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Abstract

We prove complete reducibility for an integrable module for an affine Lie algebra wher
canonical central element acts non-trivially. We further prove that integrable modules does no
for most of the superaffine Lie algebras where the center acts non-trivially.
 2003 Elsevier Science (USA). All rights reserved.
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Introduction

Let G be simple finite-dimensional Lie algebra. LetĜ be the corresponding affine L
algebra and letK be the canonical central element. A moduleV of Ĝ is called integrable
if the Chevalley generators act locally nilpotently onV . In [1] the irreducible integrable
modules forĜ with finite-dimensional weight spaces has been classified. In parti
any irreducible integrable module with finite-dimensional weight spaces whereK acts by
positive integer is isomorphic to an highest weight module. In this work we prove tha
integrable module with finite-dimensional weight spaces whereK acts by non-zero scala
is completely reducible (Theorem 1.10).

The integrable modules whereK acts trivially, need not be completely reducible. F
example, consider thêG (without the derivation) moduleG ⊗ C[t, t−1]/(t − 1)2 whereK
acts by zero which is not completely reducible. (See [2] for the graded version.)
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In Section 2 we consider affine Lie superalgebras and prove that most often inte
modules with finite-dimensional weight spaces do not exist. We use stronger definit
the integrability than that of [8]. LetG be simple finite-dimensional Lie superalgebra. LêG
be the corresponding affine Lie superalgebra. Assume that it has non-degenerate sy
invariant bilinear form. Assume that the semisimple part of the even part ofG is at least two
components. Then integrable modules forĜ with finite-dimensional weight spaces whe
center acts by non-zero scalar does not exist (Theorem 2.6). Certainly integrable m
with K acting zero exists. For example loop modules. Our techniques work only wit
notion of stronger integrability. We do not know whether such a result hold with the we
integrability of [8].

In Theorem 2.9, we prove that an integrable irreducible module forĜ with finite-
dimensional weight spaces where centerK acts by positive integer is necessarily
highest weight module, assuming the semisimple part of the finite even part is on
component. In this case we note that (Remark 2.11) the module is completely red
for the even part. That class includes the affine Lie superalgebras associated with ba
superalgebras of typesA(0, n),B(0, n) andC(n).

1.1. We will fix some notations. All our algebras are over complex numbersC. Let G̊
be simple finite-dimensional Lie algebra. Leth̊ be a Cartan subalgebra. LetQ̊ andΛ̊ be
root and weight lattice of̊G. Let Λ̊+ be dominant integral weights of̊G. Let α1, . . . , αn be
simple roots and letβ be highest root of̊G; α∨

1 , . . . , α
∨
n be the corresponding simple roo

We choose non-degenerate bilinear form onh̊∗ such that(β,β)= 2.
Let Ĝ = G ⊗ C[t, t−1] ⊕ CK ⊕ Cd be the corresponding untwisted affine Lie algeb

Let ĥ = h̊⊕ CK ⊕ Cd be the Cartan subalgebra of̂G. LetQ andΛ be the root and weigh
lattice of Ĝ. Let δ be the null root. LetΛ0 be an element of̂h∗ such thatΛ0(h̊) = 0,
Λ0(K) = 1 andΛ0(d) = 0. An elementλ in h̊∗ can be treated as an element ofĥ∗ by
extending asλ(K) = 0 andλ(d) = 0. Letλ be the restriction to̊h. Givenλ ∈ ĥ∗, λ can be
uniquely written as

λ = λ+ λ(d)δ + λ(K)Λ0. (1.2)

1.3. Definition. An elementλ in Λ̊+ is called minimal if for everyµ ∈ Λ̊+ such thatµ<
0 λ

impliesµ = λ. Hereµ<
0 λ meansλ−µ = ∑n

i=1niαi, ni ∈ N.

1.4. Lemma [5]. Letλ be minimal inΛ̊+. Thenλ(β∨) = 0 or 1.

Proof. See Exercise 13 of Chapter III of [5].✷
1.5. Let λ ∈ Λ+ and letV (λ) be the irreducible integrable highest weight module forĜ.
Let P(λ) be the set of weights ofV (λ). Defineµ � λ if λ − µ = ∑n

i=0niαi, ni ∈ N (α0
is the additional simple root of̂G ). LetP(λ) = {µ | µ ∈ P(λ)}. ClearlyP(λ) determines a
unique coset inΛ̊/Q̊. Letµ0 be the minimal element in̊Λ+ in the above coset. Lets be a
complex number such thatλ(d)− s is a non-negative integer.

1.6. Lemma. Letµ0 = µ0 + sδ + λ(K)Λ0. Thenµ0 ∈ P(λ).
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Proof. First note that by minimality ofµ0 we haveµ0
<
0 λ. Then clearlyµ0 � λ.

Claim. µ0 ∈ Λ+.

Considerα∨
i for 1 � i � n. Thenµ0(α

∨
i ) = µ0(αi) ∈ N asµ0 ∈ Λ̊+. Nowα∨

0 = K−β∨
and

µ0
(
α∨

0

) = µ0
(
K − β∨) = λ(K)−µ0

(
β∨)

.

Now λ(K) is positive integer and henceλ(K) � 1. We know from Lemma 1.4 tha
µ0(β

∨) = 0 or 1. That means

µ0
(
α∨
n+1

) ∈ N.

This prove the claim. Thusµ0 is dominant integral and� λ. By Proposition 12.5(a) of [7
it follows thatµ0 ∈ P(λ). ✷

We need the following from [3].

1.7. Lemma (Lemma 2.6 of [3]).LetV be integrable module for̂G with finite-dimensiona
weight spaces. LetP(V ) be the set of weights ofV . Letλ ∈ P(V ). Then

(1) There existsη0
>
0 0, η0 ∈ Q̊ such thatλ+ η0 + η /∈ P(V ) for all 0 �= η>

0 0, η ∈ Λ̊.

(2) There existsη1
0
<
0 0, η1

0 ∈ Λ̊ such thatλ+ η1
0 + η /∈ P(V ) for all 0 �= η<

0 0, η ∈ Λ̊.

Proof. (1) follows from the proof of Lemma 2.6 of [3]. The proof of (2) is similar.✷
1.8. Proposition. Let V be integrableĜ-module with finite-dimensional weight spac
Assume the canonical central elementK acts by positive integers. Letλ ∈ P(V ). Then
there existsη � 0 such thatλ + η ∈ Λ+ and the irreducible integrable highest weig
moduleV (λ+ η) ⊆ V .

Proof. By previous lemma there existsη0
>
0 0 such thatλ + η0 + η /∈ P(V ) for 0 �=

η>
0 0. Now by arguments similar to the proof of Theorem 2.4(i) of [1] will produce

highest weight module with highest weightλ + η0 + η1 for someη1 � 0. Note that
(λ+ η0 + η1)(d) � λ(d). ✷

In the above proof we need our Lemma 1.7 as the proof of Lemma 2.6(ii) of [
incomplete. We now recall the following variation of a standard result from [7].

1.9. Proposition. LetV be integrable module for̂G with finite-dimensional weight space
Let K act by positive integer. Suppose for everyv in V , there existN > 0 such that
U(G)α+nδ = 0 for all n >N and forα ∈ ∆̊U{0}. ThenV is completely reducible.
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We need to recall some standard notations from [7] and prove two lemmas.
The Cartan subalgebrah carries a non-degenerate bilinear form( | ). Let ν :h → h∗

be an isomorphism such thatν(h)(h1) = (h | h1). Let 〈 , 〉 be the induced bilinear form o
h∗. Recall the Casimir operator from Section 2.1,ρ in h∗ from (2.5) from [7]. Also recall
the notion of primitive weights from (9.3) of [7]. Note that in an integrable module
primitive weights are dominant integral.

Lemma A. LetV be as above. Supposeλ,µ are primitive weights such thatλ− µ = β ∈
Q+ − {0}. Then2〈λ+ ρ, ν−1(β)〉 �= (β,β).

Proof. Follows from the proof of Theorem 10.7 of [7]. See 10.7.3 and the next equ
in [7]. ✷
Lemma B. Let V be as above. Letv be a weight vector of weightλ such that(Ω0 −
aIV )

kv = 0 for somek ∈ Z+ anda ∈ C. Presumablyv1 ∈ U−β(Ĝ )v, β ∈ Q. Then

(
Ω0 − (

a + 2
〈
λ+ ρ, ν−1(β)

〉 − (β,β)
)
IV

)
v1 = 0.

Proof. Follows from (2.6.1) and (3.4.1) of [7]. Also see (9.10.2) of [7]. Note thatV is
restricted in the sense of [7].✷
Proof of the Proposition. Let Ĝ = n− ⊕h⊕n+ be the standard triangular decompositi
Let V 0 = {v ∈ V | n+v = 0}. ClearlyV 0 is h-invariant and hence decomposes undeh.
Let V 1 = U(Ĝ )V 0. It is standard fact that in an integrable module, each highest w
generate an irreducible integrable module. ThusV 1 is completely reducible. We will now
prove thatV = V 1.

Clearly the Casimir operatorΩ0 acts onV and leaves each finite dimensional weig
space invariant. ThusΩ0 is locally finite onV . SupposeV �= V 1. Then there existsv in
V1 − V 1 such thatn+v ⊆ V 1 and(Ω0 − aIV )

kv = 0 for somek ∈ Z+ anda ∈ C. Since,
clearlyΩ0v ∈ V 1, we havea = 0 and henceΩk

0v = 0.
From the hypothesis it follows thatU(n+)v is finite-dimensional. So it contains vect

uβv such thatuβ ∈ U(Ĝ )β andn+uβv = 0, β ∈ Q+ − {0}. Let µ = λ + β and note tha
λ,µ are primitive roots. Thus by Lemma A

2
〈
µ+ ρ, ν−(β)

〉 �= (β,β). (∗)

Now by Lemma B it follows that 2〈λ + ρ,−ν−(β)〉 = (β,β) asΩ0(uβv) = 0. This is
a contradiction to (∗). ThusV = V 1 andV is completely reducible. ✷
1.10. Theorem. Let V be integrable module with finite-dimensional weight spaces foĜ.
Suppose all eigenvalues ofK are non-zero. ThenV is completely reducible aŝG-module.

Proof. First decomposeV with K action. AsK commutes witĥG, each eigenspace iŝG-
module. Thus we can assume thatK acts by single scalar. It is well known that the cen
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elementK acts by integer (see, for example, [3]). Without loss of generality we can as
thatK acts by positive integer. We now decompose the module

V =
⊕

λ∈Λ/Q

Wλ,

whereµ1,µ2 weight occurs inWλ thenµ1 − µ2 ∈ Q. Clearly eachWλ is a Ĝ-module.
Thus we can assume that the weightsP(V ) of V lie in single coset ofΛ.

Claim. Letλ ∈ P(V ). Then there existsη � 0 such thatλ+α /∈ P(V ) for all positive roots
α such thatα > η.

Proof of the Claim. Suppose there exists infinitely many positive rootsα such thatλ+α ∈
P(V ). First by Proposition 1.8 there existsη � 0 such thatλ + η ∈ Λ+, λ + η ∈ P(V ),
(λ+ η)(d) � λ(d) and the irreducible integrable highest moduleV (λ+ η) ⊆ V .

Let P(V ) = {λ | λ ∈ P(V )}. ClearlyP (V ) defines a unique coset in̊Λ. Let µ0 be the
minimal weight for this coset. Letµ0 = µ0 + λ(d)δ + λ(K)w � λ+ η. By Lemma 1.6 we
haveµ0 ∈ P(λ+ η) ⊆ P(V ).

First note that the number positive rootsα1 such thatα1 �> η is finite.
Now choose positive rootα1 > η such thatλ + α1 ∈ P(V ). (This is due to our

supposition.) Now by above arguments there existsη1 � 0 such thatλ + α1 + η1 ∈
P(V ),λ + α1 + η1 ∈ Λ+ and V (λ + α1 + η1) ⊆ V . Furtherµ0 � λ + α1 + η1 and
µ0 ∈ P(λ + α1 + η1) ⊆ P(V ). Note thatλ + α1 + η1 > λ+ η (note the strict inequality)
ThusV (λ+ α1 + η1) �= V (λ+ η). Both modules have common weightµ0. Thus we have
proved that dimVµ0 � 2. By repeatingn times the above argument we get dimVµ0 � n.
But dimVµ0 is finite and thus this process has to stop. This proves our claim.✷

It follows from the claim and that the moduleV satisfies the conditions of Propos
tion 1.9 and hence it is completely reducible.✷
1.11. Remark. Theorem 1.10 imply that an integrable module with finite-dimensio
weight spaces in whichK acts by positive integer belongs to the categoryO.

2.0. Let G = G0 ⊕ G1 be simple finite-dimensional Lie superalgebraG0 (respectively,
G1) being its even (respectively, odd) part. We assume thatG0 is reductive. We furthe
assume thatG carries a non-degenerate invariant “symmetric” bilinear form. S
Lie superalgebras are called basic. We give the list of basis Lie superalgebras
Proposition 1.1 of [6] (see Table 1).

In this section we study the integrable representations of the untwisted affin
superalgebras of basic Lie superalgebras.

Let G be a basic Lie superalgebra. Then the restriction to the even part need
positive definite. In fact we choose the form in such a way that the restriction to th
component of the even part is positive definite and the restriction to the second com
is negative definite (see Section 6 of [8]). We normalize the form in such a way
(α,α) = 2 whereα is the highest root of the first component of the even part ofG0 and
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Table 1

G G0

A(m,n) Am+An +C,

C(n) Cn +C

B(m,n) Bm +Cn

D(m,n) Dm +Cn,

D(2,1 : a) D2 +A1
F(4) B3 +A1
G(3) G2 +A1

(β,β) = −2 whereβ is the highest root of the second component. Leth be the Cartan
subalgebra ofG which is contained in the even part.

2.1. Define affine superalgebrâG

Ĝ = G ⊗ C
[
t, t−1] ⊕ CK ⊕ Cd.

The Lie bracket is given by the following. Writex(n) = x ⊗ tn.

[
x(n), y(m)

] = [x, y](m+ n) + n(x, y)δm+n,0K,[
d, x(n)

] = nx(n) x, y ∈ G, m,n ∈ Z, K is central.

Let

ĥ = h ⊕ CK ⊕ Cd.

2.2. Definition. A moduleV of Ĝ is called integrable if

(1) V = ⊕
λ∈ĥ∗ Vλ, Vλ = {v ∈ V | hv = λ(h)v, ∀h ∈ ĥ }.

(2) V is integrable as âG0 module.
(3) For anyv ∈ V,U(G)v is finite-dimensional.

HereU(G) is the universal enveloping algebra ofG.

2.3. Remark. In [8] integrable modules are studied with weaker condition. In
integrability means the module is integrable only with the affinization of one simple
of G0. Then they have classified irreducible highest weight module which are integra
the above sense. See Theorems 6.1 and 6.2 of [8].

The purpose of this section is to classify irreducible integrable modules forĜ where
centerK acts non-trivially.

Let G01 andG02 be the first and second simple component ofG0 as above. (In case o
D(2, n) andD(2,1;α) the first component is not simple. Then we take one of the sim
component.) Leth1 andh2 be the respective Cartan subalgebras. Let∆1 and∆2 be the
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corresponding root system. The following is very standard. Does not matter wheth
form is positive definite or negative definite.

2.4. For any rootα ∈ ∆̊i , let α∨ be the co-root. Letxα be the corresponding root vecto
Choosex−α in the negative root space such that(xα, x−α) = 2

(α,α)
. Thenxα, x−α,α

∨ is an

s/2 triple. Letγ = α + nδ, α ∈ ∆̊i . Let γ ∨ = α∨ + 2n
(α,α)

K be the co-root. Then it is eas
to check thatxα(n), x−α(−n), γ ∨ is ans/2 triple.

2.5. Lemma. LetV be an integrablêG-module. Letλ be a weight ofV . Letγ = α+nδ,α ∈
∆i , such thatλ(γ ∨) > 0. Thenλ− γ is a weight ofV .

Proof. Follows from standards/2 theory. ✷
2.6. Theorem. Notation as above. Assume the semi simple part ofG0 has at least two
components. LetV be integrable module with finite-dimensional weight spaces. Le
central elementK act by non-zero scalar. ThenV is necessarily trivial module.

Without loss of generality we can assume thatK acts by positive integer. We ca
establish the following by the arguments similar to the proof of Theorem 1.10.

2.7. For anyλ ∈ P(V ) there existsN > 0 such that

λ+ α + nδ /∈ P(V ) for all n �N and for allα ∈ ∆̊1∪ {0}.

2.8. There is one problem. The moduleV need not have finite-dimensional weight spa
for Ĝ01 ash1 ⊕CK ⊕Cd could be much smaller than the Cartanh = h1 ⊕h2 ⊕CK ⊕Cd .
To overcome this problem, first observe thatĜ01 commutes withh2. Now decompose th
moduleV with respect toh2 andh2 weight space is âG01-module with finite-dimensiona
weight spaces. Now apply arguments similar to the proof of Theorem 1.10 to conclud

Claim. There exists a weight vectorv of weightλ such thatxα(n)v = 0 for n < 0 and for
all α ∈ ∆2 ∪ (0).

First we complete the proof assuming the claim. From the claim we haveh(n)v = 0 for
n < 0 andh ∈ h2. From the standard Heisenberg highest weight module theory it fol
thath(n)v �= 0 for all n > 0 and for allh in h2. Thus it follows thatλ+mδ is a weight for
all m> 0 contradicting 2.7. Thus the moduleV has to be trivial.

Proof of the Claim. From Lemma 1.7 (2) it follows that there existsλ ∈ P(V ) such that
λ − α /∈ P(V ) for all α ∈ ∆+

2 . Let ∆−ar
2 be the negative real roots of̂G02. Define∆(λ) =

{γ ∈ ∆−ar
2 | λ(γ ∨) � 0}. Then∆(λ) is finite set. Indeed, letγ = α − nδ, α ∈ ∆̊2, n > 0,

be an element of∆−ar
2 . Thenλ(γ ∨) = λ(α∨) − nλ(K)/(α,α) > 0 for n sufficiently large

(recall(α,α) < 0 for all α ∈ ∆̊2). Fix a positive integerr such thatα − sδ ∈ ∆−a
2 − ∆(λ)

for s � r.
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Subclaim 1. λ− sδ /∈ P(V ) for s � r.

Supposeλ− sδ ∈ P(V ) for somes � r we haveλ((α − sδ)∨) > 0 then by Lemma 2.5
λ− sδ − (α − sδ) = λ− α ∈ P(V ) which is a contradiction to the choice ofλ.

Fix a positive integerp such thatλ− sδ /∈ P(V ) for s > p andλ− pδ ∈ P(V ).

Subclaim 2. λ− α − (m+ p)δ /∈ P(V ) for m> 0 andα ∈ ∆̊+
2 .

Suppose the claim is false. Consider(λ− α − (m+p)δ)(α∨) < 0 sinceλ(α∨) < 0 and
α(α∨) = 2. Then by Lemma 2.5 we haveλ− α − (m + p)δ + α = λ− (m+ p)δ ∈ P(V )

contradiction the choice ofp.

Subclaim 3. λ+ α − (m+ p + 1)δ /∈ P(V ) for m> r andα ∈ ∆̊+
2 .

Suppose the claim is false. Consider(λ + α − (m + p + 1)δ)(α − mδ)∨ > 0 as
α −mδ /∈ ∆(λ). Thus by Lemma 2.5 we have

λ+ α − (m+ 1+ p)δ − α +mδ = λ− (1+p)δ ∈ P(V )

contradicts the choice ofp.
Thus we have proved

Ĝ02,−rδVλ−pδ = 0, r > 0, and Ĝ02,α−sδVλ−pδ = 0

for all but finitely many negative roots. SinceV is integrableW = U(Ĝ−
02)Vλ−pδ is finite-

dimensional. Letµ be the lowest weight ofW . This weight satisfies all the requiremen
of the claim. ✷
2.9. Theorem. Let Ĝ be the affine super algebra defined earlier. Assume that the semis
part of the finite even part has only one component. Further assume that the
degenerate form restricted to this simple Lie algebraG0 is positive definite. LetV be
irreducible integrable module with finite-dimensional weight spaces. Assume the c
elementK acts as positive integer. ThenV is an highest weight module.

Proof. From the proof of Theorem 2.6 we have 2.7. Letβ1, . . . , βk be odd roots ofG. Let
v be a weight vector ofV of weightλ.

Claim. The following vectors span is a finite-dimensional spaceW

{
xβi1

(m1) · · ·xβik (mk)v, ij � ik, m � 0
}
,

wherexβi is a root vector for the odd root spaceG±βi . In the above we take negative roo
first and positive roots next. The indices are decreasing order.
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It is sufficient to prove that the vector spaceT spanned by the following vector is finite
dimensional,

{
xβ(m1) · · ·xβ(mk)w, mi � 0

}
,

wherew is any weight vector ofV . This is because there are only finitely many odd ro
in G.

First note that ifkβ is a root for k > 0 then k = 1 or 2. Considerxβ(m)w =
[h(m), xβ]w = h(m)xβ(w) ± xβh(m)w. By 2.7 both vectors are zero for largem. Let m0
be such thatxkβ(m)w = 0 form>m0 andk = 1,2. Then it is easy to see thatT is spanned
by

{
xβ(m1) · · ·xβ(mk); 0 � mi � m0, mi �= mj, i �= j

}
which is clearly finite-dimensional.

Let H be the center of the reductive Lie algebraG0. Consider

S = U
(
Ĝ−

0

)
U(h)U

(
Ĝ+

0

)
U

(⊕
n>0

H ⊗ tn
)
W. (2.10)

Then

V = U

(⊕
n<0

H ⊗ tn
)
U

(
Ĝ−

1

)
S

by PBW basis theorem.
By 2.7 we conclude that

U

(⊕
n>0

H ⊗ tn
)
W = W1

is finite-dimensional. ClearlyS is Ĝ0-module and by Theorem 1.10S is completely
reducible. In fact it is direct sum of highest weight modules. SinceW1 is finite dimensiona
it intersects only finitely many of them. SayV (λ1) · · ·V (λk). ThusS = ⊕

V (λi) a finite
sum. ThusS has a maximal weight. (Here the ordering is the followingµ1 � µ2 means
µ2 − µ1 = ∑

niαi, ni ∈ N, αi ’s are small roots of̂G. Ĝ is a generalized Kac–Mood
Lie superalgebra and it does admit simple roots. See [8].) The maximal weight is i
maximal forV as the rest of the space brings the weights down.

The maximal weight is in fact highest weight. AsV is irreducible, it is irreducible
highest weight module. ✷
2.11. Remark. In the process we also established that an irreducible integrable h
weight module for̂G is completely reducible for̂G0 ⊕H .
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Proof. Let V be irreducible highest weight module for̂G. Let

Ω(V ) = {
v ∈ V | h(k)v = 0 for all h ∈ H, k > 0

}
.

Let M(k) be the irreducible highest weight module forH ⊗ C[t, t−1] ⊕ CK whereK
acts byk. Then by Theorem 1.7.3 of [4] we haveV = Ω(V ) ⊗ M(k). Now Ω(V ) is an
integrable module and hence by Theorem 1.10 decomposes into irreducible modu
Ĝ0. Thus the Remark follows. ✷
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