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Let Λ be any integral lattice in the 2-dimensional Euclidean space.
Generalizing the earlier works of Hiroshi Maehara and others, we
prove that for every integer n > 0, there is a circle in the plane R

2

that passes through exactly n points of Λ.
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We consider the following condition on 2-dimensional lattices Λ ⊂ R2.

Definition 1.1. If there is a circle in the plane R2 that passes through exactly n points of Λ for every
integer n > 0, then Λ is called universally concyclic.

A lattice generated by (a,b), (c,d) ∈ R2, (ad−bc �= 0) is denoted by Λ[(a,b), (c,d)]. In [3], Maehara
introduced the term “universally concyclic”. Then, he and others showed the following results. In
[5] and [4], Schinzel, Maehara and Matsumoto proved that Z2, that is, Λ[(1,0), (0,1)] is universally
concyclic. Moreover let a,b, c,d ∈ Z be such that q := ad − bc is a prime and q ≡ 3 (mod 4). Then
Λ[(a,b), (c,d)] is universally concyclic. The equilateral triangular lattice Λ[(1,0), (−1/2,

√−3/2)] and
rectangular lattice Λ[(1,0), (0,

√−3 )] are universally concyclic.
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Let Z[x] := {a + bx | a,b ∈ Z}. We remark that for a positive integer d, a lattice Λ[(1,0), (a,b
√

d )]
is also given by Z[a + b

√−d ] in the complex plane. We define the set A(k) as follows:

A(k) := {
z ∈ Z[√−3 ] ∣∣ |z|2 = 7k}.

In [3], Maehara proved the following result:

Lemma 1.1. (Cf. [3].) �A(k) = 2(k + 1).

Then, Maehara [3] proposed the following problems:

Problem 1.1. (Cf. [3].) For every square-free integer d > 1 and a prime p such that p = x2 + y2d, we
have �{z ∈ Z[√−d ] | |z|2 = pk} � 2(k + 1) for every k. Does equality always hold?

Problem 1.2. (Cf. [3].) Is Λ[(a,b), (c,d)] universally concyclic if a,b, c,d ∈ Z and ad − bc �= 0?

Here, we answer Problems 1.1 and 1.2 affirmatively. In fact, we prove a slightly stronger asser-
tion in Theorems 1.1 and 1.2 below. Let d be a square-free positive integer and K be the imaginary
quadratic field K = Q(

√−d ). We define O K as the integer ring of K . Let Z ·a +Z ·b denote the linear
combination of a and b with integer coefficients. Then O K will be written as follows:

O K = Z · 1 + Z · w K , (1)

where

w K =
{√−d if −d ≡ 2,3 (mod 4),

−1+√−d
2 if −d ≡ 1 (mod 4).

(2)

We denote by dK the discriminant of K :

dK =
{−4d if −d ≡ 2,3 (mod 4),

−d if −d ≡ 1 (mod 4).

We review the concept of order in a quadratic field (for more details, see [2]). An order O in a
quadratic field K is a subset O ⊂ K such that

1. O is a subring of K containing 1.
2. O is a finitely generated Z-module.
3. O contains a Q-basis of K .

We can now describe all orders in a quadratic fields:

Lemma 1.2. (Cf. [2, p. 133].) Let O be an order in a quadratic field K of discriminant dK . Then O has a finite
index in O K , and if we set f = [O K : O], then

O = Z + f O K = Z · 1 + Z · f w K , (3)

where w K is as in (2). Here f is called a conductor of the order O.
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We denote O by O f if f = [O K : O]. Now, we introduce the concept of proper ideals of an order.
For any ideal a of O f , notice that

O f ⊂ {β ∈ K | βa ⊂ a}
since a is an ideal of O f . We say that an ideal a of O f is proper whenever equality holds, i.e., when

O f = {β ∈ K | βa ⊂ a}.
A quadratic form F is called integral if all the coefficients of F are rational integers. A lattice Λ is
called integral if (x, y) ∈ Z for all x, y ∈ Λ, where (x, y) is the standard inner product. Generally, it is
well known that there exists a one-to-one correspondence between the set of proper ideal classes of
the order O f and the equivalence class of primitive positive definite integral quadratic forms F (x, y)

with discriminant f 2dK < 0 (see Theorem 2.2 in Section 2 [1, Chapter 2, §7-6], [6, §11]). Hence, we
consider the proper ideal classes of O f to be the lattice in R2 corresponding to a quadratic forms
F (x, y). On the other hand, any 2-dimensional integral Euclidean lattice can be considered as some
proper ideal class of O f . We define Λ as the proper ideal classes of O f . Then, we prove the following
theorems:

Theorem 1.1. Let n ∈ N and assume that n �= 1. Let p be a prime number such that there exists a z ∈ Z[√−n ]
with |z|2 = p, ( dK

p ) = 1 and (p, f ) = 1, where ( ·
· ) is the Legendre symbol. Then,

�
{

z ∈ Z[√−n ] ∣∣ |z|2 = pk} = 2(k + 1).

Theorem 1.2. All the 2-dimensional integral lattices in R2 are universally concyclic.

Remark 1.1. We remark that there exist some non-integral lattices which are not universally concyclic.
Maehara also proved in [3] that if τ is a transcendental number, then Λ[(1, τ ), (0,1)] cannot contain
four concyclic points, hence is not universally concyclic. The rectangular lattice Λ[(α,0), (0, β)] does
not contain five concyclic points if and only if (α/β)2 is an irrational number. Hence, some additional
integrality conditions are necessary to ensure this property.

2. Preliminaries

In this paper, we consider the 2-dimensional integral Euclidean lattices. We shall always assume
that d denotes a positive square-free integer. Let K = Q(

√−d ) be an imaginary quadratic field, and
let O K be its ring of algebraic integers defined by (1). As we mentioned in Section 1, there exists a
one-to-one correspondence between the set of fractional ideal classes of the unique quadratic field
Q(

√−d ) and the equivalence class of primitive positive definite integral quadratic forms F (x, y) with
discriminant dK < 0 [6, §10]. More generally, there exists a one-to-one correspondence between the
set of fractional proper ideal classes of order O f and the equivalence class of primitive positive def-
inite integral quadratic forms F (x, y) with discriminant f 2dK < 0 [1, Chapter 2, §7-6], [6, §11]. We
remark that the value f 2dK is called the discriminant of the order O f . Finally, we give the well-
known theorems needed later.

Theorem 2.1. (Cf. [2, p. 104].) We can classify prime ideals of a quadratic field as follows:

1. If p is an odd prime and ( dK
p ) = 1 (resp. dK ≡ 1 (mod 8)) then

(p) = pp′ (
resp. (2) = pp′),

where p and p′ are prime ideals with p �= p′ , N(p) = N(p′) = p (resp. N(p) = 2).
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2. If p is an odd prime and ( dK
p ) = −1 (resp. dK ≡ 5 (mod 8)) then

(p) = p
(
resp. (2) = p

)
,

where p is a prime ideal with N(p) = p2 (resp. N(p) = 4).
3. If p | dk then

(p) = p2,

where p is a prime ideal with N(p) = p.

Theorem 2.2. (Cf. [2, Theorem 7.7].) Let O be an order of discriminant D in an imaginary quadratic field K .

1. If F (x, y) = ax2 + bxy + cy2 is a primitive positive definite integral quadratic form of discriminant D,
then [a, (−b + √

D )/2] is a proper ideal of O.
2. The map sending F (x, y) to [a, (−b +√

D )/2] induces an isomorphism between the form class group and
the ideal class group.

3. A positive integer m is represented by a form F (x, y) if and only if m is the norm N(a) of some ideal a in
the corresponding ideal class mentioned in 2.

Lemma 2.1. (Cf. [2, Lemma 7.18].) Let O f be an order of conductor f . We say that a non-zero O f -ideal a is
prime to f provided that a + f O f = O f .

1. An O f -ideal a is prime to f if and only if its norm N(a) is relatively prime to f .
2. Every O f -ideal prime to f is proper.

Proposition 2.1. (Cf. [2, Proposition 7.20].) Let O f be an order of conductor f in an imaginary quadratic
field K . We say that a non-zero O K -ideal a is prime to f provided that a + f O K = O K . If a is an O K -ideal
prime to f , then a ∩ O f is an O f -ideal prime to f of the same norm.

Proposition 2.2. (Cf. [2, Exercise 7.26].) Let O f be an order of conductor f . Then O f -ideals prime to the
conductor can be factored uniquely into prime O f -ideals (which are also prime to f ).

Theorem 2.3. (Cf. [2, Theorem 9.4].) Let n > 0 be an integer, and L be the ring class field of the order Z[√−n ]
in the imaginary quadratic field K = Q(

√−n ). If p is an odd prime not dividing n, then

p = x2 + ny2 ⇔ p splits completely in L.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. We remark that Z[√−n ] can be considered as the order Z[√−n ] = O f ⊂ K =
Q(

√−d ) for some f and d with the following condition −4n = f 2dK , namely,

n =
{

f 2d if −d ≡ 2,3 (mod 4),

f 2d
4 if −d ≡ 1 (mod 4).

Therefore, we remark that Z[√−n ] = O f .

We fix a prime p such that there exists a z ∈ Z[√−n ] with |z|2 = p, ( dK
p ) = 1 and (p, f ) = 1.

Because of Theorem 2.1, (p) = pp′ in O K for some p. Moreover, the condition z ∈ Z[√−n ] implies
that the ideals p and p′ are principal ideals. We set
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q = p ∩ O f ,

q′ = p′ ∩ O f .

Then, by Proposition 2.1, the ideals q and q′ are principal ideals of O f prime to f . Because of
Lemma 2.1, O f -ideal prime to f is proper and using the unique factorization of proper ideals in
Proposition 2.2, the ideals of norm pk are as follows:

qk,qk−1q′, . . . ,q′k. (4)

Let z1 be the element of Z[√−n ] with norm pk . Because of Lemma 2.1, (z1) is a proper O f -ideal.
Moreover, for −z1 ∈ Z[√−n ], the ideals (z1) and (−z1) are same proper O f -ideals. Hence, there
exists a one-to-one correspondence between the non-equivalent elements of Z[√−n ] with norm pk

under the action of {±1} and the set of proper O f -ideals of norm pk defined by (4). This completes
the proof of Theorem 1.1. �
4. Proof of Theorem 1.2

4.1. Setup

Proposition 4.1. For any positive integers n and a, there exists a prime p not dividing n such that

p = x2 + ny2

with y ≡ 0 (mod 4a).

Proof. We set n′ = 16a2n. Let L be the ring class field of the order Z[√−n ]. (We refer to Cox [2] for
the concept of ring class fields.) Because of Theorem 2.3, there exists a prime p such that

p = x2 + n′ y2

= x2 + n(4ay)2

if and only if p splits completely in L. Then the primes that split completely in L have density
1/[L : K ], and in particular there are infinitely many of them (cf. [2, Corollary 5.21] and [2, Corol-
lary 8.18]). Hence, there exists a prime p not dividing n. Therefore, we complete the proof of Propo-
sition 4.1. �

Because of Proposition 4.1, there exists prime p not dividing n such that p = x2
1 + ny2

1 with y1 ≡
0 (mod 4a). We fix such a prime and denote it by pn,a . Then we define An,a(k) as follows:

An,a(k) := {
z ∈ Z[√−n ] ∣∣ |z|2 = pk

n,a

}
.

By Proposition 4.1, if x + y
√−n ∈ An,a(k) then y ≡ 0 (mod 4a) and

x + y ≡ ± j (mod 4a), (5)

where j ≡ xk
1 (mod 4a), 1 � j � 4a − 1. So, we define Ǎn,a(k) as follows:

Ǎn,a(k) := {
x + y

√−n ∈ An,a(k)
∣∣ x + y ≡ − j (mod 4a)

}
.
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Lemma 4.1. �An,a(k) = 2(k + 1) and � Ǎn,a(k) = k + 1.

Proof. Because of Proposition 4.1, (dK /pn,a) = 1 and (pn,a, f ) = 1. Hence, by Theorem 1.1 �An,a(k) =
2(k + 1). If x + y

√−n ∈ An,a(k), then x �= 0, −x + y
√−n ∈ An,a(k), and only one of them belongs to

Ǎn,a(k). Therefore, � Ǎn,a(k) = k + 1. �
4.2. Proof of Theorem 1.2

Here, we start the proof of Theorem 1.2.

Proof of Theorem 1.2. Let Λ be a 2-dimensional integral lattice and let the associated quadratic form
be ax2 +bxy + cy2. Let O f ⊂ Q[√−d ] be the order corresponding to the lattice Λ. We set n = − f 2dK

and α := (−b +√−n )/(2
√

a ). It is enough to show that for each integer k > 0, there is a circle in the
complex plane that passes through exactly k + 1 points of Λ. For k > 0, define a circle Γk in complex
plane as follows:

|4√
az − j|2 = pk

n,a,

where j is defined by (5). Let C(k) be the subset of Λ lying on the circle Γk . We show that �C(k) =
k + 1. If z = √

ax + αy ∈ C(k) then 4
√

az − j = 4ax − 2by − j + 2y
√−n, so 4ax − 2by − j + 2y ≡

− j (mod 4a). Therefore 4
√

az − j ∈ Ǎn,a(k). Hence we can define the map ϕ : C(k) → Ǎn,a(k) by:

z �→ 4
√

az − j.

This map is a bijection. To see this, suppose x + y
√−n ∈ Ǎn,a(k). Then x + y ≡ − j (mod 4a), that is,

x+by + j ≡ 0 (mod 4a). Moreover, by Proposition 4.1, y ≡ 0 (mod 4a), and hence y is even. Therefore,
we can define a map from Ǎn,a(k) to C(k) as follows:

x + y
√−n �→ x + by + j

4
√

a
+ y

2
α.

This gives the inverse of ϕ . Therefore ϕ is surjective, that is, �C(k) = � Ǎn,a(k) = k + 1. �
Informing Hiroshi Maehara of Theorem 1.2, he proved the following fact:

Corollary 4.1. If (α/β)2 ∈ Q then Λ[(α,0), (0, β)] is universally concyclic.

Proof. We assume that (α/β)2 = b/a, where b/a is irreducible fraction. Then, the lattices Λ[(α,0),

(0, β)] and Λ[(a,0), (0,
√

ab )] are similar under the similarity transformation α/a and Λ[(a,0),

(0,
√

ab )] is integral lattice. Because of Theorem 1.2, Λ[(a,0), (0,
√

ab )] is universally concyclic, so
is Λ[(α,0), (0, β)]. �
Remark 4.1. Finally, we generalize the definition of universally concyclic to higher dimensions.

Definition 4.1. Let Λ ⊂ Rd be a d-dimensional lattice. If there is a spherical surface Sd−1 in Rd that
passes through exactly n points of Λ for every integer n > 0, then Λ is called universally concyclic.

In [3], Maehara remarks that Z3 is universally concyclic because the spherical surface (4x − 1)2 +
(4y)2 + (4z − √

2 )2 = 17k + 2 passes through exactly k + 1 points of Z3. We also remark that any
integral lattice in higher dimension d � 2 is universally concyclic.
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Corollary 4.2. All integral lattices in Rd with d � 2 are universally concyclic.

Proof. Let Λ be an integral lattice in Rd . We define sublattices {Λ(i)}d
i=2 such that

Λ(2) ⊂ Λ(3) ⊂ · · · ⊂ Λ(d) = Λ

and Λ(i) spans Ri which we denote by R(i) for all i. Because of Theorem 1.2, for each k > 0, we can
define the circle S(1) ⊂ R(2) that passes through exactly k points of Λ(2) .

Let O (1) be the center of S(1) and let 	 be a half line in R(3) whose origin is O (1) , which is
orthogonal to R(2) . We define the sphere S(2)(a), whose center O (2)(a) lies on 	, the distance between
O (1) and O (2)(a) is a and whose radius is

√
a2 + (radius of S(1))2. We assume that 0 � a � 1.

Since Λ is an integral lattice, the number of the points of Λ(3) which intersect in S(1)(a) is finite
for any 0 � a � 1. Moreover, for a1 �= a2, the intersection of S(1)(a1) and S(1)(a2) is the points of
Λ(2) in Λ, namely, the points of S(1) . On the other hand, for 0 � a � 1, the number of the spheres
S(2)(a) is infinite. Therefore, there exists a number a0 such that the intersection of S(2)(a0) and Λ is
the points of Λ(2) . We denote S(2)(a) by S(2) and S(2) passes through exactly k points of Λ(3) . We
can define the spheres S(3), . . . , S(d−1) recursively such that each of {S(i)}d−1

i=3 passes through exactly
k points of Λ, as we defined S(2) in R(3) . �

So, we have shown that any integral lattices in Rd are universally concyclic. However, the points of
lattice lying on the sphere constructed in the proof of Corollary 4.2 are on the plane x3 = · · · = xd = 0.
Hence, Maehara added some conditions to Definition 4.1 and showed the following theorem:

Theorem 4.1. (Cf. [3].) For n > d � 2, there is a sphere in Rd that passes through exactly n lattice points on Zd,
and moreover, the n lattice points span a d-dimensional polytope.

Therefore, we can state the following problem:

Problem 4.1. Let Λ be an integral lattice in Rd . We assume n > d � 2. Is there a sphere in Rd that
passes through exactly n lattice points on Λ, which span a d-dimensional polytope?

A set of points in the d-dimensional Euclidean space is said to be in general position if no d + 1
of them lie in a (d − 1)-dimensional plane. Then, Maehara also proposed the following problem:

Problem 4.2. (Cf. [3].) Is there a sphere in R3 that passes through a given number of lattice points in
general position on Z3?

It is also an interesting open problem to prove or disprove a similar conclusion as in Problem 4.2
for any integral lattices in higher dimension Rd .
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