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ABSTRACT 

In regression analysis large condition numbers indicate the presence of multicol- 
linearity. Principal component regression and ridge regression are used to correct for 
the ill effects of such collinetities. In this paper some distributional properties of the 
condition number are considered. 

1. INTRODUCTION 

Consider a random (p+l) vector z’=(y,r,,...,x,)’ having a multi- 
variate normal distribution with mean vector 

If= (P&J = (PcLy.P1’...>PP) 
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and covariance matrix 

The regression function is the conditional expectation of y given fixed values 
of (Xi,..., x,): 

E(ylx) = Py + q,Wx - PJ = PO + P(+ 

where /3(a) = Z;JZ,,. The conditional variance is 

(1.1) 

v(y\x) = a2 = fJyy - z,,2,-,‘z,,. 0.2) 

For a random sample of size n, 

... Xl,\ 

. *. xnp 

=(y,x), (1.3) 

the maximum likelihood estimates of p’ = (& fl12,) and u 2 are given by 

(1.4) 

e2= &zqy - A,, A,-,‘A.y ) 7 (1.5) 

where 

A=x(Z,-Z)(Z,-Z)‘= 

A,,=x(X,-X)(X,-x)‘, (1.6) 

If the variables (xi, . . . , xp) are considered to be fixed, it is often conveni- 
ent to write the above model as 

Y=Xp+e, (1.7) 

where E(e) = 0, E(ee') = a2Z, and e is distributed N(0, a2Z). Here X is an 
n X ( p + 1) matrix with first column consisting of the unit vector 1’ = (1,. . . , 1). 
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The model (1.7) is the standard linear model when the variables (xi,. . . , xp) 
are either considered to be fixed or known independent variables. The 
estimates of p and a2 are usually given by 

)8=(xrx)-‘x~Y, g = n_~_lv-x&‘(Y-xa). (1.8) 

In what follows a brief review of some of the distributional results will be 
given. The purpose is mainly to highlight the differences between the fixed 
model given by (1.7) and the ru&om model given by (Il), where 2 - 
N(p, Z). For detailed discussions of the differences between these two models 
see [29] or [27]. 

For the fixed case, 

~-M(~,u2(X’X)-1), 
(n - p - l)s2 

u2 -x2,&1 (1.9) 

are independently distributed. 
For the random*case, if we condition on the variables (Xi,. . . , X,), then 

the distribution of p and (n - p - l)s2/02 will, of course, again be given by 
(1.9). Although the unconditional distribution of (n - p - l)s2/af remains 
unchanged for the random case, the unconditional distribution of p as given 
by (1.9) or (1.4) is entirely different and very complicated. The density is 
given by Kabe [17] 
fiC2’ = A,-,‘A,, 

and is not repeated here. The marginal density of 
is in fact a multivariate t-density. 

For most practical purposes the model (1.7) is sufficient for both the fixed 
or conditional cases. The difference arises in the power functions. For 
example, suppose we test at level (Y the hypothesis H,: fiC2, = 0 against 
H, : pc2, # 0. Then the F-statistic for both cases would be 

F = i&f%*c2, n - P - 1 
Y'Y-B'X'Y . p ’ 

(1.10) 

which has an Fdistribution under H with p and n - p - 1 degrees of 
freedom. 

For the fixed case under H,, F has a noncentral Fdistribution with 
noncentrality parameter 
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where 
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(X’JoLC= ;I clz . 
i 1 21 Gz 

The density of 

P 
U= F 

n-p-l 

is then given by 

c&-1(1+ U) -+p-l+P)e-XIF1 (+p-l+p);+p~&.-), (1.11) 

For the random case under H, the density of F given by (1.10) is no 
longer that of a noncentral F statistic. The density of u = [p/(n - p - l)] F 
is now given by 

LP_yl+ u)-k(n-P-l+Pyl _ p”)“” 

x 8, :(n - I), :(n - 1); ;p; pe& (1.12) 

where P’ = P&LP~zg’~y, is the population multiple correlation coefficient 
between y and (xi,. . . , xp). For both cases 

q;b-P-l+P)) 

c = r(;p)r(+ - p - 1)) * 

Whether the x-variables are fixed or random, it often happens that there 
are linear dependencies between the x-variables, causing multicollinearities to 
exist in the matrix X. In the following we assume that X is centered and 
standardized. If X is centered and random, then X’X = A [compare with 
(1.3)] has a Wishart distribution. If X’X is standardized, then X’X = R is the 
correlation matrix between the x-variables, whereas X ‘Y is the correlation 
matrix between y and (xi,..., x,), assuming that Y is also standardized. 

The effects of multicollinearities have been discussed by several authors in 
the literature, notably Hoer1 and Kennard [12], Marquardt [21], and Webster, 
Guns& and Mason [32, 91. 
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The effects could best be seen by examining the latent roots and vectors 
of X’X. 

Let hi>, .a. 2 A, > 0 be the latent roots of X’X (correlation matrix), 
and Vi,. . . , VP the corresponding vectors. If there are near-multicollinearities, 
some of the roots will be small. For convenience assume only one near-multi- 
collinearity, i.e., assume that A, is close to zero. 

Several authors have suggested a correction to the least squares estimates 
if some or one of these roots are “too small.” In the following we give a brief 
outline of some of the more important procedures. 

The ridge procedure proposed by Hoer1 and Kennard [12] is to add a 
small constant k to the correlation matrix X’X. Then 

&=(X’X+kZ)-‘X’Y, O<k<l. 

The method of principal components proposed by Marquardt [21] com- 
putes a “generalized inverse” for X’X by considering only the so-called large 
characteristic roots and associated characteristic vectors of X’X. 

A method called latent root regression (LRRA) was also proposed by 
Webster, Gunst, and Mason [32] and independently by Hawkins [ll]. They 
argue that the dependent variable y may be involved in the multicollinearity. 
For example, if constants aa,. . . , up exist such that a,y + alxl + . . . + apxp 
= 0 and if a, # 0, then there is a perfect predictor for y. On the other hand, 
if a a = 0, then the multicollinearity exists only among the x ‘s and should be 
eliminated. Their procedure is first to calculate the characteristic roots 
(A,, A,, . . * , Xp) and vectors (V,,V,,..., VP) of the correlation matrix 

( Y'Y Y'X =R 

X'Y X’X 1 YX’ 
(1.13) 

Then if X, is “too small” and ]V,,( is “too small” (where IV,,] is the first 
element of the vector VP), then the last root and vector are eliminated to get 
the LRRA estimate of p. 

Several authors (e.g. Forsythe and Moler [7], Marshall and Olkin [22], 
Forsythe, Malcolm, and Moler [6], and Vinod [31] proposed the computation 
of the “condition number” to measure the instability of a matrix when 
solving for a system of linear equations. Since X’X is symmetric, the 
condition number of X’X is hi/X,, where X, > ha. - * > A, are the char- 
acteristic roots of X’X. The condition number is a better measure of the 
nearness to singularity than the determinant of a matrix A. For example, if A 
is a 100 X 100 matrix with 0.1 on the diagonal, then ] A] = lo- loo, which is 
usually regarded as a small number. But the condition number of A is 
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A i /X p = 0.1/O. 1= 1. For systems of the type Ax = b an A as above behaves 
more like the identity matrix than like a singular matrix. 

Recently Belsley, Kuh, and Welsch [2] stated: 

Most of the experimental evidence shows that weak dependencies begin to exhibit 
themselves with “condition indices” around 10. A number in the neighbourhood of 
15-30 tends to result from an underlying near dependency with an associated 
correlation of 0.9. Condition indices of 100 or more appear to be large indeed causing 
substantial variance inflation and great potential harm to regression estimates. 

(Note that the condition index as defined by Belsley, Kuh, and Welsch is 

l/h,/X,.) 
If the x-variables are random variables, then the roots (A r, . . . , A p) are also 

random variables, and then one will be interested in the distribution of the 
condition number A 1/h p. Another measure which can be considered as a 
measure of the condition of a matrix is ZA,/X, = tr(X’X)/p. 

The purpose of this paper is to focus attention on the distributions of the 
condition numbers X,/X, and CX, /p. The distributional results will obvi- 
ously depend on the underlying distributional assumptions on y and 

(X r, . . . , xp). This is again briefly discussed in the next section to highlight the 
effect these distributional assumptions will have on the distributions of the 
condition numbers. In Section 3 the exact distributions of the condition 
numbers are considered. The exact distribution of X r/X, is derived, but that 
of Ch i/X, appears to be intractable. These results are very complicated, and 
some asymptotic results are considered in Section 5. The exact distribution of 
A r/A p for a circular population covariance matrix is given in Section 6. Some 
practical examples of the condition numbers and the effects of large condi- 
tion numbers on the estimates of p are given in Section 4. 

2. THE EFFECT OF THE UNDERLYING DISTRIBUTIONS ON THE 
DISTRIBUTIONS OF THE CONDITION NUMBERS 

The distributions of the condition numbers depend on whether we deal 
with the fixed or the random case. 

First consider the fixed case, where (x,,. . . , xp) are known (fixed) vari- 
ables. Thus R = X’X is a known fixed correlation matrix, and the roots 

(A i, . . . , Xp) are known fixed quantities and their distributional results are no 
longer of interest. For this case it is probably sufficient to determine a cutoff 
value for h i/X p and to correct the least squares estimators if A r / A p is larger 
than the cutoff value. A cutoff value of 25 to 100 was suggested by Belsely, 
Kuh, and Welsch. 
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With the LRRA estimates the roots X,, . . . , X p of the correlation matrix 
R,, [see (1.13)] between y and (x,,. .., rp) is of interest. Although the x’s 
are fixed, y is random and R,, is a random matrix, so that h,, . . . , A, are 
random variables. Thus we need the conditional distribution of the roots 

(A a,, . . , Ap) given the x-variables. This appears to be a very difficult deriva- 
tion. 

For the random case when y and (xi,. . . , xp) are distributed iV(p, Z), 
both R and R,, are random correlation matrices with the same distributions 
except that R has dimension p and R,, dimension p + 1. The distributions 
of these matrices will depend on the assumptions made on 2. 

Now 

and if Z,, = 0, then PCs, = Z,-,‘Z,, = 0, and no linear relationship exists 
among y and (xi,..., x,), and we shall not be interested in estimating &,. 
Thus we need the distribution of A,, . . . , A, for general 2. 

The distribution of the roots (Xi,. . . , A,) of R depends on Z,,. If 
Z,, = a2Z,, then all the r’s are orthogonal and no collinearities exist. This is 
not the case of interest in this paper, so we again need distributional results 
for general Z,,. 

Thus for both R and R,, we need distributional results for general 2. 
To avoid notational difficulties we assume that we have p variables 

(x i, . . . , x,), where y could be assumed to be one of the x-variables. Thus R 
is a correlation matrix of p dimensions, and we are interested in the 
distribution of X1/A, and Xx,/X, for general 2. 

The distribution of the correlation matrix for general 2 is not known. If 
Z = I, i.e. all the variables are independent (and orthogonal), then the 
distribution of R is known but the joint distribution of the roots of R is not 
known. As mentioned before, this case is not of interest in this paper. 

If u~~=X~_~(X~~-%~)~ and D=diag(a,,,...,a,,), then 

A = D’/2RD’/2 = [aij], i, j=l ,-*., P, 

is a Wishart matrix. If (Xi,..., h,,) are now the characteristic roots of A, then 
X,/h, and Chi/A, will measure the condition of A. If some of the 
;r-variables are collinear, then we expect large condition numbers, and 
corrections should then be made in the least squares estimates. 

Thus we are interested in the condition numbers of A where A has a 
Wishart distribution. The distribution of hi/X, is derived in the next 
section. The distribution of E.A,/X, appears to be intractable. 
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3. THE DISTRIBUTION OF CONDITION NUMBERS 

In this section we consider the distribution of the condition numbers. 
Many of the results will be very theoretical and extremely complicated. For 
the interested reader the applications of these results will be considered in a 
separate section. 

Assume that A has a Wishart distribution, W(Z, n), and that the char- 
acteristic roots of A are Xi 2 . . . >, A, > 0. The joint distribution of the roots 

(A i, . . . , Xv) has been derived by James [ 141 and is given by 

K(p,n)lZI-:“IAI:(“-P-‘) etr( -~R)ap(A),Fo(~(Ip-X-‘),A), (3.1) 

forO<X,< ... <X, < co, where 

&P2 

K(r.bn) = 
2fVp( ;n)r,( ;p) ’ 

A=diag(A,,...,h,), a,(A) = n 6% - “r>, (3.2) 
i<j 

and 

(3.3) 

where a, ,..., up, b, ,..., b, are real or complex constants and the multivariate 
coefficient (a), is given by (a), = l-l:= r( a - +( i - l))k,, where ( u)~ = a( a + 

1) * . . (a + k - 1). The partition of K of k is such that 

K = (k,, ks,..., kp), k,>,k,> ... >/k,>,O, 

k,+k,+ a.. + k, = k, and the zonal polynomials C,(T) are expressible in 
terms of elementary symmetric functions of the latent roots of T [14]. 

Let 

‘i 

Ili=y&$ 
i=2 ,*..,p, (3.4) 

s= c xi. (3.5) 
i=l 

The Jacobian of the transformation is easily seen to be S-‘. 
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The joint density of (us,. . . , up) and S is seen to be 

flu 2,...,Up,S)=K(p,n)lZ(-:“(U(i(“-p-’)etr( -iS) 

x &P@ - P - u+ :P(P - 1j+ P - la,(q 

263 

xkpp&(z-rl))J= 
c,( Z)k! ’ (3.6) 

where 

U=diag l- i ui,us ,..., up . 

i=2 I 

Integration over S, 0 < S < co, yields the joint density of (us, 

r,i;;)j;(;P) I~I-:“(ulh(“-p-l)ap(~) 

XEC 
c,(z, - z-r)C,(u)r(+ + k) 

k=O K C,( Z)k! 

(3.7) 

up) as 

(3.6) 

James [ 161 has considered the joint distribution of (hi/x), i = 2,. . . , p, 
where % = (l/p)CXi. Krishna&h and Waikar [ 191 have derived the joint 
density of (us,. . . , up) in the above form. 

Since up = A,/CX,, the marginal density of up can be found by integrat- 
ing out us,...,up_r 
z.p 

over the range 0 d up < up_ r G . . . G u2 < u1 = l- 
,_sui. To find an explicit expression for up does not seem feasible. The 

condition number Zhi/Xp is of course given by 

We now derive the density of the condition number C, = A,/A,. 
If the joint density of (A r,. . . , A,) is given by (3.1), make the transforma- 

tion 

x,-xi 
li = - 

Xl ’ 
i=2 ,***,p, (3.10) 
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(3.11) 

The Jacobian is J(h,, A,, . . . , A, -+ A,, I,, . . . , ID) = A?-‘. If A, = 
diag(Z,,..., 2,)with l>Z,>, **. >Z,>O, then 

etr 
( 1 

- fA = e-~“lPetr(+A,A1), 

nh:‘” - P - 1) = Xi’” - P - l)P(l - *,(tcn - P - l), 
I 

a,(A)= n(Xj-Xj)=XiP(P-l)JAll fi 
i<j l<i<j 

(Zj-zJ, 

and 

C,(A) = c,(q(I - A[)) = X”,C,(‘Cl- A,)), 

where 

‘(I-A[)=diag(l,l-1, ,..., l--I,). 

We use the well-known expansion [3] 

where the b, T ‘s are constants depending on K and r, and are tabulated in 
[18]. The joini density is then given by 

XII-A,$(n-p-‘)JA,J n (lj_li). (3.12) 
lii<j 
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But [15] 

where T’ is a partition of t into not more than p parts. The ordering s is 
lexicographic and is described in [15], and 

where T’, p, and 6 are partitions of t, m and d = t + m, respectively, into 
not more than p parts. The coefficients g,“,,, are tabulated in [18] for all 
partititions up to order 7. Also 

II- A,J-:(P+l--“)Cg(Al) = cc kb +I - +I $o(A&(AJ 
s 0 

is! 

=ccc Mp +I - 43 g” smb> 
s fJ Y 

s, 0 0, _. 

IZ - AlI- ~(P+l--n)etr(~X,AI)C,(Z- A,) 

and 

f@,, zz,,..., 2,) = Kp-d"q"P-le-IX,P 
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where 

Now, let r, = Zi/Z,, i = 2,. . . , p - 1, in (3.14) with Jacobian equal to Z,P-‘; 
then [A,1 = Z,P-‘(A,1 and 

C”(A,) = z;+t+mCv(‘Ar), 

Thejointdensityof(h,,r,,...,r,_,,Z,)isthen 

f@ ,,r,,..., 7 P_l) zp) = Kp-I”q”P-‘&P 

x~*CK(~(z-Z-‘))Ak+~(~(p+l-,))O 

p-1 

xIA,IG(‘Ar)IIp-2-ArI ,<v< j(‘j-‘i)* 

To find the marginal density of A, and 1, we integrate over ( r2, . . . , rp_ I), 
i.e. (see also [26]) 

/ 1, rp > . > ‘2 t 0 
IA,IC,(~A,)IZp-2-A~Il<~<j(‘,-‘~)i~2dri 

p-1 

= [i(p-l)(p+2)+s+t+m] 

x r,_,(gp - l>)r,-,(:(P +2>)~,-1bM~P-1) 

X 
MP +a 

r:‘P-~)zrpl(p+l)(p+l),’ 
(3.17) 
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The marginal density of (A r, 1,) is then 

f(A,, 1,) = 77”-“r,_,(~(p - l))r,-l(ib +N 

lzI-:nrp_l(~p) 
x rp( +p)r,( +f2)2W-,_,(p + 1) 

(jr P ‘n - le- $i,p 

l 

X(;(p+l-n)) b 
0 .,,cY,/g~.,g~,,~~(P-l)(P+2)+s+t+m] 

MP + aG(z,-1) 
x k!s!m!2”C,(Z,)(p + 1)“. 

(3.18) 

Finally integrating over A, yields the marginal density of 1, as 

&) = 
np-h-,&p - i>)rp_l(;(p +2))r,_,(#q+ 

rp( ip)rp( +)2+prp_,( p + 1) 

X 
r(;ftp + k + +v(zp-l) 

k!mls!cx(zp)(p+1),2q$p+k+m 
(3.19) 

and C* is given by (3.15). 
Krishna& and Waikar [19] also report that they have derived the density 

of X1/X p but consider the expression so complicated that it is of no practical 
value, and hence the density was not published. 

It is quite clear from the above expressions that the densities of the 
condition numbers Cl = Xh i /A p and C, = X1/h p are extremely complicated 
for general Z and would be of little practical value. By relaxing the 
assumptions on 2 or by using asymptotic results, some of the complications 
may disappear. These alternatives are considered in the next two sections. 
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4. THE DISTRIBUTIONS OF THE CONDITION NUMBERS WITH 
RESTRICTIONS ON THE COVARIANCE MATRIX Z 

As stated in Section 2, the distribution of the condition number is of 
interest for general Z. If Z = a2Z, it would imply that the variables (x1,. . . , xp) 
(assuming that y is one of the x-variables) are independent. If (l/n)A and R 
are the maximum likelihood estimates of Z and P = I (the population 
correlation matrix), respectively, then it is unlikely that multicolhnearities will 
be present in the matrix A or R. If such collinearities are however present, 
then the condition number C, = Ch i/X, and C, = X,/X, will, of course, be 
much larger than they would have been for an orthogonal system. Thus 
rejection of hypothesis of the type Z = a2Z is an indication that collinearities 
are present; however, such collinearities may not be harmful. 

The joint distribution of the roots (A,, . . . , hp) for the case Z = a21 is now 
much easier to handle and percentage points of the condition number 
C, = XX i/X,, can be found from the tables by Schuurmann, Krishnaiah, and 
Chattopadhyay [25]. They tabulated the percentage points of X,/x:h i = l/C, 
for significance level OL = (0.05;O.Ol). More extensive tables are available in a 
technical report (ARG730010) by the authors. The tables are given for 
p = 3(1)5 and r = i(n - p - 1) = O(l)25 but restricted to r = O(l)16 for 
p = 6. 

Tables of the percentage points of the condition number C, = X r/X p are 
given by Krishnaiah and Schuurmann [20]. 

We now consider two examples to illustrate some of the uses of these 
tables. The first example was reported by Troskie [30]. To illustrate the effect 
of multicollinearity, Troskie performed a regression on eight variables with 
n = 104 observations, one variable being the dependent variable. The char- 
acteristic roots of the sample covariance matrix 

1 
S=-A 

n-l 

of the seven independent variables was given by 

Xi, = 26585.002, X2, = 6107.498, x,, = 4340.910, 

X,, = 864.108,X,, = 303.634, X,, = 63.763, X,, = 23.537. 

The condition number C,, = X1,/X,, = 1129, while Crs =CX,/Xr = 1626. 
For the correlation matrix R the characteristic roots are as follows: 

x,, = 3.393, A,, = 1.224, X,, = 1.004, X,, = 0.645, 

x,, = 0.363, h,, = 0.067, h,, = 0.004. 

The condition numbers are C,, = X is/X rR = 948, C, R = Ch i / h, = 1750. 
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Notice that by inspection one would not consider that the smallest root of 
S, i.e. A,, = 23.537, is small. On the other hand, the smallest root of R, i.e. 
X,, = 0.004, can certainly be considered to be too small. It is very interesting, 
however, to note that the condition numbers for the two matrices are hardly 
different in magnitude and, in fact, extremely large, reflecting the ill condi- 
tioning of these matrices. Under the assumption that Z = a2Z the approxi- 
mate critical values for these condition numbers with n = 104 are (from the 
tables reported above) Cis(O.Ol) = 21 and C,,(O.Ol) = 15. 

Now obviously the assumption that Z = a21 is not feasible (and of course 
will be rejected if tested on the sample roots). Nevertheless the difference in 
magnitude of the observed condition numbers and the critical values, under 
the assumption Z = a2Z, is so large that one would immediately expect that 
the least squares estimates will be seriously affected if the matrices S or R are 
used without adjustment. 

The second example is taken from data supplied by Thompson [28]. The 
characteristic roots of the covariance matrix S and correlation matrix R are 
given by Table 1 (p = 9 independent variables). All the condition numbers 
are extremely large, indicating that the matrices S and R are probably ill 
conditioned. It is remarkable how much larger the condition numbers for the 
matrix S are compared to that of the matrix R. There is a definite indication 
that a strong multicollinearity exists among the independent variables and 
that a correction procedure is necessary for the least squares estimates. 
Because of the large number of variables (p = 9), critical values for the 
condition numbers are available in the cited technical report. 

Table 2 illustrates the difference in magnitude of the least squares 
estimates and some correction procedures as suggested in Section 1. 

For both examples the effect of only one small root on the principal 
component and LRRA estimates has been eliminated. Investigating the effect 

TABLE 1 

'i.S 

722.272 
201.667 

22.338 
6.829 
0.562 
0.443 
0.134 
0.029 
0.001 

xit7 

3.296 
3.154 
1.021 
0.808 
0.363 
0.215 
0.106 
0.034 
0.004 

C,, = h, /tip = 722,272 C,, = 849 
c,, =X&/X, = 953,110 c,, = 2250 
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O.L.S. 

TABLE 2 

Troskie 

Ridge trace Print. camp. 
k = 0.2 rank( X’X) = 6 LRRA 

4625.7 3605.9 
6.9807 4.372 

- 8.8436 - 3.3826 
0.4058 - 1.3295 
7.8023 7.1952 

- 5.2807 - 0.2072 
0.4217 0.8562 
5.7400 - 0.5619 

1382.1 892.46 
6.3295 6.2215 

- 9.6453 - 9.7290 
0.6796 0.7086 

11.0451 11.5130 
0.4712 1.3622 
0.3622 0.3536 

- 0.1760 - 1.0969 

O.L.S. 

2.1016 
0.7088 

- 1.9220 
1.1256 
0.1130 
0.1795 

- 0.0183 
- 0.0776 
- 0.0852 
- 0.3432 

Ridge trace 
k = 0.1 

0.0835 
0.4017 

- 0.1071 
0.0944 
0.2485 
0.1369 
0.0158 

- 0.0610 
- 0.0059 
- 0.0906 

Print. camp. 
rank( X’X) = 8 

6.1883 
0.9558 

- 4.6870 
0.0650 
0.0922 
0.2218 

- 0.0187 
- 0.0818 
- 0.0116 
- 0.2740 

LRRA 

6.6231 
0.9729 

- 4.9338 
- 0.0774 

0.0931 
0.2258 

- 0.0183 
- 0.0878 
- 0.0015 
- 0.2617 

of the second smallest root, one finds for the first example 

X 1s = 26585.002, A,, = 3.393, 
x BS = 63.763, A,, = 0.067, 
c,, = h,,/X(js = 417, c,, = A,,&, = 51. 

Although C,, is large, C,, is not. Perhaps a modified fractional rank estimate 
(between 6 and 7) as suggested by Marquardt [21] would be better. 

For the second example we have 

A,, = 722.272, A,, = 3.396, 

A,, = 0.029, A,, = 0.034, 

c,, = 24905, c,, = 99. 

Here again C,, is very large, while C,, is not that large. 
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For LRRA, Webster, Gunst, and Mason [32] suggested that vectors should 
be eliminated for which the roots Xi < 0.3 and the weights of the characteris- 
tic vectors with respect to the dependent variable are too small-say 
Vyi < 0.1. In the first of the above two examples we have for the roots and 
vectors of the augmented matrix 

the values 

in the second, 

( 
Y’Y Y’X 
X’Y X’X ) 

x,, = 4.478, v,, = 0.431, 

h,, = 0.025, v,, = - 0.661, 

x,, = 0.003, v,, = - 0.077; 

h,, = 3.893, Vvl = 0.445, 

x,, = 0.024, v,, = 0.360, 

h 1i)R = 0.004, v,,, = 0.083. 

Thus, as suggested by Webster et al., only the last root and characteristic 
vector were eliminated for both examples. 

The differences in magnitude between the OLS estimates and the other 
estimates are quite alarming. For both examples the principal component and 
LRRA estimates are very close to each other. 

One important point which emerges from the example given by 
Thompson [28] is the very large condition numbers of the matrix S compared 
to that of the matrix R. The matrix S has very small roots and is possibly very 
unstable. It is clear that the first four roots of S virtually explain all the 
variation in the matrix S, with the result that the remaining roots are small. 

A third example of the effect of multicollinearity and the application of 
ridge regression has been reported by Hadgu [lo]. The model is the follow- 
ing: 

where 

Y = P0 + &X1 + &X2 + &X3 + e, 

Y = reported annual rates of congenital syphilis in the United States, 
X, = reported annual rates of primary and secondary syphilis in the 

United States, 
X, = reported annual rates of early latent syphilis in the United States, 
X, = reported annual rates of late and late latent syphilis in the United 

States 

(all rates are calculated per 500,000). 
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The correlation matrix for the 13 observations reported by Hadgu (years 
1957-1969) is 

The condition number for the Wishart matrix is 1184, while the condition 
number for the correlation matrix is 122. Both these numbers are very large, 
indicating severe multicollinearity. 

The estimated regression coefficients are 

It is clear that even small ridging has considerable effect on the regression 
coefficients. 

5. SOME ASYMPTOTIC RESULTS 

Anderson (1965) gives the following expansion for the joint distribution of 

(A i,. . ., A,), the roots of (l/n)A = S, when the roots ai,.. ., ap of Z, are 
assumed to be all distinct: 

f(X I,...,h,)=M(A)~X:-“-1~-“/2’“~/U~’~(Xi--j)1’2F, (5.1) 
i=l i<j 

where 

M(A)= 

ifpj, +qj $ - _L -lD i i “i 

n 

i 1 
- [np@ - P(P - v/41 p 

ii 
i~lrM~-i+l~) 

(5.2) 
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and 

(5.3) 

and 

cij= ;-; (xi-xj). 
i i I I 

(5.4) 

Assume n large enough so that F = 1. 
Then by again making the transformation ui = hi/CA,, i = 2,. . . , p, and 

Zi = A,/A,, i = l,..., p - 1, we get the marginal densities of (us,. . . , up) and 

(Z rr...,ZP-r) as 

- f(2n - p + 1) 

f(u 2,...,~p)=M(A)IUjl(n-p-1) "1, . . . + 3 
a1 LyP 

x iQj(q - uj)1’2r(a(2n - p+l))( fj’““pp+l’, (5.5) 

where U= diag(u,,..., up) and u1 = 1 - CyS2ui, and 

~ i(2n - p + 1) 

f@ l,...,Zp_,)=M(A)~L]~(“-P-” 
4 

;+ ... +&+; 
a 

p-1 P 

X/L-I( n (Zi-Zj)““l-(+(2n-p+l)), (5.6) 
i<j<p 

where L = diag(Z,,..., I,_,). Again it appears difficult to find the marginal 
densities of the condition numbers Cl = l/u, and C, = I, 

Anderson [l] also showed that for large n, 

4 Xi-hi 1’2 I -+l 
i<j aj - ffi 

with probability one, and hence the joint density of (X,, . . . , A,,) then 
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becomes 

(5.7) 

with 

1 

c= r(;(n-p+l)) i=l 

fi (( &)i”-‘+i)i_ 
(5.8) 

Thus nh i /ai are independently distributed as X2-variates with (12 - p + 1)/Z 
degrees of freedom. Thus the density of C, = I, = X,/XV is that of ( a1 /a,) 
F( $( n - p + l), i( n - p + l)), and therefore knowledge of the ratio al/a, is 
needed. Under the assumption Z = a2Z, critical values for Al/X, of the 
order of 20 appear to be large. Assuming therefore al/a, = 20, a cutoff 
value of 20Fa(+(n - p + l), i(n - p + 1)) seems reasonable. For the example 
in Section 4 with n = 104, we have F,$&, = 2, so that the cutoff value is 40. 

’ The joint density of us,. . . , up_ 1 with the condition number C, = l/u, is 
more complicated and is given by 

2,...,up)=cI~zli(.-P-l) u1, 
- ;(n - p - 1)p + p 

f(u 
i=l i 

. . . +!!z 
a1 aP i 

(5.9) 

with 

C’= c(;n) :(n-p-l)p+Pr(~(n_p_l)p+p) 

and 

u,=l- &Ji. 
i=2 

It is again difficult to find the marginal density of up = l/C,. 
Girshick [8] has given the following normal approximation for the joint 

distribution of the roots (hi,. . . , A,) as n becomes large: m (Xi - ai) is 
normally distributed with mean zero and variance 2ap, and independent of 

Xi-N 
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so that 

cn - l)? _ xyp) 
;ff; n-l 

2a; ’ With ‘= 2af/(n-l) =4 

Thus 

275 

(5.10) 

(5.11) 

Now the doubly noncentral F can be approximated by a central F as follows: 

F;:,(cL, p) = F,,,+ (5.12) 

where 

For the example with n = 104 we obtain v = 14 with F$&, = 3.66. Assum- 

ing ol/op = 20, a cutoff value of (20)’ X(3.66) = 1404 for At/A; or 38 for 
X r /X p seems reasonable. 

From the fact that Xi - N(cu,,2cuf/(n - l)), confidence limits can be 
found for the smallest root ep. These are 

XP XP 
== 1+z,,s(ol)~~ dapG l-z,,a(a)JqFi- 

= b. (5.13) 

where Z&o) is the $Y 100% critical value of the standard normal distribu- 
tion. Press [24] states that for large n it is approximately true that 

(5.14) 

Thus for large n an approximate l- (Y confidence interval for the population 
condition number Lxi/(rp is given by 

(5.15) 
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6. SOME EXACT RESULTS FOR A CIRCULAR 
COVARIANCE MATRIX 

Let (Xi, ,...) Xpa), (Y= 1,2 )..., N, be a sample from a pvariate N(p, Z) 
distribution. Z is uniform and is given by 

Z = u2(1 - p)Z + a2pee’, 

where e’=(l,l,..., 1). Olkin and Pratt [23] have shown that the minimal 
sufficient statistic of (II, ri, r2) is given by 

i 

P 

( N’12S, ul, u2) = N”2?r, 011, c ..) u,, , 
i=2 

where 

~1=fJ2[1+(P-1)Pl, 72 = a2(1- p) 

are the characteristic roots of C (the last p - 1 roots being equal to r2), 

I= [vii] = [p-‘~2(cos2np-1(i-l)(j-1)+sin27rp~’(i-l)(j-1)], 

and 

v=rw= [uij], i,j=l ,u..> P* 

Also X=(X1,..., ?p)’ and S/n, n = N - 1, is the sample covariance matrix, 
where S = [ si j], i, j = 1,. . . , p, and 

sij= t (Xi,_Xi)(Xj/Xj). 
a=1 

The distribution of vr/ri is xi, and of v2/r2 is x:(~_~, and independent. 
Furthermore 

+,=h,=2 and $2=X,= 
v2 

n P(P - 1) . 
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Now ~i/ra is the population condition number and 

71 l+(P-lb -= 
72 1-P 

Thus [ v~/+T~~]/[Y~/T~~( p - l)] is distributed as F,, no_ i), so that the sample 
condition number C, = hi/X, is distributed as 

1+b-lb 
F 

l--P n,n(p-1)' 

The maximum likelihood estimate of p is given by 

P I 1, 5 Ii’ij 

i=l j=l 

fi= 

j+l 

(P-l) 5 ‘ii 
i=l 

CONCLUSIONS 

If (Ai,..., hp) are the roots of either the Wishart matrix A or the 
correlation matrix R, then the condition numbers are defined to be CA i / Ap 
or X,/A,. It is demonstrated that large condition numbers have severe 
effects on the usual least squares estimates in regression. The distributions of 
these condition numbers for general Z are extremely complicated and in 
some cases intractable. 

If Z is assumed to be of the form Z = a2Z, then percentage points of the 
condition numbers are available. Rejection of the hypothesis Z = a21 is an 
indication that collinearity is present, but the collinearity may not be severe. 
The condition numbers should be much larger than the critical points under 
the assumption Z = 0~1. If ai > a2 > . - * > ap are the roots of Z and al/ap 
the population condition number, then if ai/ap can be assumed to be some 
large number (say larger than 20), then the asymptotic results given in 
Section 5 can be used to compute a cutoff value for the condition number 
Xi/h ,,. Some such correction as the ridge or principal component or LRRA 
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should be made to the least squares estimates if large condition numbers are 

present. 
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