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Abstract

We prove complete reducibility for an integrable module for an affine Lie algebra where the
canonical central element acts non-trivially. We further prove that integrable modules does not exists
for most of the superaffine Lie algebras where the center acts non-trivially.
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Introduction

Let G be simple finite-dimensional Lie algebra. L@tbe the corresponding affine Lie
algebra and leK be the canonical central element. A modulef G is called integrable
if the Chevalley generators act locally nilpotently &n In [1] the irreducible integrable
modules forG with finite-dimensional weight spaces has been classified. In particular
any irreducible integrable module with finite-dimensional weight spaces whiexrets by
positive integer is isomorphic to an highest weight module. In this work we prove that any
integrable module with finite-dimensional weight spaces wikegeets by non-zero scalars
is completely reducible (Theorem 1.10).

The integrable modules whel¢ acts trivially, need not be completely reducible. For
example, consider thé (without the derivation) modulé ® C[z, ~11/(r — 1)% wherek
acts by zero which is not completely reducible. (See [2] for the graded version.)
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In Section 2 we consider affine Lie superalgebras and prove that most often integrable
modules with finite-dimensional weight spaces do not exist. We use stronger definition of
the integrability than that of [8]. L& be simple finite-dimensional Lie superalgebra.@et
be the corresponding affine Lie superalgebra. Assume that it has non-degenerate symmetric
invariant bilinear form. Assume that the semisimple part of the even p&ridt least two
components. Then integrable modules §owith finite-dimensional weight spaces where
center acts by non-zero scalar does not exist (Theorem 2.6). Certainly integrable modules
with K acting zero exists. For example loop modules. Our techniques work only with the
notion of stronger integrability. We do not know whether such a result hold with the weaker
integrability of [8].

In Theorem 2.9, we prove that an integrable irreducible moduleGfarith finite-
dimensional weight spaces where cenféracts by positive integer is necessarily a
highest weight module, assuming the semisimple part of the finite even part is only one
component. In this case we note that (Remark 2.11) the module is completely reducible
for the even part. That class includes the affine Lie superalgebras associated with basic Lie
superalgebras of types(0, n), B(0, n) andC (n).

1.1. We will fix some notations. All our algebras are over complex numfierset G
be simple finite-dimensional Lie algebra. Lebe a Cartan subalgebra. LQt and A be
root and weight lattice o@ Let At be dommant mtegral weights gf Letay,...,a, be
simple roots and leg be highest root o@ a),...,a, bethe correspondlng S|mple roots.
We choose non-degenerate bilinear forrrfzcﬁrsuch thal(,B B) =

Let g G®C[t,t711® CK @ Cd be the corresponding unt\leted affine Lie algebra.
Leth = i ©® CK @ Cd be the Cartan subalgebra@f Let Q0 and A be the root and weight
lattice of G. Let § be the null root. LetAg be an element of* such thatAo(h) =0,
Ag(K) =1 and Ag(d) = 0. An elementh in i* can be treated as an eIement}ﬁfby
extending as.(K) = 0 andi(d) = 0. Letx be the restriction td. Givenx e h*, A can be
uniquely written as

A=A+ A(d)S + A(K) Ao. (1.2)

1.3. Definition. An elementi in A™ is called minimal if for everyw € At such thafu 54
impliesp = 1. Hereu 54 means. — u =) /1 nje;, n; € N.

1.4. Lemma [5]. Let A be minimal inAT. Thenr(BY)=0or 1.
Proof. See Exercise 13 of Chapter Il of [5].0

15. Letx € AT and letV (1) be the irreducible integrable highest weight moduledor
Let P(1) be the set of weights of (1). Definep <A if A —pn = > _oniai, ni €N (ao
is the addltlonal S|mple root cg) LetP(W) ={i|pne P(M)}. Clearly P(») determines a
unigue coset |M/Q Let ito be the minimal element i+ in the above coset. Latbe a
complex number such thatd) — s is a non-negative integer.

1.6. Lemma. Let g = jig + 58 + A(K) Ag. Thenug € P(1).
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Proof. First note that by minimality ofig we haveﬁogi. Then clearlyug < A.
Claim. uge A™.

Considewr,” for 1 <i <n. Thenuo(e,”) = fto(a;) € Nasjio € At Nowag = K — B
and

polerg) = Fio(K — ) = 1K) — To( ).

Now A(K) is positive integer and hence(K) > 1. We know from Lemma 1.4 that
mo(BY) =0or 1. That means

po(,11) €N.

This prove the claim. Thugg is dominant integral ane A. By Proposition 12.5(a) of [7]
it follows thatuog € P(A). O

We need the following from [3].

1.7. Lemma (Lemma 2.6 of [3])Let V be integrable module fof with finite-dimensional
weight spaces. LeR (V) be the set of weights df. LetA € P(V). Then

(1) There existsj050, no € Q suchthat 4+ no +n ¢ P(V) forall 0#n50,n e A.
(2) There exist$3 50, nj € A such that 4+ n§ +n ¢ P(V) for all 0 n50,ne A.

Proof. (1) follows from the proof of Lemma 2.6 of [3]. The proof of (2) is similar

1.8. Proposition. Let V be integrableG-module with finite-dimensional weight spaces.
Assume the canonical central eleméntacts by positive integers. Lete P(V). Then
there exists; > 0 such thath + n € AT and the irreducible integrable highest weight
moduleV (A + 1) C V.

Proof. By previous lemma there existpg0 such thath + no +n ¢ P(V) for 0 #
75 0. Now by arguments similar to the proof of Theorem 2.4(i) of [1] will produce an
highest weight module with highest weight+ no + n1 for somen; > 0. Note that

(A +no+nd) =2rd). O

In the above proof we need our Lemma 1.7 as the proof of Lemma 2.6(ii) of [1] is
incomplete. We now recall the following variation of a standard result from [7].

1.9. Proposition. Let V be integrable module fof with finite-dimensional weight spaces.
Let K act by positive integer. Suppose for everyn V, there existV > 0 such that
U(G)a+ns =0forall n > N and fora € AU{0}. ThenV is completely reducible.
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We need to recall some standard notations from [7] and prove two lemmas.

The Cartan subalgebracarries a non-degenerate bilinear fotm). Letv:h — h*
be an isomorphism such thath) (k1) = (h | h1). Let (,) be the induced bilinear form on
h*. Recall the Casimir operator from Section 2olin 2* from (2.5) from [7]. Also recall
the notion of primitive weights from (9.3) of [7]. Note that in an integrable module the
primitive weights are dominant integral.

LemmaA. Let V be as above. Supposeun are primitive weights such that— u =g €
Q" — {0} Then2(i + p, v=1(B)) # (B. B).

Proof. Follows from the proof of Theorem 10.7 of [7]. See 10.7.3 and the next equation
in[7]. O

Lemma B. Let V be as above. Let be a weight vector ofl/veight such that(£2¢ —
aly)fv =0 for somek € Z; anda € C. Presumablyw? € U_(G)v, B € Q. Then

(20— (a+21+p, v B) - (B, B)Iv)v' =0.

Proof. Follows from (2.6.1) and (3.4.1) of [7]. Also see (9.10.2) of [7]. Note tWais
restricted in the sense of [7].0

Proof of the Proposition. LetG =n" @®h@®n* be the standard triangular decomposition.
Let VO={v eV |nTv =0}. Clearly VO is h-invariant and hence decomposes unkler
Let vi= U(gA)VO. It is standard fact that in an integrable module, each highest weight
generate an irreducible integrable module. Thidss completely reducible. We will now
prove thatV = V1.

Clearly the Casimir operataRg acts onV and leaves each finite dimensional weight
space invariant. Thu®y is locally finite onV. SupposeV # V1. Then there exists in
V1 — V1 such thatn™v € V1 and (820 — aly)*v = 0 for somek € Z, anda € C. Since,
clearly 2ov € V1, we haven = 0 and hence2év = 0.

From the hypothesis it follows that (n™)v is finite-dimensional. So it contains vector
ugv such thatug € U@),g andntugv =0, 8 € Q* —{0}. Let » = A + B and note that
A, p are primitive roots. Thus by Lemma A

2Au+p.v=(B)# (B, B). (%)

Now by Lemma B it follows that & + p, —v™(8)) = (8, B) aso(ugv) = 0. This is
a contradiction to%). ThusV = V1 andV is completely reducible. O

1.10. Theorem. Let V be integrable module with finite-dimensional Weighlspaceﬁfor
Suppose all eigenvalues &f are non-zero. Thelr is completely reducible ag-module.

Proof. First decompos& with K action. ASK commutes withG, each eigenspace@
module. Thus we can assume tlkatcts by single scalar. It is well known that the central
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elementk acts by integer (see, for example, [3]). Without loss of generality we can assume
that K acts by positive integer. We now decompose the module

whereu1, u2 weight occurs inW, thenuy — u2 € Q. Clearly eachW,, is a?—module.
Thus we can assume that the weightd/) of V lie in single coset ofA.

Claim. Letx € P(V). Then there existg > 0 such that. + « ¢ P (V) for all positive roots
a such thatx > 7.

Proof of theClaim. Suppose there exists infinitely many positive raptich thak + o €
P (V). First by Proposition 1.8 there exists> 0 such thatx +n € AT, A +1n € P(V),
(A +n)(d) > A(d) and the irreducible integrable highest module. + ) C V.

Let P(V) ={x |1 e P(V)}. Clearly P(V) defines a unique coset ini. Let jip be the
minimal weight for this coset. Letg = j1o + A(d)§ + A(K)w < A +n. By Lemma 1.6 we
haveug € P(A +1n) C P(V).

First note that the number positive roatssuch thatr; # n is finite.

Now choose positive root; > n such thatr + o1 € P(V). (This is due to our
supposition.) Now by above arguments there exigts> 0 such thath + a1 + 11 €
PWV), A +ar+nme At and V(L + a1 + 1) € V. Furtherug < A + a1 + 11 and
uwo € P(A+ a1+ n1) € P(V). Note thath + a1 + n1 > A + n (note the strict inequality).
ThusV (A + a1 + n1) # V(A + ). Both modules have common weighg. Thus we have
proved that dinV,, > 2. By repeating: times the above argument we get difyy > n.
But dimV,,, is finite and thus this process has to stop. This proves our claim.

It follows from the claim and that the modulé satisfies the conditions of Proposi-
tion 1.9 and hence it is completely reduciblex

1.11. Remark. Theorem 1.10 imply that an integrable module with finite-dimensional
weight spaces in whicl acts by positive integer belongs to the categOry

2.0. Let G = Go d G1 be simple finite-dimensional Lie superalgelgig (respectively,

G1) being its even (respectively, odd) part. We assume das reductive. We further
assume thatg carries a non-degenerate invariant “symmetric” bilinear form. Such
Lie superalgebras are called basic. We give the list of basis Lie superalgebras from
Proposition 1.1 of [6] (see Table 1).

In this section we study the integrable representations of the untwisted affine Lie
superalgebras of basic Lie superalgebras.

Let G be a basic Lie superalgebra. Then the restriction to the even part need not be
positive definite. In fact we choose the form in such a way that the restriction to the first
component of the even part is positive definite and the restriction to the second component
is negative definite (see Section 6 of [8]). We normalize the form in such a way that
(o, @) = 2 wherex is the highest root of the first component of the even paggpénd
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Table 1

g Go
A(m,n) A, +An+C,
C(n) Cp,+C
B(m,n) By, +Cy
D(m,n) Dy +Cy,
D(2,1:a) Do+ Aq
F(4) B3+ A
G Go+A;

(B, B) = —2 whereg is the highest root of the second component. kdte the Cartan
subalgebra off which is contained in the even part.

2.1. Define affine superalgebg
G=G6®C[t,eCK ®Cd.
The Lie bracket is given by the following. Write(n) = x ® ¢".
[x(n), y(m)] =[x, y](m +n) + n(x, y)8m1n,0K,
[d,x(n)] =nx(n) x,yeqg, m,neZ, Kiscentral
Let
h=ha&CK ®Cd.
2.2. Definition. A moduleV of G is called integrable if
Q) V=@, Vi Va={veV [hv=xh)v, Yheh}.
(2) V isintegrable as §o module.
(3) Foranyv € V, U (G)v is finite-dimensional.
HereU (G) is the universal enveloping algebra®f
2.3. Remark. In [8] integrable modules are studied with weaker condition. In [8]
integrability means the module is integrable only with the affinization of one simple part
of Go. Then they have classified irreducible highest weight module which are integrable in
the above sense. See Theorems 6.1 and 6.2 of [8].
The purpose of this section is to classify irreducible integrable module§ fohere
centerk acts non-trivially.
Let Go1 andGop2 be the first and second simple componenggfas above. (In case of

D(2,n) and D(2, 1; «) the first component is not simple. Then we take one of the simple
component.) Leti; andh, be the respective Cartan subalgebras. Agtand A, be the
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corresponding root system. The following is very standard. Does not matter whether the
form is positive definite or negative definite.

2.4. For any roolx A°i, let oV be the co-root. Let, be the corresponding root vector.
Choosex_, in the negative root space such tiiat, x_y) = 2_ Thenxy, x_q, a isan

(o,00)

sto triple. Lety =« +né, a € Ai. LetyY =a¥ + (0[2’3)1{ be the co-root. Then it is easy
to check thate, (n), x_o(—n), y" is ansfy triple.

25.Lemma. LetV bean integrabl@—module. Led be aweightoV.Lety =a+nd, o €
A;, such that.(yV) > 0. Theni — y is a weight ofV'.

Proof. Follows from standaraé, theory. 0O

2.6. Theorem. Notation as above. Assume the semi simple paggohas at least two
components. LeV be integrable module with finite-dimensional weight spaces. Let the
central elemenk act by non-zero scalar. Thél is necessarily trivial module.

Without loss of generality we can assume thatacts by positive integer. We can
establish the following by the arguments similar to the proof of Theorem 1.10.

2.7. Foranyi € P(V) there existsV > 0 such that
Ata+nd¢ P(V) foralln> N and foralle € A°1U {0}.

2.8. There is one problem. The moduleneed not have finite-dimensional weight spaces
for Go1 ash1 @ CK @ Cd could be much smaller than the Cartag:- h1 ® ho ® CK & Cd.

To overcome this problem, first observe t@@i commutes withz,. Now decompose the
moduleV with respect tdh, andhy weight space is §01-module with finite-dimensional
weight spaces. Now apply arguments similar to the proof of Theorem 1.10 to conclude 2.7.

Claim. There exists a weight vectorof weighti such thatx, (n)v = 0 for n < 0 and for
all o € A2 U (0).

First we complete the proof assuming the claim. From the claim we h@ye = 0 for
n <0 andh € hy. From the standard Heisenberg highest weight module theory it follows
thath(n)v # 0 for alln > 0 and for allz in k2. Thus it follows that. + m4 is a weight for
all m > 0 contradicting 2.7. Thus the modulehas to be trivial.

Proof of the Claim. From Lemma 1.7 (2) it follows that there existss (V) such that
A—ag¢ P(V)foralace A; Let AS“" be the negative real roots Gh,. DefineA(x) =

{y € A7 | A(y") < 0}. ThenA(n) is finite set. Indeed, let =« — s, a € Az, n >0,
be an element ofA;“". Theni(y") = A(a") — nA(K)/(a, ) > 0 for n sufficiently large

(recall (o, ) <O foralla € A°2). Fix a positive integer such thatx —s§ € A7 — A(%)
fors>r.
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Subclaim 1.1 —sé ¢ P(V) fors >r.

Suppose. — 58 € P(V) for somes > r we havel((a — s8)") > 0 then by Lemma 2.5,
A—s58 — (¢ —s8) =L —a e P(V)which is a contradiction to the choice bf

Fix a positive integep such that. — s§ ¢ P(V) fors > p andi — pé € P(V).
Subclaim 2. A —a — (m + p)8 ¢ P(V) form > 0anda e A°;

Suppose the claim is false. Considgr— a — (m + p)§)(a") < 0 sincer(a") < 0 and
a(aY)=2.Thenby Lemma2.5we have—a — (m + p)§ +a =1 — (m + p)§ € P(V)
contradiction the choice gf.

Subclam3. A +a—(m+p+1S§¢ P(V)form >r anda A°;

Suppose the claim is false. Considgr + o — (m + p + 1)§)(« — m8)¥ > 0 as
a —md ¢ A(L). Thus by Lemma 2.5 we have

Adaoa—m+1+p)d—a+mé=r— 1+ p)se P(V)

contradicts the choice of.
Thus we have proved

Go2,—rsVi—ps =0, r>0, and Gopg—ssVa—ps =0

for all but finitely many negative roots. Sindeis integrableW = U(?gz) Vi—ps Is finite-
dimensional. Lejx be the lowest weight of/. This weight satisfies all the requirements
of the claim. O

2.9. Theorem. LetG be the affine super algebra defined earlier. Assume that the semisimple
part of the finite even part has only one component. Further assume that the non-
degenerate form restricted to this simple Lie algeliais positive definite. LeV be
irreducible integrable module with finite-dimensional weight spaces. Assume the central
elementk acts as positive integer. Thénis an highest weight module.

Proof. From the proof of Theorem 2.6 we have 2.7. Bet. . ., Bx be odd roots of;. Let
v be a weight vector oV of weightA.

Claim. The following vectors span is a finite-dimensional spéte
{xp,, (m1) - xpg, (mp)v, i <ix, m >0},

wherexg, is a root vector for the odd root spack g, . In the above we take negative roots
first and positive roots next. The indices are decreasing order.
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It is sufficient to prove that the vector spaEespanned by the following vector is finite-
dimensional,

{xp(m1) - xg(mp)w, m; >0},

wherew is any weight vector of/. This is because there are only finitely many odd roots
ing.

First note that ifkg is a root fork > 0 thenk =1 or 2. Considerxg(m)w =
[h(m), xglw = h(m)xg(w) £ xgh(m)w. By 2.7 both vectors are zero for large Letmg
be such thatg (m)w = 0 form > mg andk = 1, 2. Then it is easy to see thtis spanned

by
{xp(m1) - -xg(mi); O<mi <mo, mj #mj, i # j}

which is clearly finite-dimensional.
Let H be the center of the reductive Lie algelgia Consider

S:U(?g)U(h)U(?E{)U(@H@t")W. (2.10)

n>0

Then

V=U<@H®t”>u(§l)s

n<0

by PBW basis theorem.
By 2.7 we conclude that

U(@H@t”)W:Wl

n>0

is finite-dimensional. Clearl\s is Go-module and by Theorem 1.18 is completely
reducible. In fact it is direct sum of highest weight modules. Siwgés finite dimensional
it intersects only finitely many of them. S&(11) - -- V(A). ThusS =@ V (1;) a finite
sum. ThusS has a maximal weight. (Here the ordering is the followjing< 12 means
w2 — p1 =y nmia;, n; €N, o;'s are small roots ofj. G is a generalized Kac—Moody
Lie superalgebra and it does admit simple roots. See [8].) The maximal weight is in fact
maximal forV as the rest of the space brings the weights down.

The maximal weight is in fact highest weight. A& is irreducible, it is irreducible
highest weight module. O

2.11. Remark. In the process we also established that an irreducible integrable highest
weight module foiG is completely reducible foGo & H.
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Proof. Let V be irreducible highest weight module fGr Let
2)={veV|hkyv=0forallheH, k>0}.

Let M (k) be the irreducible highest weight module fr® C[r, 1 1] & CK wherek
acts byk. Then by Theorem 1.7.3 of [4] we hawe= 2 (V) ® M (k). Now £2(V) is an
integrable module and hence by Theorem 1.10 decomposes into irreducible modules for
Go. Thus the Remark follows. O
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