Computation of the Maximal Degree of the Inverse of a Cubic Automorphism of the Affine Plane with Jacobian 1 via Gröbner Bases

M. FOURNIÉ†, J.-PH. FURTER‡ AND D. PINCHON†

† UMR CNRS 5640, University of Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
‡ UMR CNRS 128, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69007 Lyon, France

In this paper we propose to compute the maximal degree of the inverse of a cubic automorphism of the affine plane with Jacobian 1 via Gröbner Bases. This degree is equal to 9 and we give coefficients of the inverse.

© 1998 Academic Press

1. Introduction

If \(k \) is any commutative ring, \(k[X,Y] \) will denote the algebra of polynomials with coefficients in \(k \) in the indeterminates \(X, Y \) and \(k^2 \) the affine plane over \(k \). A \(k \)-endomorphism \(f \) of \(k^2 \) will be identified with its coordinate functions \(f = (f_1, f_2) \), where \(f_i \) (\(i = 1, 2 \)) belongs to \(k[X,Y] \). We define the Jacobian of \(f \) by \(\text{Jac}(f) = \frac{\partial f_1}{\partial X} \frac{\partial f_2}{\partial Y} - \frac{\partial f_1}{\partial Y} \frac{\partial f_2}{\partial X} \) and the degree of \(f \) by \(\deg(f) = \max_{1 \leq i \leq 2} \deg(f_i) \).

Let \(d \) be a non-negative integer and \(f \) an endomorphism of \(k^2 \) whose degree is less than or equal to \(d \). The Jacobian Conjecture in degree \(d \) (\(CJ(d) \)) states that \(f \) is invertible if and only if its Jacobian \(\text{Jac}(f) \) is a non-zero constant.

Let \(C_d \) be the smallest integer \(C \) such that if \(k \) is a \(Q \)-algebra and \(f \) a \(k \)-endomorphism of \(k^2 \) satisfying \(\text{Jac}(f) = 1 \) and \(\deg(f) \leq d \), then we have \(\deg(f^{-1}) \leq C \).

Bass has proven the following result in Bass (1983):

Theorem 1.1. The three following assertions are equivalent:

(i) \(CJ(d) \) is true,

(ii) if \(k \) is any \(Q \)-algebra and \(f \) any \(k \)-endomorphism of \(k^2 \) whose degree is less than or equal to \(d \), then \(f \) is invertible if and only if \(\text{Jac}(f) \) is an invertible element of \(k[X,Y] \),

(iii) \(C_d < \infty \).

If \(k \) is a reduced \(Q \)-algebra and \(f \) a \(k \)-automorphism of \(k^2 \) satisfying \(\text{Jac}(f) = 1 \) and \(\deg(f) \leq d \), it follows from a formula of Gabber (see Bass et al. (1982) and Cheng et al. (1994)) that \(\deg(f^{-1}) = \deg(f) \). What happens if \(k \) is not reduced? Is it true that \(C_d = d \) (see Question 2.19 of the paper by van den Essen (1991))?
A negative answer to this question is given in Furter (to appear) where it is proven that $C_d \geq d + 1$ as soon as $d \geq 3$. Also, Moh has proven that $CJ(d)$ is true when $d \leq 100$ (see Moh (1983)). It then follows from Theorem 1.1 that C_d is finite for $d \leq 100$.

We could easily check that $C_1 = 1$. Theorem 2 of Furter (to appear) shows us that $C_2 = 2$. The purpose of this paper is to establish the following result:

Theorem 1.2. $C_3 = 9$.

As far as we know, there is no explicit upper bound for C_d when $d \geq 4$ and there is not even a conjectured upper bound. An investigation of C_4 seems rather important to us in order to acquire some insight into the behaviour of C_d in general.

2. Computation of C_3

Let k be the algebra of polynomials with coefficients in \mathbb{Q} in the indeterminates $a_1, a_2, a_3, b_1, b_2, b_3, b_4, c_1, c_2, c_3, d_1, d_2, d_3, d_4$ and let $f = (f_1, f_2)$ be the k-endomorphism of \mathbb{A}^2_k whose coordinate functions are

$$
\begin{cases}
 f_1 = X + a_3 X^2 + a_2 XY + a_1 Y^2 + b_4 X^3 + b_3 X^2 Y + b_2 XY^2 + b_1 Y^3, \\
 f_2 = Y + c_3 X^2 + c_2 XY + c_1 Y^2 + d_4 X^3 + d_3 X^2 Y + d_2 XY^2 + d_1 Y^3.
\end{cases}
$$

Let $g = (g_1, g_2)$ be the formal inverse of f. The formal series g_1 and g_2 have expressions of the form

$$
\begin{cases}
 g_1 = X + \sum_{(i,j) \in \mathbb{N}^2, i+j \geq 2} x_{i,j} X^i Y^j, \\
 g_2 = Y + \sum_{(i,j) \in \mathbb{N}^2, i+j \geq 2} y_{i,j} X^i Y^j,
\end{cases}
$$

where $x_{i,j}, y_{i,j}$ belong to k.

The Jacobian of f is a polynomial with coefficients in k in the indeterminates X, Y. Its constant term is equal to 1 and we could check that its other non-trivial coefficients are equal to

$$
\begin{align*}
 &-3b_3 d_4 + 3b_4 d_3, \\
 &-6b_2 d_4 + 6b_3 d_2, \\
 &-9b_1 d_4 - 3b_2 d_3 + 3b_3 d_2 + 9b_4 d_1, \\
 &-6b_1 d_3 + 6b_2 d_1, \\
 &-3b_1 d_2 + 3b_2 d_1, \\
 &-3a_2 d_4 + 2a_3 d_3 - 2b_3 c_3 + 3b_4 c_2, \\
 &-6a_1 d_4 - a_2 d_3 + 4a_3 d_2 - 4b_2 c_3 + b_3 c_2 + 6b_4 c_1, \\
 &-4a_1 d_3 + a_2 d_2 + 6a_3 d_1 - 6b_1 c_3 - b_2 c_2 + 4b_3 c_1, \\
 &-2a_1 d_2 + 3a_2 d_1 - 3b_1 c_2 + 2b_2 c_1, \\
 &d_3 - 2a_2 c_3 + 2a_3 c_2 + 3b_4, \\
 &2d_2 - 4a_1 c_3 + 4a_3 c_1 + 2b_3, \\
 &3d_1 - 2a_1 c_2 + 2a_2 c_1 + 2b_2, \\
 &c_2 + 2a_3, \\
 &2c_1 + a_2.
\end{align*}
$$

Let I be the ideal of k generated by the 14 polynomials given above.

Let us set $k = k/I$. By reducing all the coefficients of f modulo I, we obtain a
On the Jacobian Conjecture

k-endomorphism of \mathbb{A}^2_k which we will denote by \bar{f}. Clearly, \bar{f} is the generic cubic endomorphism with Jacobian 1 of the affine plane with the following meaning. Let A be any \mathbb{Q}-algebra and α be any cubic A-endomorphism of A^2 with Jacobian 1. Up to an affine change of coordinates, we can always suppose that $\alpha(0) = 0$ and $\alpha'(0) = \text{Id}$. Therefore, there exists a canonical algebra-homomorphism $\phi : k \to A$ such that the A-endomorphism of A^2 obtained by replacing the coefficients of \bar{f} by their image under ϕ will be equal to α. As CJ(3) is true, the endomorphism \bar{f} by their image under ϕ will be equal to α. As CJ(3) is true, the endomorphism \bar{f} is an automorphism and we clearly have $C_3 = \deg(\bar{f})^{-1}$. Hence, the integer C_3 is the smallest integer C such that $x_{i,j}, y_{i,j}$ belongs to I as soon as $i + j > C$.

Using a computer, we found that the smallest integer N such that $x_{i,j}, y_{i,j}$ belongs to I as soon as $i + j = N$, is equal to 10. This encouraged us to believe that $C_3 = 9$ (and this already proved that $C_3 \geq 9$). Let h denote the k-endomorphism obtained from \bar{f} by truncating its terms of degree bigger than or equal to 10. Then, to show that $C_3 = 9$, we only had to check that all coefficients of the endomorphism $\bar{f} \circ h - \text{Id}$ of \mathbb{A}^2_k (whose degree is $9^3 = 729$) belong to I. Indeed, denoting by $\bar{h} = (\bar{h}_1, \bar{h}_2)$ the k-endomorphism of \mathbb{A}^2_k obtained by reducing the coefficients of h modulo I, the latter fact is equivalent to saying that the endomorphism $\bar{f} \circ \bar{h} - \text{Id}$ of \mathbb{A}^2_k is identically zero, which is well known to ensure that $\bar{h} = (\bar{f})^{-1}$.

All computations were done using the computer algebra system AXIOM (see Jenks and Sutor (1983)).

3. Inversion Formula

Let us endow $k = \mathbb{Q}[a_1, \ldots, d_4]$ with the total degree-inverse lexicographical order (see Davenport et al. (1993)) for the following order of the indeterminates:

$$a_1 < a_2 < a_3 < c_1 < c_2 < c_3 < b_1 < b_2 < b_3 < b_4 < d_1 < d_2 < d_3 < d_4.$$

Considering the automorphism $(Y, X) \circ \bar{f} \circ (Y, X)$, one could easily show that the coefficient of $X^i Y^j$ in \bar{h}_2 is obtained from the coefficient of $X^i Y^j$ in \bar{h}_1 by replacing $a_1, a_2, a_3, c_1, c_2, c_3, b_1, b_2, b_3, b_4$ by $c_3, c_2, c_1, a_3, a_2, a_1, d_4, d_3, d_2, d_1, b_4, b_3, b_2, b_4$.

<table>
<thead>
<tr>
<th>Coefficients of degree 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>coefficient of X^2</td>
<td>$\frac{1}{2}c_2$</td>
</tr>
<tr>
<td>coefficient of XY</td>
<td>$2c_1$</td>
</tr>
<tr>
<td>coefficient of Y^2</td>
<td>$-a_1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficients of degree 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>coefficient of X^3</td>
<td>$\frac{1}{2}b_4 + \frac{1}{2}d_3$</td>
</tr>
<tr>
<td>coefficient of $X^2 Y$</td>
<td>d_2</td>
</tr>
<tr>
<td>coefficient of XY^2</td>
<td>$-\frac{1}{2}b_2 + \frac{3}{2}d_1$</td>
</tr>
<tr>
<td>coefficient of Y^3</td>
<td>$-b_1$</td>
</tr>
</tbody>
</table>
Coefficients of degree 4

<table>
<thead>
<tr>
<th>Term</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^4</td>
<td>$\frac{1}{2}c_2b_4 - \frac{1}{2}c_3d_2 + \frac{3}{8}c_2d_3 - \frac{1}{8}c_1d_4$</td>
</tr>
<tr>
<td>X^3Y</td>
<td>$c_1b_4 - 2c_3d_1 + c_1d_3$</td>
</tr>
<tr>
<td>X^2Y^2</td>
<td>$-\frac{7}{8}(a_1b_4 + c_2d_1 + a_1d_3)$</td>
</tr>
<tr>
<td>XY3</td>
<td>$\frac{1}{2}c_1b_2 - 3c_3d_1 - \frac{7}{8}a_1d_2$</td>
</tr>
<tr>
<td>Y^4</td>
<td>$c_1b_1 + \frac{3}{8}a_1b_2 - \frac{1}{8}a_1d_1$</td>
</tr>
</tbody>
</table>

Coefficients of degree 5

<table>
<thead>
<tr>
<th>Term</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^5</td>
<td>$\frac{3}{4}b_1^2 + \frac{1}{4}d_1^2 - \frac{1}{4}b_2d_2 - \frac{1}{4}d_2d_4$</td>
</tr>
<tr>
<td>X^4Y</td>
<td>$\frac{1}{2}b_2b_4 + \frac{1}{2}b_3d_3 + \frac{3}{2}d_2d_3 + 2b_2d_4 - \frac{1}{8}d_1d_4$</td>
</tr>
<tr>
<td>X^3Y^2</td>
<td>$\frac{1}{2}b_2b_4 - \frac{3}{8}b_3d_2 + \frac{1}{2}d_2d_3 + 2b_2d_4 + \frac{3}{8}d_1d_3 + 6b_1d_4$</td>
</tr>
<tr>
<td>X^2Y^3</td>
<td>$-\frac{1}{2}b_1b_4 + 2d_2d_1 + \frac{3}{2}b_1d_3$</td>
</tr>
<tr>
<td>XY4</td>
<td>$-\frac{1}{2}b_1b_4 + \frac{1}{2}d_1^2 - \frac{1}{2}b_1d_2$</td>
</tr>
<tr>
<td>Y^5</td>
<td>$-\frac{1}{2}b_1b_2 - \frac{3}{2}b_1d_1$</td>
</tr>
</tbody>
</table>

Coefficients of degree 6

<table>
<thead>
<tr>
<th>Term</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^6</td>
<td>$\frac{1}{4}c_2b_1^2 - \frac{1}{4}c_3d_2d_4 + \frac{1}{2}c_2d_3^2 + \frac{1}{2}c_1b_4d_4 + \frac{7}{8}c_2d_3d_4 - \frac{5}{8}c_2d_2d_4$</td>
</tr>
<tr>
<td>X^5Y</td>
<td>$\frac{3}{8}c_1b_4^2 - 5c_3d_1d_3 + \frac{1}{8}c_2d_2d_3 - 2c_1d_2^2 + 12c_1b_3d_4 + 33a_1b_4d_4$</td>
</tr>
<tr>
<td>X^4Y^2</td>
<td>$-\frac{19}{8}a_1b_3^2 - \frac{5}{2}c_3d_3d_3 - \frac{5}{8}c_2d_3d_3 - 2c_1d_3^2 - 16c_1b_3d_4 + 33a_1b_4d_4$</td>
</tr>
<tr>
<td>X^3Y^3</td>
<td>$-\frac{16}{27}c_1b_3d_4 + \frac{26}{27}c_1b_4d_4 + \frac{26}{27}c_1d_1d_4 - \frac{15}{2}c_1d_2d_4 + 33a_1b_4d_4$</td>
</tr>
<tr>
<td>X^2Y^4</td>
<td>$-\frac{9}{2}a_1b_3b_4 - \frac{5}{2}c_1b_2d_2 - \frac{5}{2}a_1b_3d_3 + \frac{13}{2}c_1d_1d_3$</td>
</tr>
<tr>
<td>XY^5</td>
<td>$-\frac{16}{27}c_1b_3d_4 - \frac{26}{27}c_1b_4d_4 - \frac{26}{27}c_1d_1d_4 + \frac{15}{2}c_1d_2d_4 + 33a_1b_4d_4$</td>
</tr>
<tr>
<td>Y^6</td>
<td>$\frac{1}{4}c_1b_1b_2 + \frac{1}{4}a_1b_1d_3 + c_1b_1d_1 - \frac{1}{4}a_1d_1^2 + \frac{3}{8}a_1b_1d_2$</td>
</tr>
</tbody>
</table>

Coefficients of degree 7

<table>
<thead>
<tr>
<th>Term</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^7</td>
<td>$\frac{5}{12}d_2^3 + \frac{3}{2}b_3b_4d_4 - \frac{5}{12}b_2d_3d_4 - \frac{1}{2}d_2d_3d_4 + 2b_2d_2^2 + \frac{7}{8}d_1d_4^2$</td>
</tr>
<tr>
<td>X^6Y</td>
<td>$\frac{7}{24}d_2^2d_3^2 + \frac{11}{3}b_2d_4d_4 - 4d_2d_4^2 - \frac{1}{2}b_2d_3d_4 + 12d_1d_3d_4 + 18b_1d_4^2$</td>
</tr>
<tr>
<td>X^5Y^2</td>
<td>$\frac{15}{12}d_1d_3^2 + \frac{11}{24}b_2b_3d_4 - \frac{7}{8}b_4d_4^3 + \frac{53}{6}b_2d_2d_4$</td>
</tr>
<tr>
<td>X^4Y^3</td>
<td>$\frac{7}{24}d_1d_3d_4 - \frac{11}{3}b_1d_3d_4$</td>
</tr>
<tr>
<td>X^3Y^4</td>
<td>$\frac{5}{36}d_1d_3d_4 - \frac{35}{16}b_1b_4^2 + \frac{35}{8}b_1b_3d_4 + \frac{395}{36}b_1b_2d_4 + \frac{1445}{12}b_1d_2d_4$</td>
</tr>
</tbody>
</table>

(cont.)
Coefﬁcients of degree 7 (Continued)

\begin{align*}
\text{coefficient of } X^3 Y^4 & \quad \frac{4}{9} b_1 b_2 d_3 + \frac{105}{8} c_2 d_1^2 d_3 + 5 b_1 d_2 d_3 + \frac{25}{8} b_2 b_3 d_1 + \frac{135}{8} b_1 d_1 d_3 \\
\text{coefficient of } X^2 Y^5 & \quad -\frac{1}{2} b_2^2 d_2 + \frac{53}{8} d_2^2 d_1 - \frac{4}{9} b_1 d_2^2 + 2 b_1 b_2 d_3 + \frac{23}{2} b_1 d_1 d_3 + \frac{22}{7} b_2^2 d_3 \\
\text{coefficient of } X Y^6 & \quad -\frac{5}{3} b_1 b_2 b_3 + \frac{3}{8} b_1^2 b_4 + \frac{21}{8} d_1^3 - \frac{3}{8} b_2 b_2 d_2 - \frac{3}{2} b_1^2 d_3 \\
\text{coefficient of } Y^7 & \quad -\frac{1}{2} b_1 b_2^2 - \frac{9}{8} b_1 d_1^2 - \frac{2}{7} b_2^2 d_2 \\
\end{align*}

\begin{align*}
\text{Coefficients of degree 8}
\end{align*}

\begin{align*}
\text{coefficient of } X^8 & \quad -\frac{1}{144} c_2 d_3^3 - \frac{23}{192} c_2 d_2 d_3 d_4 + \frac{29}{48} c_1 d_2^2 d_4 - \frac{11}{16} c_1 b_3 d_2^2 - \frac{33}{16} a_1 b_1 d_4 \\
& \quad + \frac{207}{72} c_2 d_1 d_1^2 - \frac{31}{8} c_2 d_3 d_1^2 - \frac{11}{8} a_1 d_2 d_4 \\
\text{coefficient of } X^7 Y & \quad -\frac{5}{9} c_1 d_1^3 - \frac{11}{6} c_1 b_3 d_3 d_4 - \frac{23}{12} c_1 d_2 d_3 d_4 - 3 a_1 d_3^2 d_4 + \frac{11}{12} c_1 b_1 d_4 \\
& \quad + \frac{91}{3} c_1 d_1^2 d_2^2 + 9 a_1 d_2 d_4 \\
\text{coefficient of } X^6 Y^2 & \quad \frac{7}{18} a_1 c_1 d_3^3 + \frac{21}{4} c_1 b_3 d_3 d_4 + \frac{201}{72} a_1 b_3 d_3 d_4 + \frac{33}{24} a_1 d_2 d_3 d_4 \\
& \quad - \frac{139}{9} c_1 b_1 d_4^2 - \frac{203}{9} a_1 b_2 d_1^2 - \frac{189}{9} a_1 d_1 d_2^2 \\
\text{coefficient of } X^5 Y^3 & \quad \frac{7}{18} a_1 d_1 d_2 d_4^2 + 21 c_1 b_3 d_2 d_4 + \frac{21}{3} a_1 d_2^2 d_4 - 63 c_1 b_1 d_4 \\
& \quad + \frac{203}{12} a_1 b_2 d_3 d_4 - 35 a_1 d_1 d_3 d_4 - \frac{609}{12} a_1 b_1 d_4 \\
\text{coefficient of } X^4 Y^4 & \quad \frac{35}{18} a_1 d_1 d_2 d_3^2 - \frac{145}{4} c_1 b_1 d_4 d_4 - \frac{2975}{144} a_1 b_3 d_4 d_4 - \frac{805}{16} a_1 b_1 d_4 \\
& \quad - \frac{445}{4} c_1 d_1^2 d_4 - \frac{315}{2} c_1 b_1 d_3 d_4 - \frac{2905}{14} a_1 b_1 d_3 d_4 \\
& \quad - \frac{245}{3} a_1 b_1 d_2 d_4 - \frac{477}{24} a_1 b_1 d_3 d_4 \\
\text{coefficient of } X^3 Y^5 & \quad \frac{21}{2} c_1 b_1 d_3 d_3 + \frac{217}{36} a_1 d_1 d_2 d_3 + \frac{581}{12} a_1 b_1 d_3^2 - \frac{7}{8} a_1 b_2^2 d_4 + \frac{7}{4} a_1 b_1 b_3 d_4 \\
& \quad - \frac{189}{2} c_1 b_1 d_1 d_4 - \frac{217}{8} a_1 b_2 d_4 - \frac{581}{6} a_1 b_1 d_4 \\
\text{coefficient of } X^2 Y^6 & \quad -\frac{7}{9} c_1 b_1 d_2 d_3 - \frac{7}{3} a_1 b_1 b_2 d_2 - \frac{7}{4} a_1 b_1 d_2^2 + 9 c_1 b_1^2 d_3 \\
& \quad - \frac{33}{12} a_1 b_1 b_3 d_3 + \frac{11}{4} a_1 b_1 d_3 d_4 + \frac{81}{4} a_1 b_1 d_4^2 \\
\text{coefficient of } X Y^7 & \quad -3 c_3 b_1 b_2 d_2 - \frac{7}{9} a_1 b_2 d_2 - \frac{7}{4} a_1 b_1 d_2^2 + \frac{7}{2} a_1 b_1 b_2 d_3 + 9 c_1 b_1^2 d_3 \\
& \quad - \frac{33}{12} a_1 b_1 b_3 d_3 + \frac{11}{4} a_1 b_1 d_3 d_4 + \frac{81}{4} a_1 b_1 d_4^2 \\
\text{coefficient of } Y^8 & \quad \frac{9}{8} c_1 b_1 b_3 d_3 + \frac{5}{32} a_1 b_1 b_2 b_3 + \frac{51}{32} a_1 b_1 d_1^2 + \frac{27}{8} c_1 b_1 d_3^2 - \frac{7}{4} a_1 d_4^2 \\
& \quad + \frac{9}{8} c_1 b_1^2 d_2 + \frac{7}{16} a_1 b_1 b_2 d_2 + \frac{7}{8} a_1 b_1 d_1 d_2 + \frac{11}{16} a_1 b_1 d_3 d_3 \\
\end{align*}

\begin{align*}
\text{Coefficients of degree 9}
\end{align*}

\begin{align*}
\text{coefficient of } X^9 & \quad -\frac{131}{144} d_2^3 d_4^2 - \frac{181}{288} b_2 d_3 d_2 d_4^2 + \frac{341}{144} d_1 d_3 d_4^2 + \frac{131}{32} b_1 d_4^3 \\
\text{coefficient of } X^8 Y & \quad \frac{131}{32} b_3 d_3 d_2^3 - \frac{1177}{288} b_1 b_4 d_4^3 + \frac{1151}{12} b_2 d_2 d_4^3 - \frac{303}{16} b_1 d_3 d_4^3 \\
\text{coefficient of } X^7 Y^2 & \quad - \frac{131}{32} b_3 d_3 d_2^3 - \frac{1177}{288} b_1 b_4 d_4^3 + \frac{1151}{12} b_2 d_2 d_4^3 - \frac{303}{16} b_1 d_3 d_4^3 \\
\text{coefficient of } X^6 Y^3 & \quad \frac{917}{12} b_3 d_3 d_4^3 d_3 + \frac{917}{24} b_1 b_2 d_3 d_4^3 - \frac{917}{24} b_1 b_2 d_3^2 d_4 - \frac{2771}{24} b_1 d_3 d_4^3 \\
\text{coefficient of } X^5 Y^4 & \quad \frac{917}{8} b_4 d_2 d_4^4 + \frac{917}{16} b_1 b_2 d_3 d_4^3 - \frac{2771}{8} b_1 d_4 d_3 d_4^2 - \frac{885}{16} b_1^2 d_4^2 \\
& \quad (cont).
Coefficients of degree 9 (Continued)

<table>
<thead>
<tr>
<th>Coefficient of X^4Y^5</th>
<th>$\frac{8253}{32}b_4^2d_4 + \frac{8253}{32}d_1^3d_4 + \frac{8253}{32}b_1d_1d_2d_4 + \frac{8253}{32}b_1^2d_3d_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient of X^3Y^6</td>
<td>$\frac{917}{32}b_4^2d_3 + \frac{917}{32}b_1b_2^2d_4 - \frac{917}{32}b_1^2b_3d_4 - \frac{917}{32}b_1^2d_2d_4$</td>
</tr>
<tr>
<td>Coefficient of X^2Y^7</td>
<td>$-\frac{131}{16}b_4^2d_3 - \frac{131}{8}b_1^2d_2d_3 + \frac{393}{16}b_1^2d_2d_4 + \frac{1179}{8}b_1^2d_3d_4$</td>
</tr>
<tr>
<td>Coefficient of XY^8</td>
<td>$-\frac{131}{10}b_4^2d_2 - \frac{131}{32}b_1^2b_2d_3 + \frac{293}{10}b_1^2d_3d_4 + \frac{1179}{8}b_1^2d_4$</td>
</tr>
<tr>
<td>Coefficient of Y^9</td>
<td>$-\frac{131}{64} (b_4b_3 + b_1d_1^2 + b_2^2d_1d_2 + b_1^2d_3)$</td>
</tr>
</tbody>
</table>

b_1, respectively. Now we give the coefficients of h_1, or, to be more precise, the coefficients of h_1 reduced modulo the Gröbner basis of I (see Davenport et al. (1993)).

References

*Originally received 14 October 1997
Accepted 6 February 1998*