et al. (2011). Methylation of cancer-stem-cell-associated Wnt target
614 Cell Stem Cell 12, 602–615, May 2, 2013 ª2013 Elsevier Inc.
genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell

9, 476–485.

Dey-Guha, I., Wolfer, A., Yeh, A.C., Albeck, J.G., Darp, R., Leon, E., Wulfkuhle,

J., Petricoin, E.F., 3rd, Wittner, B.S., and Ramaswamy, S. (2011). Asymmetric

cancer cell division regulated by AKT. Proceedings of the National Academy of

Sciences of the United States of America.

Ebert, M.S., and Sharp, P.A. (2012). Roles for microRNAs in conferring robust-

ness to biological processes. Cell 149, 515–524.

Ebert, M.S., Neilson, J.R., and Sharp, P.A. (2007). MicroRNA sponges:

competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4,

721–726.

Emmink, B.L., Van Houdt, W.J., Vries, R.G., Hoogwater, F.J., Govaert, K.M.,

Verheem, A., Nijkamp, M.W., Steller, E.J., Jimenez, C.R., Clevers, H., et al.

(2011). Differentiated human colorectal cancer cells protect tumor-initiating

cells from irinotecan. Gastroenterology 141, 269–278.

Goulas, S., Conder, R., and Knoblich, J.A. (2012). The Par complex and integ-

rins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell

11, 529–540.

Guardavaccaro, D., and Clevers, H. (2012). Wnt/b-catenin and MAPK

signaling: allies and enemies in different battlefields. Sci. Signal. 5, pe15.

He, L., He, X., Lim, L.P., de Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender,

L., Magnus, J., Ridzon, D., et al. (2007). A microRNA component of the p53

tumour suppressor network. Nature 447, 1130–1134.

Huang, E.H., Hynes, M.J., Zhang, T., Ginestier, C., Dontu, G., Appelman, H.,

Fields, J.Z., Wicha, M.S., and Boman, B.M. (2009). Aldehyde dehydrogenase

1 is a marker for normal and malignant human colonic stem cells (SC) and

tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69,

3382–3389.

Itzkovitz, S., Blat, I.C., Jacks, T., Clevers, H., and van Oudenaarden, A. (2012).

Optimality in the development of intestinal crypts. Cell 148, 608–619.

Ivey, K.N., and Srivastava, D. (2010). MicroRNAs as regulators of differentia-

tion and cell fate decisions. Cell Stem Cell 7, 36–41.

Jahid, S., Sun, J., Edwards, R.A., Dizon, D., Panarelli, N.C., Milsom, J.W.,

Sikandar, S.S., Gumus, Z.H., and Lipkin, S.M. (2012). miR-23a Promotes the

Transition from Indolent to Invasive Colorectal Cancer. Cancer discovery.

LaPointe, L.C., Dunne, R., Brown, G.S., Worthley, D.L., Molloy, P.L.,

Wattchow, D., and Young, G.P. (2008). Map of differential transcript expres-

sion in the normal human large intestine. Physiol. Genomics 33, 50–64.

Lathia, J.D., Hitomi, M., Gallagher, J., Gadani, S.P., Adkins, J., Vasanji, A., Liu,

L., Eyler, C.E., Heddleston, J.M., Wu, Q., et al. (2011). Distribution of CD133

reveals glioma stem cells self-renew through symmetric and asymmetric cell

divisions. Cell Death Dis 2, e200.

Levine, E., McHale, P., and Levine, H. (2007). Small regulatory RNAs may

sharpen spatial expression patterns. PLoS Comput. Biol. 3, e233.

Li, X., Madison, B.B., Zacharias, W., Kolterud, A., States, D., and Gumucio,

D.L. (2007). Deconvoluting the intestine: molecular evidence for a major role

of the mesenchyme in the modulation of signaling cross talk. Physiol.

Genomics 29, 290–301.

Li, Y., Guessous, F., Zhang, Y., Dipierro, C., Kefas, B., Johnson, E.,

Marcinkiewicz, L., Jiang, J., Yang, Y., Schmittgen, T.D., et al. (2009).

MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes.

Cancer Res. 69, 7569–7576.

Liu, J., Valencia-Sanchez, M.A., Hannon, G.J., and Parker, R. (2005).

MicroRNA-dependent localization of targeted mRNAs to mammalian

P-bodies. Nat. Cell Biol. 7, 719–723.

Liu, C., Kelnar, K., Liu, B., Chen, X., Calhoun-Davis, T., Li, H., Patrawala, L.,

Yan, H., Jeter, C., Honorio, S., et al. (2011). The microRNA miR-34a inhibits

prostate cancer stem cells and metastasis by directly repressing CD44. Nat.

Med. 17, 211–215.

Loboda, A., Nebozhyn, M.V., Watters, J.W., Buser, C.A., Shaw, P.M., Huang,

P.S., Van’t Veer, L., Tollenaar, R.A., Jackson, D.B., Agrawal, D., et al. (2011).

EMT is the dominant program inhumancolon cancer. BMCMed.Genomics4, 9.

Lu, J., and Tsourkas, A. (2009). Imaging individual microRNAs in single

mammalian cells in situ. Nucleic Acids Res. 37, e100.

http://dx.doi.org/10.1016/j.stem.2013.03.002


Cell Stem Cell

A miRNA Bimodal Switch in Colon Cancer Stem Cells
McGill, M.A., and McGlade, C.J. (2003). Mammalian numb proteins promote

Notch1 receptor ubiquitination and degradation of the Notch1 intracellular

domain. J. Biol. Chem. 278, 23196–23203.

Mukherji, S., Ebert, M.S., Zheng, G.X., Tsang, J.S., Sharp, P.A., and van

Oudenaarden, A. (2011). MicroRNAs can generate thresholds in target gene

expression. Nat. Genet. 43, 854–859.

Neumüller, R.A., and Knoblich, J.A. (2009). Dividing cellular asymmetry: asym-

metric cell division and its implications for stem cells and cancer. Genes Dev.

23, 2675–2699.

O’Brien, C.A., Pollett, A., Gallinger, S., and Dick, J.E. (2007). A human colon

cancer cell capable of initiating tumour growth in immunodeficient mice.

Nature 445, 106–110.

O’Brien, C.A., Kreso, A., Ryan, P., Hermans, K.G., Gibson, L., Wang, Y.,

Tsatsanis, A., Gallinger, S., and Dick, J.E. (2012). ID1 and ID3 regulate the

self-renewal capacity of human colon cancer-initiating cells through p21.

Cancer Cell 21, 777–792.
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