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a b s t r a c t

Nature-inspired computing has been a hot topic in scientific and engineering fields in recent years.
Inspired by the shallow water wave theory, the paper presents a novel metaheuristic method, named
water wave optimization (WWO), for global optimization problems. We show how the beautiful
phenomena of water waves, such as propagation, refraction, and breaking, can be used to derive
effective mechanisms for searching in a high-dimensional solution space. In general, the algorithmic
framework of WWO is simple, and easy to implement with a small-size population and only a few
control parameters. We have tested WWO on a diverse set of benchmark problems, and applied WWO to
a real-world high-speed train scheduling problem in China. The computational results demonstrate that
WWO is very competitive with state-of-the-art evolutionary algorithms including invasive weed
optimization (IWO), biogeography-based optimization (BBO), bat algorithm (BA), etc. The new meta-
heuristic is expected to have wide applications in real-world engineering optimization problems.

& 2014 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Nature-inspired computing has been fascinating computer scien-
tists for a long time, giving rise to popular areas such as artificial
neural networks [1], cellular automata [2], molecular computing [3],
and evolutionary algorithms (EAs) [4]. Taking inspiration from
natural evolution processes, EAs are a class of metaheuristic methods
for solving complex optimization problems which typically have
non-convex and highly nonlinear solution spaces, and which are
otherwise computationally difficult to solve by conventional math-
ematical programming methods. Due to the increasing complexity of
real-world optimization problems, on one hand, classical EAs includ-
ing genetic algorithms (GAs) [5], evolutionary programming (EP) [6],
evolution strategies (ES) [7], particle swarm optimization (PSO) [8],
etc., have been extensively studied; on the other hand, a variety of
novel EAs, such as invasive weed optimization (IWO) [9], water drops
algorithm [10], biogeography-based optimization (BBO) [11], cuckoo
search [12], fireworks algorithm [13], bat algorithm (BA) [14], etc.,
have been proposed and have aroused much interests in the last
years [15–22].

More than 71% of the earth's surface is covered by water. Surface
water waves can be generated by any sort of geophysical mass flow.
When entering shoaling waters, surface waves are either refracted by
varying depth or current, or diffracted around abrupt bathymetric
features such as submarine ridges or valleys, losing part of their
energy. They continuing their shoreward march give up some energy

by dissipation near the bottom. Nevertheless each crest becomes
steeper and mightier, and makes its final display of power by brea-
king and splashing on the shoreline [23].

Historically, the first to attempt a theory of water waves subjected
to gravity force, surface tension, and other forces, traces back the
work by Newton in 1687, against hydrostatics by Archimedes in the
3rd century BC [24]. The linear wave theory reached a real level of
advances by the works of Laplace, Lagrange, Poisson, and Cauchy,
accompanied by nonlinear waves considered by Gerstner, Stokes, and
Kelland [25].

Modern water wave theory began with weak, nonlinear interac-
tions among gravity waves on the surfaces of deep water [26], which
were extended by Hasselmann [27], and subsequently culminated in
the wave turbulence theory by Zakharov et al. [28]. In shallow coastal
water, the nonlinear wave field is dominated by near-resonant
quadratic interactions involving triplets of waves. It is the main
wave–current–bottom interactions that have made rich and progres-
sive coastal wave modeling since the late 1960s, albeit less mature
relative to the well-established deep-water wave models [25].

In this paper we propose a new optimization method inspired
by shallow water wave models. The metaheuristic, named water
wave optimization (WWO), borrows ideas from wave motions
controlled by the wave–current–bottom interactions to the design
of search mechanisms for high-dimensional global optimization
problems. Experiments on a diverse set of function optimization
problems show that WWO is very competitive with some popular
meta-heuristic algorithms proposed in recent years, such as IWO,
BBO, BA, etc. We have also successfully applied WWO to a high-
speed train scheduling problem in China, the results of which
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demonstrate the applicability and effectiveness of WWO to real-
world problems.

The rest of the paper is organized as follows: Section 2 gives a
brief review of the water wave theory. Section 3 describes how the
shallow water wave models can be used to derive an effective
metaheuristic optimization method. Section 4 presents the compara-
tive experiments on benchmark functions and Section 5 depicts the
application to a train scheduling problem, and finally Section 6
concludes with discussion.

2. Water wave theory

In Principia (1687), Newton proposed an analogy with oscillations
in a U-tube, deducing that the frequency of deep-water waves must
be proportional to the inverse of the square root of the “breadth of
the wave”. But he was aware that the result was approximate,
observing that “These things are true upon the supposition that
the parts of water ascend or descend in a right line; but in truth, that
ascent and descent is rather performed in a circle”.

From first principles, Laplace (1776) showed that wave motion
starting from rest is governed by (what we now call) Laplace's
equation, and arrived at the periodic solutions for linear plane waves:

x¼ A ez0=cþe� z0=c
� �

sin
x0
c

ð1Þ

z¼ A ez0=c�e� z0=c
� �

cos
x0
c

ð2Þ

where x and z respectively denote the small horizontal and vertical
displacements of individual fluid particles with initial positions ðx0; z0Þ,
A is a function of time t, and c is a constant. Laplace further observed
that the products in the above equations can be decomposed into
oppositely traveling waves with forms cos ðx0=c7 ftÞ, where f is the
wave frequency.

From the nonlinear free-surface boundary conditions, Kelland
[29] tackled waves in fluid of arbitrary depth and obtained (impli-
citly) the surface displacement as

z¼ hþðeαz�eαzÞα sin ðαðct�xÞÞ ð3Þ
where α¼ 2π=λ, λ is wavelength, c is wave speed, and h is depth. It
turns out that, when z is calculated by successive approximations,
the result contains higher harmonic terms that are correct up to
third order in wave amplitude [30].

Mainly due to the complicated seabed topologies in coastal
regions, coastal (shallow-water) waves have not been studied as
thoroughly as deep-water waves. In conjunction with the effects of
ambient currents, wave–current–bottom interactions make up the
most fundamental dynamic mechanism in coastal waters mani-
festing itself as refraction, diffraction, scattering, and resonant
wave–wave interactions involved in energy change.

The main wave–current–bottom interactions have made rich
and progressive coastal wave modeling since the late 1960s [25].
The first generation wave models have been formulated in terms
of the basic transport equation, consisting of a superposition of the
energy input by the wind, the nonlinear transfer due to resonant
wave–wave interactions, and the dissipation due to white capping
and turbulence [27]. However, it has now also become clear that a
universal high-frequency equilibrium spectrum of the form ori-
ginally proposed by Phillips [26] does not exist, and these models
overestimated the wind input and underestimated the strength of
the nonlinear transfer by almost an order of magnitude [31].

In 1970s, extensive wave growth measurements and experi-
ments have leaded to the development of the second generation
wave models. These models fundamentally changed the view of the
spectral energy balance of the first generation ones by introducing
the specification of the spectral shape, either at the outset in the

formulation of the transport equation itself or as a side condition in
the computation of the spectrum [32]. However, they were unable
to properly simulate complex windseas generated by rapidly chan-
ging wind fields, and also encountered basic difficulties in treating
the transition between windsea and swell.

An exhaustive study of first and second generation wave
models was carried out in [33], and it was proposed that in third
generation models the wave spectrum should be computed alone
by integration of the basic spectral transport equation, without any
prior restriction of the spectral shape. The first attempt of such a
model was the WAM model [31], which describes the evolution of
a two-dimensional wave spectrum on a spherical latitude–long-
itude grid for an arbitrary region of the ocean. The evolution
equation of the one-dimensional version of WAM is

∂
∂t
F ¼ SinþSdisþSnl ð4Þ

where F is the wave spectrum, Sin is the input term, Sdis is the
dissipation term, and Snl is the nonlinear wave-wave interaction term.

Taking the formulations for the generation, the dissipation and
the quadruplet wave-wave interactions from the WAM model,
Booij et al. [34] developed the SWAN model, which is a fully
discrete spectral model based on the action balance equation
which implicitly takes into account the interaction between waves
and currents through radiation stresses:

∂
∂t
Nðσ;θÞþ∇x;yðcx;yNðσ;θÞÞþ

∂
∂σ

ðcσNðσ;θÞÞþ
∂
∂σ

ðcθNðσ;θÞÞ ¼
Sðσ;θÞ
σ

ð5Þ

where in the left-hand side, the first term is the rate of change of
action density in time, the second is the rectilinear propagation of
action in geographical (x,y)-space, the third is the shifting of the
relative frequency due to currents and time-varying depths with
propagation velocity cσ in σ-space, and the fourth term is the
propagation in θ-space (depth- and current-induced refraction)
with propagation velocity cθ . The term Sðσ;θÞ at the right hand
side is the source term representing the growth by wind, the
wave-wave interactions and the decay by bottom friction, white-
capping and depth-induced wave breaking.

In summary, the wave models describe the evolution of wave
heights, periods, and propagation directions using numerical
techniques considering wind forcing, nonlinear wave interactions,
frictional dissipation, etc [35]. The models are undergoing constant
improvement, in terms of speed, accuracy and generality. Never-
theless, simplified analytical models remain (and will remain) in
common use, and they indeed provide insight and are also acc-
urate enough for many practical applications [36].

3. Water wave optimization

TheWWO takes inspiration from shallow water wave models for
solving optimization problems. Without losing generality, suppose
we have a maximization problem with objective function f. In
WWO, the solution space X is analogous to the seabed area, and the
fitness of a point xAX is measured inversely by its seabed depth:
the shorter the distance to the still water level, the higher the
fitness f ðxÞ is. It should be noted that by analogy the 3-D space of
the seabed is generalized to an n-dimensional space.

As most other EAs, WWO maintains a population of solutions,
each of which is analogous to a “wave” having a height (or
amplitude) hAZþ and a wavelength λARþ . Upon initialization,
for each wave, h is set to a constant hmax and λ is set to 0.5. During
the problem-solving process, we consider three types of opera-
tions on the waves: Propagation, Refraction, and Breaking.
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3.1. Propagation

At each generation, each wave needs to be propagated exactly
once. The propagation operator creates a new wave x0 by shifting
each dimension d of the original wave x as

x0ðdÞ ¼ xðdÞþrandð�1;1Þ � λLðdÞ ð6Þ
where randð�1;1Þ is a uniformly distributed random number
within the range ½�1;1�, and L(d) is the length of the dth dimension
of the search space (1rdrn). If the new position is outside the
feasible range, it will be reset to a random position in the range.

When a wave travels from deep water (low fitness location) to
shallow water (high fitness location), its wave height increases and
its wavelength decreases, as illustrated in Fig. 1. Thus, after
propagation we calculate the fitness of the offspring wave x0. If
f ðx0Þ4 f ðxÞ, x is replaced by x0 in the population, and the wave
height of x0 is reset to hmax. Otherwise, x is remained, but its height
h is decreased by one, which mimics energy dissipation due to
inertial resistance, vortex shedding, and bottom friction.

After each generation, the wavelength of each wave x is
updated as follows:

λ¼ λ � α�ðf ðxÞ� fmin þϵÞ=ðfmax � fmin þϵÞ ð7Þ
where fmax and fmin are respectively the maximum and minimum
fitness values among the current population, α is the wavelength
reduction coefficient, and ϵ is a very small positive number to avoid
division-by-zero. Eq. (7) ensures that higher fitness waves have
smaller wavelengths, and thus propagate within smaller ranges.

3.2. Refraction

In wave propagation, if the wave ray is not perpendicular to the
isobath, its direction will be deflected. It is observed that the rays
converge in shallow regions while diverge in deep regions, as
illustrated in Fig. 2.

In WWO, we only perform refraction on waves whose heights
decrease to zero, and use a simple way to calculate the position
after refraction:

x0ðdÞ ¼N
xnðdÞþxðdÞ

2
;
jxnðdÞ�xðdÞj

2

� �
ð8Þ

where xn is the best solution found so far, and Nðμ;σÞ is a Gaussian
random number with mean μ and standard deviation σ. That is,
the new position is a random number centered halfway between
the original position and the known best position, and the
standard deviation equal to the absolute value of their difference.
Such a calculation has turned out to be competitive for many
difficult numerical optimization problems [37].

After refraction, the wave height of x0 is also reset to hmax, and
its wavelength is set as

λ0 ¼ λ
f ðxÞ
f ðx0Þ ð9Þ

3.3. Breaking

When a wave moves to a position where the water depth is
below a threshold value, the wave crest velocity exceeds the wave
celerity. Consequently, the crest becomes steeper and steeper, and
finally the wave breaks into a train of solitary waves, as illustrated
in Fig. 3.

In WWO we perform the breaking operation only on a wave x
that finds a new best solution (i.e., x becomes the new xn), and
conduct a local search around xn to simulate wave breaking. In
detail, we randomly choose k dimensions (where k is a random
number between 1 and a predefined number kmax), and at each
dimension d generate a solitary wave x0 as

x0ðdÞ ¼ xðdÞþNð0;1Þ � βLðdÞ ð10Þ
where β is the breaking coefficient. If none of the solitary waves
are better than xn, xn is remained; Otherwise xn is replaced by the
fittest one among the solitary waves.

3.4. The algorithmic framework of WWO

Now we can give the general framework of WWO, as shown in
Algorithm 1. In general, the propagation operator makes high
fitness waves search small areas and low fitness waves explore
large areas; the refraction operator helps waves to escape search
stagnation, and thus improves the diversity of the population and
reduces premature convergence; the breaking operator enables an
intensive search around a (potentially) promising area. The com-
bination of the three operators provides the algorithm with a good
balance between exploration and exploitation.

Long wave with 
low energy

Short wave with 
high energy

Calm sea level

Ocean floor

Fig. 1. Different wave shapes in deep and shallow water.

Wave energy focusing

Seaboard

Refracting Refracting

Fig. 2. Wave refraction.

free steepen breaking

Ocean floor

Fig. 3. Wave breaking.
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Algorithm 1. The WWO algorithm.

1 Randomly initialize a population P of n waves (solutions);
2 while stop criterion is not satisfied do
3 for each xAP do
4 Propagate x to a new x0 based on Eq. (6);
5 if f ðx0Þ4 f ðxÞ then
6 if f ðx0Þ4 f ðxnÞ then
7 Break x0 based on Eq. (10);
8 Update xn with x0;
9 Replace x with x0;
10 else
11 Decrease x:h by one;
12 if x:h¼ 0 then
13 Refract x to a new x0 based on Eq. (8) and (9);
14 Update the wavelengths based on Eq. (7);
15 return xn.

As we can see, the framework is simple and thus easy to
implement. Also, empirical tests show that, WWO performs well
with a small population size n (about 5–10), which makes the
algorithm more computationally efficient and has a high potential
for parallelization. Another choice is to use a population size red-
uction strategy, which is effective in improving performance of
many EAs [38].

Besides the population size, there are four control parameters
of WWO: the maximum wave height hmax, the wavelength reduc-
tion coefficient α, the breaking coefficient β, and the maximum
number kmax of breaking directions. In general, the larger hmax the
longer the average life span of the waves is; if hmax is small (say
1 or 2), the waves will be frequently replaced by new waves, and
therefore the solution diversity will be increased. A large α causes
the algorithm to explore a large area, while a small α makes the

algorithm perform a more intensive exploitation. Furthermore, a
small β with a large kmax help the improvement of best solutions
and thus increase the convergence speed. Empirically, we recom-
mend to set hmax to 5 or 6, α to 1.001–1.01, β to 0.001–0.01, and
kmax to minð12;D=2Þ, where D is the dimension of the problem.

4. Computational experiment

4.1. Experimental settings and comparative methods

First we test the performance of the proposed WWO on 30
benchmark functions of the CEC 2014 Competition on Single
Objective Real-Parameter Numerical Optimization [39]. The bench-
mark suite covers various types of function optimization problems,
as summarized in Table 1. Details definitions of the functions can be
found in [39].

On the test functions, we compare WWO with five recent
popular metaheuristic methods:

� The invasive weed optimization (IWO) algorithm, which simu-
lates colonizing behavior of weeds by using seeds reproduction,
spatial dispersal, and competitive exclusion operations [9].

� The biogeography-based optimization (BBO) algorithm, which
borrows ideas from island biogeography to evolve a population
of solutions to a given optimization problem by continuously
migrating features from (probably) high-fitness individuals to
low-fitness ones [11].

� The gravitational search algorithm (GSA), which assigns each
solution to the problem with four specifications including
position, inertia, active gravitational mass and passive gravita-
tional mass, and performs the search using a collection of
masses interacting with each other based on the laws of gravity
and motion [40].

Table 1
Summary of the CEC 2014 benchmark functions.

Type ID Function fn

Unimodal f1 Rotated high conditioned elliptic function 100
f2 Rotated bent cigar function 200
f3 Rotated discus function 300

Multimodal f4 Shifted and rotated Rosenbrock function 400
f5 Shifted and rotated Ackley's function 500
f6 Shifted and rotated Weierstrass function 600
f7 Shifted and rotated Griewank's function 700
f8 Shifted Rastrigin function 800
f9 Shifted and rotated Rastrigin's function 900
f10 Shifted Schwefel function 1000
f11 Shifted and rotated Schwefel's function 1100
f12 Shifted and rotated Katsuura function 1200
f13 Shifted and rotated HappyCat function 1300
f14 Shifted and rotated HGBat function 1400
f15 Shifted and rotated Expanded Griewank's plus Rosenbrock's function 1500
f16 Shifted and rotated Expanded Scaffer's F6 function 1600

Hybrid f17 Hybrid function 1 (f 9; f 8 ; f 1) 1700
f18 Hybrid function 2 (f 2; f 12 ; f 8) 1800
f19 Hybrid function 3 (f 7; f 6 ; f 4 ; f 14) 1900
f20 Hybrid function 4 (f 12; f 3 ; f 13 ; f 8) 2000
f21 Hybrid function 5 (f 14; f 12 ; f 4 ; f 9 ; f 1) 2100
f22 Hybrid function 6 (f 10; f 11 ; f 13 ; f 9 ; f 5) 2200

Composition f23 Composition function 1 (f 4; f 1; f 2; f 3 ; f 1) 2300
f24 Composition function 2 (f 10; f 9; f 14) 2400
f25 Composition function 3 (f 11; f 9; f 1) 2500
f26 Composition function 4 (f 11; f 13; f 1 ; f 6 ; f 7) 2600
f27 Composition function 5 (f 14; f 9; f 11 ; f 6 ; f 1) 2700
f28 Composition function 6 (f 15; f 13; f 11 ; f 16 ; f 1) 2800
f29 Composition function 7 (f 17; f 18; f 19) 2900
f30 Composition function 8 (f 20; f 21; f 22) 3000
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� The hunting search (HuS) algorithm, which is derived based on
a model of group hunting of animals when searching for food,
making artificial hunters (solutions) move towards the leader
while avoiding hunters to be too close to each other by position
correction [41].

� The bat algorithm (BA), where virtual bats (solutions) move in
the search space, adjusting their velocities and positions by
using echo to detect the distance and orientation of targets [14].

It should be noted that fine-tuning control parameters for each
problem can effectively improve algorithm performance. However,
searching for distinct parameter settings for each problem can be
very time-consuming and costly, and such tuning processes may
lead to unfair comparison. Thereby, here we adopt a fixed para-
meter setting for every algorithm in order to evaluate its overall
performance on the whole benchmark suite. The recommended
parameter setting of the algorithms are as follows.

� IWO: The maximum and minimum number of seeds smax ¼ 3,
smin ¼ 0, the initial and maximum population sizes pinit ¼ 10,
pmax ¼ 30, the initial and final values of standard deviation
of spatial dispersal σinitðdÞ ¼ 0:25ðUd�LdÞ, σfinalðdÞ ¼ 0:0005
ðUd�LdÞ, where Ud and Ld are respectively the upper and lower
limits of the dth dimension.

� BBO: A simple linear migration model is employed, where the
maximum immigration rate I and maximum emigration rate E
are both set to 1, and the population size p¼50.

� GSA: The initial gravitational constant G0 ¼ 100 and its decreas-
ing coefficient α¼20, p¼50, and the number of active agents
used in gravitational computation linearly decreases from p to 1.

� HuS: The maximum movement toward the leader MML¼0.3,
hunting group consideration rate HGCR¼0.3, the maximum and
minimum of relative search radius Ramax ¼ 0:01, Ramin ¼ 5E�6,
the iterations per epoch E¼50, reorganization parameters
α¼ 0:05, β¼ �0:5, and p¼10.

� BA: The maximum and minimum frequency rates fmax ¼ 2,
fmin ¼ 0, the maximum and minimum echo loudness Amax ¼ 1,
Amin ¼ 0, the maximum and minimum wavelength rmax ¼ 1,
rmin ¼ 0, the decreasing coefficients α¼ γ ¼ 0:9, and p¼25.

� WWO: hmax ¼ 6, α¼ 1:026, β linearly decreases from 0.25 to
0.001, and p linearly decreases from 50 to 3.

The experimental environment is a computer of Intel Core i7-
4500 M processor and 8GB DDR3 memory. In the experiments, we
use 30-D problems for testing, and set the maximum number of
fitness evaluations (NFE) to 150,000 for every algorithm on the
problems to ensure a fair comparison. Every algorithm has been run
60 times (with different random seeds) on each test problem, and
the evaluation is based on the average performance over the 60 runs.

4.2. Experimental results

Tables 3–6 respectively present the experimental results on
unimodal, multimodal, hybrid and composition functions, where
“max” and “min” respectively denote the maximum and minimum
fitness values of the algorithm among the 60 runs, “median”
denotes the median of the result fitness values over the 60 runs,
“std” is the corresponding standard deviation, and the superscript
before the median denotes the rank of the algorithm in terms of
median values among the six algorithms. Best min and medium
results among the comparative algorithms on each problem are
shown in bold.

Table 6 summarizes the rankings of the six algorithms over the
test functions, from which we can see that the proposed WWO
algorithm has the highest overall ranking on the whole benchmark
suite as well as on every group of test functions.

Moreover, we conduct nonparametric Wilcoxon rank sum tests
on the results of WWO and other comparative algorithms on the
30 benchmark functions, and present the test results in Table 7,
where an h value of 1 indicates that the performances of WWO
and the comparative method are statistically different with 95%
confidence, 0 implies there is no statistical difference, superscript
þ denotes WWO has significant performance improvement over
the comparative method and � vice versa.

4.3. Result discussion

On the first unimodal group, WWO obtains the best median
values on f1 and f2, and obtains the second best median value on f3.
According to the statistical tests, the results of WWO are signifi-
cantly different from the other five algorithms on f1 and f2, and
different from the other four except HuS on f3. It should be noted
that most comparative algorithms such as BA perform well on
basic unimodal functions [14], but lose their performance on these
three rotated unimodal functions. In contrast, WWO is capable of
handling these rotated trap problems very effectively.

On the second multimodal group of 13 functions, WWO obtains
the best median values on 7 functions, obtains the second best
median values on 4 functions (f5, f6, f10 and f16), and ranks third on
f9 and fourth on f11, and thus also exhibits the best overall
performance. In some details:

� GSA ranks first on f5, IWO ranks first on f6, and BBO obtains the
best median values on f10 and f16. WWO ranks second and
outperforms four other algorithms on the 4 functions.

� IWO and BBO respectively rank first and second on f9, followed by
WWOwhich is significantly different from (better than) GSA, HuS
and BA. f9, the shifted and rotated Rastrigin's function, has a huge

Table 2
Comparative results on unimodal benchmark functions.

IWO BBO GSA HuS BA WWO

f1 max 2.77Eþ06 8.09Eþ07 5.31Eþ07 1.26Eþ07 5.51Eþ08 1.17Eþ06
min 3.44Eþ05 5.75Eþ06 4.56Eþ06 1.61Eþ06 1.18Eþ08 1.44Eþ05
median 21.42Eþ06 52.14Eþ07 48.37Eþ06 35.10Eþ06 63.10Eþ08 16.26Eþ05
std 5.72Eþ05 1.67Eþ07 1.32Eþ07 2.62Eþ06 1.05Eþ08 2.45Eþ05

f2 max 4.06Eþ04 8.04Eþ06 1.61Eþ04 2.41Eþ04 6.35Eþ09 1.48Eþ03
min 6.09Eþ03 1.15Eþ06 3.47Eþ03 3.09Eþ02 1.13Eþ09 2.00Eþ02
median 41.52Eþ04 53.95Eþ06 28.38Eþ03 39.09Eþ03 62.49Eþ09 12.68Eþ02
std 8.67Eþ03 1.55Eþ06 2.90Eþ03 6.01Eþ03 7.55Eþ08 2.02Eþ02

f3 max 1.50Eþ04 5.07Eþ04 7.58Eþ04 3.36Eþ03 1.11Eþ05 1.32Eþ03
min 3.50Eþ03 5.92Eþ02 2.04Eþ04 3.00Eþ02 3.44Eþ04 3.15Eþ02
median 37.29Eþ03 47.65Eþ03 54.51Eþ04 13.02Eþ02 67.19Eþ04 24.87Eþ02
std 2.69Eþ03 1.28Eþ04 1.04Eþ04 5.41Eþ02 1.75Eþ04 1.85Eþ02
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number of local optima, and thus is hard for the algorithms to
obtain the global optimum in one or several runs.

� f11 is the shifted and rotated Schwefel's function which also has
a huge number of local optima, and the second best local
optimum is far from the global optimum. The median value of
WWO on f11 only ranks fourth (following IWO, HuS and BBO),
which is its worst performance in the multimodal group.
However, there is no statistically significant difference between
WWO and BBO/HuS, i.e., only IWO has significant performance
improvement over WWO.

� There is no statistically significant difference between the
results of the six algorithms on f12.� On the remaining 6 functions, WWO always obtains the best
median values, and its performance is significantly different
from most other algorithms.

In particular, the results of WWO often reach or become very close
to real optima on functions such as f2 and f4 which are narrow ridge
(or have a very narrow valley from local optimum to global optimum).

Table 3
Comparative results on multimodal benchmark functions.

IWO BBO GSA HuS BA WWO

f4 max 5.45Eþ02 6.54Eþ02 8.49Eþ02 5.64Eþ02 1.26Eþ04 5.42Eþ02
min 4.02Eþ02 4.23Eþ02 5.73Eþ02 4.04Eþ02 2.01Eþ03 4.00Eþ02
median 35.11Eþ02 45.42Eþ02 56.82Eþ02 25.03Eþ02 63.05Eþ03 14.02Eþ02
std 2.88Eþ01 3.84Eþ01 5.15Eþ01 3.66Eþ01 1.97Eþ03 3.64Eþ01

f5 max 5.20Eþ02 5.20Eþ02 5.20Eþ02 5.21Eþ02 5.21Eþ02 5.20Eþ02
min 5.20Eþ02 5.20Eþ02 5.20Eþ02 5.21Eþ02 5.21Eþ02 5.20Eþ02
median 35.20Eþ02 45.20Eþ02 15.20Eþ02 55.21Eþ02 65.21Eþ02 25.20Eþ02
std 3.77E�03 4.22E�02 6.47E�04 7.83E�02 4.81E�02 6.98E�04

f6 max 6.05Eþ02 6.18Eþ02 6.24Eþ02 6.29Eþ02 6.39Eþ02 6.13Eþ02
min 6.00Eþ02 6.08Eþ02 6.17Eþ02 6.19Eþ02 6.32Eþ02 6.01Eþ02
median 16.02Eþ02 36.14Eþ02 46.20Eþ02 56.23Eþ02 66.37Eþ02 26.06Eþ02
std 1.12Eþ00 2.35Eþ00 1.83Eþ00 2.18Eþ00 1.56Eþ00 2.62Eþ00

f7 max 7.00Eþ02 7.01Eþ02 7.00Eþ02 7.00Eþ02 9.63Eþ02 7.00Eþ02
min 7.00Eþ02 7.01Eþ02 7.00Eþ02 7.00Eþ02 8.19Eþ02 7.00Eþ02
median 47.00Eþ02 57.01Eþ02 17.00Eþ02 37.00Eþ02 69.12Eþ02 17.00Eþ02
std 1.21E�02 2.64E�02 9.55E�04 5.56E�02 3.23E�01 6.26E�03

f8 max 8.75E�02 9.39Eþ02 8.01Eþ02 9.75Eþ02 1.12Eþ03 8.15Eþ02
min 8.27Eþ02 8.39Eþ02 8.00Eþ02 9.10Eþ02 9.76Eþ02 8.00Eþ02
median 38.43Eþ02 48.79Eþ02 28.00Eþ02 59.40Eþ02 61.07Eþ03 18.00Eþ02
std 1.01Eþ01 2.07Eþ01 2.06E�01 1.27Eþ01 2.56Eþ01 2.34Eþ00

f9 max 9.78Eþ02 9.84Eþ02 1.10Eþ03 1.09Eþ03 1.34Eþ03 9.84Eþ02
min 9.30Eþ02 9.35Eþ02 1.02Eþ03 9.59Eþ02 1.15Eþ03 9.35Eþ02
median 19.46Eþ02 29.49Eþ02 51.06Eþ03 41.01Eþ03 61.25Eþ03 39.61Eþ02
std 1.14Eþ01 1.14Eþ01 1.74Eþ01 2.60Eþ01 4.41Eþ01 1.11Eþ01

f10 max 3.57Eþ03 1.00Eþ03 5.25Eþ03 3.21Eþ03 7.45Eþ03 2.71Eþ03
min 1.59Eþ03 1.00Eþ03 3.45Eþ03 1.36Eþ03 5.26Eþ03 1.02Eþ03
median 42.58Eþ03 11.00Eþ03 54.37Eþ03 32.17Eþ03 66.47Eþ03 21.49Eþ03
std 3.80Eþ02 6.80E�01 3.61Eþ02 4.33Eþ02 5.19Eþ02 3.62Eþ02

f11 max 3.80Eþ03 4.51Eþ03 6.35Eþ03 4.23Eþ03 8.75Eþ03 3.89Eþ03
min 1.48Eþ03 2.12Eþ03 3.70Eþ03 2.20Eþ03 7.20Eþ03 2.49Eþ03
median 12.92Eþ03 33.32Eþ03 54.99Eþ03 23.24Eþ03 68.24Eþ03 43.38Eþ03
std 4.48Eþ02 5.12Eþ02 5.67Eþ02 4.66Eþ02 3.62Eþ02 2.89Eþ02

f12 max 1.20Eþ03 1.20Eþ03 1.20Eþ03 1.20Eþ03 1.20Eþ03 1.20Eþ03
min 1.20Eþ03 1.20Eþ03 1.20Eþ03 1.20Eþ03 1.20Eþ03 1.20Eþ03
median 11.20Eþ03 11.20Eþ03 11.20Eþ03 11.20Eþ03 11.20Eþ03 11.20Eþ03
std 1.48E�02 5.62E�02 1.00E�03 7.77E�02 3.34E�01 5.61E�02

f13 max 1.30Eþ03 1.30Eþ03 1.30Eþ03 1.30Eþ03 1.30Eþ03 1.30Eþ03
min 1.30Eþ03 1.30Eþ03 1.30Eþ03 1.30Eþ03 1.30Eþ03 1.30Eþ03
median 21.30Eþ03 51.30Eþ03 31.30Eþ03 41.30Eþ03 61.30Eþ03 11.30Eþ03
std 6.50E�02 1.06E�01 6.65E�02 6.50E�02 5.48E�01 6.41E�02

f14 max 1.40Eþ03 1.40Eþ03 1.40Eþ03 1.40Eþ03 1.50Eþ03 1.40Eþ03
min 1.40Eþ03 1.40Eþ03 1.40Eþ03 1.40Eþ03 1.44Eþ03 1.40Eþ03
median 21.40Eþ03 51.40Eþ03 41.40Eþ03 31.40Eþ03 61.47Eþ03 11.40Eþ03
std 1.19E�01 1.99E�01 4.23E�02 4.74E�02 1.39E�01 4.41E�02

f15 max 1.51Eþ03 1.53Eþ03 1.51Eþ03 1.52Eþ03 5.92Eþ05 1.50Eþ03
min 1.50Eþ03 1.51Eþ03 1.50Eþ03 1.51Eþ03 1.59Eþ04 1.50Eþ03
median 31.50Eþ03 41.51Eþ03 21.50Eþ03 51.52Eþ03 61.55Eþ05 11.50Eþ03
std 8.48E�01 4.30Eþ00 7.30E�01 3.27Eþ00 1.40Eþ05 7.75E�01

f16 max 1.61Eþ03 1.61Eþ03 1.61Eþ03 1.61Eþ03 1.61Eþ03 1.61Eþ03
min 1.61Eþ03 1.61Eþ03 1.61Eþ03 1.61Eþ03 1.61Eþ03 1.61Eþ03
median 31.61Eþ03 11.61Eþ03 61.61Eþ03 41.61Eþ03 51.61Eþ03 21.61Eþ03
std 6.14E�01 5.92E�01 3.43E�01 7.25E�01 1.90E�01 4.67E�01

On f13-f16, the values in bold are better than those seemingly same values not in bold, because the digits after the second decimal place are omitted.
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Table 4
Comparative results on hybrid benchmark functions.

IWO BBO GSA HuS BA WWO

f17 max 3.50Eþ05 2.31Eþ07 1.14Eþ06 1.10Eþ06 9.90Eþ06 6.16Eþ04
min 5.37Eþ03 1.26Eþ06 1.85Eþ05 1.43Eþ04 1.45Eþ06 6.71Eþ03
median 26.75Eþ04 53.13Eþ06 45.63Eþ05 31.51Eþ05 64.24Eþ06 12.61Eþ04
std 6.85Eþ04 4.19Eþ06 2.20Eþ05 1.61Eþ05 1.79Eþ06 1.24Eþ04

f18 max 1.80Eþ04 1.03Eþ05 4.20Eþ03 1.09Eþ04 3.64Eþ08 2.73Eþ03
min 2.26Eþ03 6.74Eþ03 2.02Eþ03 2.02Eþ03 1.33Eþ07 1.85Eþ03
median 44.35Eþ03 52.28Eþ04 22.13Eþ03 32.73Eþ03 68.54Eþ07 12.01Eþ03
std 3.69Eþ03 1.97Eþ04 3.78Eþ02 2.25Eþ03 1.00Eþ08 1.25Eþ02

f19 max 1.91Eþ03 1.98Eþ03 2.00Eþ03 2.04Eþ03 2.06Eþ06 1.91Eþ03
min 1.90Eþ03 1.91Eþ03 1.91Eþ03 1.91Eþ03 1.95Eþ03 1.90Eþ03
median 21.91Eþ03 31.91Eþ03 52.00Eþ03 41.92Eþ03 62.01Eþ03 11.91Eþ03
std 1.65Eþ00 2.77Eþ01 3.43Eþ01 3.31Eþ01 2.03Eþ01 1.38Eþ00

f20 max 5.34Eþ03 8.62Eþ04 6.82Eþ04 6.03Eþ04 4.44Eþ04 1.58Eþ04
min 2.30Eþ03 8.64Eþ03 2.32Eþ03 2.22Eþ04 5.40Eþ03 2.14Eþ03
median 12.74Eþ03 52.72Eþ04 41.77Eþ04 63.68Eþ04 31.63Eþ04 24.25Eþ03
std 7.00Eþ02 1.76Eþ04 1.39Eþ04 8.49Eþ03 1.03Eþ04 3.18Eþ03

f21 max 9.03Eþ04 1.67Eþ06 3.09Eþ05 1.66Eþ05 3.34Eþ06 1.76Eþ05
min 6.74Eþ03 6.70Eþ04 5.87Eþ04 1.07Eþ04 1.43Eþ05 3.70Eþ03
median 23.35Eþ04 54.22Eþ05 41.71Eþ05 34.70Eþ04 69.17Eþ05 12.92Eþ04
std 2.30Eþ04 3.35Eþ05 6.53Eþ04 4.24Eþ04 7.51Eþ05 3.50Eþ04

f22 max 2.52Eþ03 3.28Eþ03 3.63Eþ03 3.67Eþ03 3.56Eþ03 2.85Eþ03
min 2.23Eþ03 2.25Eþ03 2.63Eþ03 2.37Eþ03 2.72Eþ03 2.22Eþ03
median 12.36Eþ03 32.71Eþ03 63.15Eþ03 43.08Eþ03 53.14Eþ03 22.48Eþ03
std 7.34Eþ01 2.34Eþ02 2.50Eþ02 2.67Eþ02 2.05Eþ02 1.43Eþ02

On f19, the values in bold are better than those seemingly same values not in bold, because the digits after the second decimal place are omitted.

Table 5
Comparative results on composition benchmark functions.

IWO BBO GSA HuS BA WWO

f23 max 2.62Eþ03 2.62Eþ03 2.65Eþ03 2.62Eþ03 2.88Eþ03 2.62Eþ03
min 2.62Eþ03 2.62Eþ03 2.50Eþ03 2.62Eþ03 2.51Eþ03 2.62Eþ03
median 42.62Eþ03 62.62Eþ03 22.56Eþ03 52.62Eþ03 12.51Eþ03 32.62Eþ03
std 7.95E�02 1.32Eþ00 6.45Eþ01 8.45E�01 1.28Eþ02 1.45E�01

f24 max 2.63Eþ03 2.65Eþ03 2.60Eþ03 2.71Eþ03 2.60Eþ03 2.63Eþ03
min 2.60Eþ03 2.63Eþ03 2.60Eþ03 2.63Eþ03 2.60Eþ03 2.62Eþ03
median 32.62Eþ03 52.63Eþ03 12.60Eþ03 62.66Eþ03 22.60Eþ03 42.63Eþ03
std 1.08Eþ01 5.97Eþ00 1.71E�02 1.25Eþ01 1.20Eþ00 6.89Eþ00

f25 max 2.71Eþ03 2.72Eþ03 2.71Eþ03 2.75Eþ03 2.76Eþ03 2.72Eþ03
min 2.70Eþ03 2.71Eþ03 2.70Eþ03 2.71Eþ03 2.70Eþ03 2.70Eþ03
median 32.70Eþ03 52.71Eþ03 12.70Eþ03 62.72Eþ03 22.70Eþ03 42.71Eþ03
std 8.08E�01 3.01Eþ00 1.32Eþ00 6.27Eþ00 1.50Eþ01 2.00Eþ00

f26 max 2.70Eþ03 2.80Eþ03 2.80Eþ03 2.80Eþ03 2.70Eþ03 2.70Eþ03
min 2.70Eþ03 2.70Eþ03 2.80Eþ03 2.70Eþ03 2.70Eþ03 2.70Eþ03
median 22.70Eþ03 32.70Eþ03 52.80Eþ03 62.80Eþ03 42.70Eþ03 12.70Eþ03
std 5.43E�02 2.20Eþ01 5.43E�03 3.53Eþ01 5.37E�01 6.50E�02

f27 max 3.10Eþ03 3.51Eþ03 4.43Eþ03 6.47Eþ03 3.53Eþ03 3.50Eþ03
min 3.01Eþ03 3.24Eþ03 3.10Eþ03 3.57Eþ03 3.21Eþ03 3.10Eþ03
median 23.10Eþ03 43.40Eþ03 53.82Eþ03 64.84Eþ03 33.31Eþ03 13.10Eþ03
std 3.38Eþ01 6.35Eþ01 3.51Eþ02 6.83Eþ02 6.46Eþ01 5.90Eþ01

f28 max 3.85Eþ03 4.27Eþ03 6.92Eþ03 6.65Eþ03 6.10Eþ03 5.39Eþ03
min 3.56Eþ03 3.61Eþ03 3.76Eþ03 4.70Eþ03 3.01Eþ03 3.10Eþ03
median 13.69Eþ03 33.79Eþ03 65.43Eþ03 55.36Eþ03 44.52Eþ03 23.78Eþ03
std 4.12Eþ01 9.33Eþ01 7.15Eþ02 4.61Eþ02 5.93Eþ02 3.61Eþ02

f29 max 2.79Eþ04 8.64Eþ06 2.93Eþ06 4.11Eþ07 1.36Eþ07 5.06Eþ03
min 5.37Eþ03 4.26Eþ03 3.10Eþ03 4.81Eþ03 6.16Eþ05 3.56Eþ03
median 51.58Eþ04 35.26Eþ03 13.10Eþ03 41.54Eþ04 64.21Eþ06 24.02Eþ03
std 5.14Eþ03 1.11Eþ06 3.78Eþ05 7.70Eþ06 2.83Eþ06 3.60Eþ02

f30 max 1.69Eþ04 3.75Eþ04 1.14Eþ05 3.74Eþ04 5.08Eþ05 7.66Eþ03
min 6.05Eþ03 7.78Eþ03 1.22Eþ04 8.27Eþ03 6.26Eþ04 4.25Eþ03
median 28.85Eþ03 51.56Eþ04 31.46Eþ04 41.51Eþ04 61.77Eþ05 15.63Eþ03
std 2.08Eþ03 6.08Eþ03 1.84Eþ04 6.58Eþ03 9.11Eþ04 7.38Eþ02

On f24–f27, the values in bold are better than those seemingly same values not in bold, because the digits after the second decimal place are omitted.
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On the third hybrid group of 6 functions, WWO obtains the best
median values on 4 functions (f17, f18, f19 and f21) and obtains the
second best median values on 2 functions. Statistical tests show
that the performance WWO is significantly different from other
five algorithms on f17 and f18, and different from other four except
IWO on f19–f22. Note in this group of hybrid functions, the variables
are randomly divided into some subcomponents and then differ-
ent basic functions are used for different subcomponents, which
causes significant performance reduction of algorithms such as
BBO and GSA, but WWO still remains as competitive performance
as on the basic functions.

On the fourth composition group of 8 functions, WWO ranks
first on 3 functions (f26, f27 and f30), second on 2 functions (f28 and
f29), third on 1 function (f23) and fourth on 2 functions (f24 and f25).
The relatively low performance of WWO on f24 and f25 is partially
consistent with that on the subfunctions including f9 and f10/f11,
which cause that the composition functions also have a huge
number of local optima.

In summary, the overall performance of WWO is the best among
the six algorithms on the benchmark suite including unimodal,
multimodal, hybrid, and composition functions. On some test
functions (and their compositions) with too many local optima,

the performance of WWO is not very satisfactory. This is mainly
because we use a linearly decreasing population size for WWO in
the experiments, and in the later iterations the number of solutions
(waves) reduces to single digits and thus is difficult to jump out of
local optima. We have also test the use of a fixed, relatively large
population size (50 or 100) in WWO, which can effectively improve
the performance of WWO on such test functions, but lose perfor-
mance on many other test functions. In general, the population size
reduction strategy is effective in improving the overall performance
of WWO, but makes the algorithm ineffective in some special
problems. However, we should compare the two strategies and
select the better one for most real-world optimization problems.

Among the other five comparative algorithms, IWO exhibits the
best performance on the whole suite. However, none of the
algorithms can always be superior to others on all test functions.
In fact, each algorithm has obtained the best median values on
some functions: IWO ranks first on 7 functions, and BBO, GSA, HuS
and BA respectively do so on 3, 6, 2 and 2 functions. That is, every
algorithm has shown its strength and weakness on this benchmark
suite, and we believe that this is the same case for various real-
world problems. Thus, when selecting EAs for a new optimization
problem, it is important to describe and quantify the boundary of
effective algorithm performance in terms of the properties of
problem instances by using objective measures and tools [42].

It should be noted that, the performance of WWO is not very
competitive with those algorithms highly ranked in the CEC 2014
competition — most of such algorithms have used complicated
search mechanisms such as hybrid operators, historical memory,
replacement strategies, hyper-heuristic controllers, etc., and have
their parameters fine-tuned for the benchmark suite. However, here
our aim is just to test the performance of the basic WWO — with a
quite simple framework and parameter setting— on the benchmark
suite. It can be expected that, by introducing more sophisticated

Table 6
Sum of ranks of the six algorithms on CEC 2014 benchmark functions.

IWO BBO GSA HuS BA WWO

Unimodal 9 14 11 7 18 4
Multimodal 31 42 44 46 90 22
Hybrid 12 26 25 23 32 8
Composition 22 34 24 42 28 18

Total 74 116 104 118 168 52

Table 7
Statistical comparison between WWO and the other five algorithms.

IWO BBO GSA HuS BA

p-value h p-value h p-value h p-value h p-value h

f1 3.54E�15 1þ 3.56E�21 1þ 3.56E�21 1þ 3.56E�21 1þ 3.56E�21 1þ

f2 3.56E�21 1þ 3.56E�21 1þ 3.56E�21 1þ 1.17E�20 1þ 3.56E�21 1þ

f3 3.56E�21 1þ 2.34E�20 1þ 3.56E�21 1þ 9.50E�09 1� 3.56E�21 1þ

f4 1.46E�15 1þ 3.51E�19 1þ 3.56E�21 1þ 6.95E�17 1þ 3.56E�21 1þ

f5 3.56E�21 1þ 3.56E�21 1þ 2.13E�15 1� 3.56E�21 1þ 3.56E�21 1þ

f6 1.04E�15 1� 1.01E�19 1þ 3.55E�21 1þ 3.56E�21 1þ 3.56E�21 1þ

f7 1.12E�20 1þ 2.75E�21 1þ 1.00Eþ00 0 3.82E�08 1þ 2.75E�21 1þ

f8 3.04E�21 1þ 3.04E�21 1þ 5.30E�01 0 3.04E�21 1þ 3.04E�21 1þ

f9 2.02E�09 1� 8.66E�06 1� 3.56E�21 1þ 1.06E�18 1þ 3.56E�21 1þ

f10 8.74E�18 1þ 3.56E�21 1� 3.56E�21 1þ 8.60E�14 1þ 3.56E�21 1þ

f11 4.21E�19 1� 1.77E�01 0 4.57E�21 1þ 4.39E�01 0 3.56E�21 1þ

f12 1.00Eþ00 0 1.00Eþ00 0 1.00Eþ00 0 1.00Eþ00 0 1.00Eþ00 0
f13 1.30E�01 0 3.64E�20 1þ 2.40E�03 1þ 1.40E�15 1þ 3.56E�21 1þ

f14 7.95E�01 0 2.52E�18 1þ 3.66E�05 1þ 1.37E�02 1þ 3.56E�21 1þ

f15 2.20E�03 1þ 3.56E�21 1þ 6.84E�01 0 3.56E�21 1þ 3.56E�21 1þ

f16 5.20E�01 0 2.96E�06 1� 3.56E�21 1þ 3.54E�15 1þ 3.56E�21 1þ

f17 9.75E�12 1þ 3.56E�21 1þ 3.56E�21 1þ 1.65E�17 1þ 3.56E�21 1þ

f18 6.81E�21 1þ 3.56E�21 1þ 1.41E�12 1þ 8.74E�18 1þ 3.56E�21 1þ

f19 4.06E�01 0 1.68E�16 1þ 3.56E�21 1þ 3.56E�21 1þ 3.56E�21 1þ

f20 7.14E�08 1� 3.14E�20 1þ 3.14E�20 1þ 3.56E�21 1þ 1.89E�17 1þ

f21 1.78E�01 0 1.17E�20 1þ 8.61E�19 1þ 9.35E�04 1þ 3.74E�21 1þ

f22 1.65E�07 1� 8.66E�09 1þ 1.36E�20 1þ 5.12E�19 1þ 7.52E�21 1þ

f23 8.66E�09 1þ 7.90E�21 1þ 1.00Eþ00 0 3.82E�20 1þ 4.19E�05 1�

f24 1.40E�15 1� 1.16E�05 1þ 3.56E�21 1� 2.12E�20 1þ 3.56E�21 1�

f25 1.25E�18 1� 6.52E�12 1þ 5.14E�23 1� 3.74E�21 1þ 4.58E�10 1�

f26 1.86E�02 1þ 1.66E�20 1þ 3.56E�21 1þ 2.52E�18 1þ 3.56E�21 1þ

f27 3.43E�01 0 5.92E�20 1þ 1.66E�20 1þ 3.56E�21 1þ 6.53E�20 1þ

f28 3.70E�14 1� 7.51E�01 0 3.83E�18 1þ 1.01E�19 1þ 1.17E�12 1þ

f29 3.56E�21 1þ 3.85E�19 1þ 3.54E�15 1� 4.13E�21 1þ 3.56E�21 1þ

f30 1.01E�19 1þ 3.56E�21 1þ 3.56E�21 1þ 3.56E�21 1þ 3.56E�21 1þ
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mechanisms, or integrating with powerful operators from other
heuristic methods, WWO will also achieve considerable perfor-
mance improvement.

5. Application in high-speed train scheduling

In this section we consider a high-speed train scheduling
problem. There are total I trains to pass through a high-speed
passenger line, which is divided into K sections by Kþ1 stations
denoted by S¼ f0;1;…;Kg. According to the design speed of the
line, the minimum travel time from station k�1 to k is τk. Each train
i has a sequence of stop stations, denoted by Si, which is a
subsequence of S; the minimum stop time of the train at each
station kASi is τi;k, and the expected total travel time is bT i. The
problem is to find an optimal train timetable, i.e., to determine for
each train i the departure time xi;0 from station 0, the travel time xi;k
from station k�1 to k (1rkrK), and the stop time yi;k on station k
(kASi), such that the following objective function is minimized:

f ¼ ∑
I

i ¼ 1
Tiþ

1
I
∑
I

i ¼ 1
D2
i ð11Þ

where Ti is the real total travel time of train i, and Di is calculated as
follows:

Di ¼
Ti�bT i; if Ti4bT i

0; else

(
ð12Þ

For each train i, its arrival time tai;k and departure time tbi;k on
station k can be respectively calculated as

tai;k ¼ xi;0þ ∑
k

κ ¼ 1
xi;κþ ∑

κA Si 4κok
yi;κ ð13Þ

tbi;k ¼ tai;kþyi;k ð14Þ

Thus we have Ti ¼ ðtai;K �xi;0Þ. The problem is also subject to the
following constraints:

τkrxi;krbxk; 8 iAf1…Ig; kAS ð15Þ

τi;kryi;krbyk; 8 iAf1…Ig; kASi ð16Þ

jtai;k�taj;kjZha; 8 ia j; i; jAf1…Ig; kAS ð17Þ

jtbi;k�tbj;kjZhb; 8 ia j; i; jAf1…Ig; kAS ð18Þ

where bxk is a predefined upper limit of travel time from station k�1
to k, byk is the upper limit of stop time at station k, ha is the minimum
(safety) time interval between two trains entering the same station,
and hb is that between two trains leaving the same station.

The constraints (17) and (18) are transformed into a penalty
function as

g¼ ∑
ia j;i;jA f1…Ig;kA S

gai;j;kþgbi;j;k ð19Þ

where

gai;j;k ¼
ha�jtai;k�taj;kj if jtai;k�taj;kjoha

0; else

(
ð20Þ

gbi;j;k ¼
hb�jtbi;k�tbj;kj if jtbi;k�tbj;kjohb
0; else

(
ð21Þ

Therefore, the problem is an n-dimensional optimization pro-
blem where n¼ IðKþ1Þþ∑I

i ¼ 1jSij, the components of each solu-
tion to the problem are bounded by Eq. (15) and (16), and the
solution is evaluated by the penalized objective function:

f 0 ¼ f þMg ð22Þ
where M is a large positive constant set to 10,000 in this paper.

We apply WWO to the train scheduling problem on two high-
speed passenger lines in Southeast China: the Xiangtang(Nanchang)-
Putian line and the Ningbo–Xiamen line, each of which with two
instances: one for regular timetable scheduling and the other for
spring festival timetable scheduling. Table 8 presents the basic
information of the four problem instances. All times are measured
in minutes, and for every new solution found by WWO, all of the
components are rounded to the nearest integers (minutes).

WWO uses the same parameter settings described in the above
section, and it is compared with the other five algorithms used in
the above section and a chaotic PSO (CPSO) algorithm [43] that is
previously employed by the company. The maximum NFE is set to

Table 8
The summary of the train scheduling problem instances.

Instance I K n

#1 18 23 620
#2 32 23 1056
#3 36 33 1630
#4 56 33 2505

Table 9
The comparative results on the train scheduling instances.

IWO BBO GSA HuS BA CPSO WWO

#1 max 4.155Eþ03 4.102Eþ03 4.168Eþ03 4.460Eþ03 4.275Eþ03 4.189Eþ03 4.099Eþ03
min 4.088Eþ03 4.088Eþ03 4.088Eþ03 4.275Eþ03 4.092Eþ03 4.106Eþ03 4.088Eþ03
mean 24.125Eþ03 24.095Eþ03 44.136Eþ03 64.320Eþ03 54.185Eþ03 34.129Eþ03 14.093Eþ03
std 1.540Eþ01 1.032Eþ01 1.767Eþ01 1.250Eþ02 6.933Eþ01 1.751Eþ01 6.424Eþ00

#2 max 9.375Eþ03 9.393Eþ03 9.468Eþ03 9.375Eþ03 9.384Eþ03 9.303Eþ03 9.211Eþ03
min 9.211Eþ03 9.189Eþ03 9.402Eþ03 9.189Eþ03 9.230Eþ03 9.205Eþ03 9.120Eþ03
mean 59.306Eþ03 29.215Eþ03 79.452Eþ03 49.298Eþ03 69.323Eþ03 39.269Eþ03 19.169Eþ03
std 7.288Eþ01 1.333Eþ02 7.880Eþ01 1.006Eþ02 8.501Eþ01 4.671Eþ01 3.463Eþ01

#3 max 1.226Eþ04 1.230Eþ04 1.368Eþ04 1.258Eþ04 1.215Eþ04 1.237Eþ04 1.196Eþ04
min 1.196Eþ04 1.179Eþ04 1.326Eþ04 1.200Eþ04 1.179Eþ04 1.196Eþ04 1.179Eþ04
mean 41.205Eþ04 31.197Eþ04 71.352Eþ04 61.217Eþ04 21.192Eþ04 51.210Eþ04 11.186Eþ04
std 1.551Eþ02 5.606Eþ02 7.370Eþ02 7.579Eþ02 3.183Eþ02 1.035Eþ02 4.631Eþ01

#4 max 5.172Eþ04 2.496Eþ04 5.009Eþ06 8.495Eþ06 2.480Eþ04 6.160Eþ06 2.136Eþ04
min 2.297Eþ04 2.180Eþ04 3.983Eþ04 3.026Eþ04 2.180Eþ04 2.220Eþ04 2.120Eþ04
mean 43.154Eþ04 22.316Eþ04 63.809Eþ06 74.200Eþ06 32.335Eþ04 53.372Eþ06 12.132Eþ04
std 1.503Eþ04 5.302Eþ03 1.338Eþ06 3.263Eþ06 5.506Eþ03 4.254Eþ06 4.329Eþ01
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100n where n is the instance size. Each algorithm has been run 60
times on each instance, and the computational results over the 60
runs are shown in Table 9.

As wee can see from the results, both the median, maximum and
minimum objective values of WWO are always the best among the
seven algorithms on all the four instances. On the simplest instance
#1, only BBO obtains a very similar result to WWO; but with the
increase of instance size, the performance advantage of WWO over
the other algorithms becomes more and more obvious. Particularly,
on the largest instance #4, the median and std values of CPSO, GSA
and HuS are unreasonably large because the algorithms occasionally
fail to obtain a feasible solution. Even if only considering the best
objective values among the 60 runs, the efficiency of the schedules
obtained by WWO is significantly better than the old CPSO on all
the instances, which can lead to considerable economic benefits.
Thus, we can conclude that among the seven methods, WWO is the
most suitable for solving the considered train scheduling problem,
or at least for the four significant real-world instances.

6. Conclusion

Just as biological genetics inspired the development of GAs and
island biogeography inspired the development of BBO [11], in this
paper we consider shallow water wave theory as the basis for the
development of a new nature-inspired optimization method –

WWO. The metaheuristic uses three operators: Propagation making
high fitness waves search small areas and low fitness waves search
large areas, Refraction for improving the diversity and thus reducing
premature convergence, and Breaking for intensively exploiting the
local area around a promising point.

We have compared WWO with five other popular EAs on the
CEC 2014 test functions, the results of which show that the overall
performance of WWO ranks first not only on the whole benchmark
set, but also on each of the four subsets including unimodal,
multimodal, hybrid, and composition functions. We have also used
WWO to solve a high-speed train scheduling problem, which shows
the feasibility and effectiveness of the metaheuristic in real-world
applications.

The paper is a preliminary study opening up a wide range of
possibilities for further improvement and extension. For example,
currently we adopt a simple energy dissipation mechanism that
linearly decreases the height of an unimproved wave from hmax to 0,
and there is room for more complex, nonlinear dissipation models
which may bring more performance improvement. Similar adaptive
mechanisms may also apply to the wavelength reduction coefficient
α and the breaking coefficient β.

In another aspect, the proposed WWO uses a default global
topology where each wave can be attracted by the global best by
refraction. An interesting direction is to apply various local topol-
ogies to diversify the modes of interactions amongst individuals, as
that has been done in PSO [44] and EBO [45].

More abstractly, WWO can be regarded as a framework, where the
wave-inspired operators can be implemented with different ways. It
would be fruitful to design specific implementations of propagation,
refraction, and breaking for a variety of problems, especially those
combinatorial optimization problems. There is a wide range of
avenues for future research.
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