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Abstract

The following paper presents a way to simulate the behavior of particle agglomerates in a fluid flow by coupling the Lattice
Boltzmann Method to a rigid body physics engine. By extending the basic algorithm by a fluid/particle force interaction method,
the hydrodynamic forces acting on the particles can be calculated. By the use of this force interaction between the fluid and the
particles and by the use of the rigid body physics engine, the movement and collision behavior of particles in a flow can be
simulated. Additionally, this coupled simulation system is able to simulate the internal particle forces in the connections between
sintered particles, which could break due to the forces and torques of a shear flow. This permits a prediction of possible break-ups
or structural displacements.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In the field of particle technology, knowledge about the behavior of complex particles in a flow is essential to predict
the properties of the final products containing these particles. However, the behavior of the particles is dependent on
their structure. Due to the complex structure of these particles, the analytical examination is limited to only very
simple structures. Numerical simulation is one way to efficiently examine the structure and behavior of the particles
and therefore create products faster and at lower cost.

This paper proposes to simulate particles and particle agglomerates in a flow by coupling a rigid body physics
engine to a Lattice Boltzmann fluid simulation. This new approach is to our current knowledge the first attempt
to simulate moving particle agglomerates in a flow that also offers the possibility to simulate arbitrarily complex
agglomerates and to calculate contact forces and torques. These can be used to simulate break-ups or structural
displacements within the agglomerates. We achieve this by combining several extensions for the fluid simulation
like the treatment of moving curved boundaries with the scheme of Yu et al. [1] and a fluid/particle force interaction
method with the momentum exchange method of Ladd [2]. An overview of these techniques can be found in [3].
The simulations in Section 5 will show that our approach yields stable and accurate results of arbitrarily complex
agglomerates.
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Fig. 1. The D3Q19 model for the 3D LBM.

2. The Lattice Boltzmann method

In contrast to the classical macroscopic Navier–Stokes (NS) approach to simulate fluids, the Lattice Boltzmann
Method (LBM) uses a mesoscopic simulation model [4]. Instead of directly solving the macroscopic fluid quantities,
such as velocity and pressure, the movement of fluid particles is modeled. The fluid domain is discretized in uniform
Cartesian cells. Each cell holds a fixed number of distribution functions, which represent the number of fluid particles
moving in these discrete directions. For this work, the most popular model for the 3D case, the D3Q19 model, which
consists of 19 distribution functions, has been used. This model is illustrated in Fig. 1.

The distribution functions are calculated by solving the Lattice Boltzmann equation (LBE), which is a special
discretization of the kinetic Boltzmann equation. Based on the Bhatnagar–Gross–Krook (BGK) model, the update of
the distribution functions can be formulated as in Eq. (1):

fα(xi + eαδt, t + δt) − fα(xi , t) = −
1
τ

[ fα(xi , t) − f (eq)
α (xi , t)], (1)

where δt denotes the lattice time step, δx = eαδt denotes the lattice cell size, τ denotes the lattice relaxation time, eα

is the discrete lattice velocity in direction α, and f (eq)
α is the equilibrium distribution (see Eq. (4)). Eq. (1) is usually

solved in two steps:

f̃α(xi , t + δt) = fα(xi , t) −
1
τ

[ fα(xi , t) − f (eq)
α (xi , t)] (2)

fα(xi + eαδt, t + δt) = f̃α(xi , t + δt). (3)

Eq. (2) is called the collide step. This step models various fluid particle interactions like collisions and calculates
new distribution functions according to the distribution functions of the last time step. It also models the equilibrium
distribution functions, which are calculated with Eq. (4).

f (eq)
α = wα · ρ ·

[
1 +

3

c2 eα · u +
9

2c4 (eα · u)2
−

3

2c2 u · u
]

. (4)

In this equation, wα is a weighting factor depending on the LBM model used, ρ is the lattice fluid density, and u is
the lattice fluid velocity.
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Fig. 2. Flag state change from particle to fluid cell due to particle or agglomerate movement.

Eq. (3) is called the streaming step. In this step, fluid particles are streamed from one cell to a neighboring cell
according to the velocity of the fluid particles in the original cell. This streaming operation can either be performed as
a pushing operation from one cell to the surrounding cells, or as a pulling operation into one cell from the surrounding
cells.

3. Particles and agglomerates

This work focuses on the simulation of particles and agglomerates of a size between 1 and 100 microns. Particles
are an unbreakable compound of atoms and molecules and are of arbitrary shape and mass. The connection to
other particles results in agglomerates, which are of arbitrary and often of very complex structure, but breakable
at certain contact points. In this work, the structure of a single particle is approximated by a sphere. Although this
is an abstraction from the real world structure, experiments show that the particle behavior in a flow resembles the
behavior of a sphere. Therefore, agglomerates consist of several spheres, which are connected by point contacts or
contact areas for overlapping particles. For contact points of interest, the contact forces and torques are calculated in
order to predict break-ups and structural displacements.

4. Moving particles with the Lattice Boltzmann simulation

In order to simulate moving agglomerates in a flow, the LBM, which simulates the fluid behavior, has to be coupled
to a rigid body physics engine, which simulates the correct rigid body movements of agglomerates. Due to this two-
system simulation, the basic LBM algorithm has to be extended.

The first extension handles the dynamic character of the flag values due to the movement of the particle
agglomerates. These flag values have to be recalculated in each time step due to the movement of the particles and
agglomerates. Cells may change from fluid cell to particle cell if they are inside one of the spherical particles, but they
may also change from particle cell to fluid cell. In this case, new distribution functions have to be created for the new
fluid cell. This situation is illustrated in Fig. 2, where two new fluid cells result due to the agglomerate movement to
the lower right.

In the case of a flag change from particle to fluid cell, the missing distribution functions are calculated as
equilibrium distribution functions using the local density, which is derived by a local density interpolation, and the
surface velocity of the particle surface point nearest to the new fluid cell.

The second extension deals with the moving curved particle surfaces. The standard link, bounce-back, no-slip
boundary condition always assumes that the wall is placed exactly between the fluid and the particle node. Due to the
arbitrary position of the particles and the curved particle surface, the particle surface can intersect the link between
two nodes at arbitrary distances. These distance values are called delta values:

δ =
Distance between fluid node and particle surface
Distance between fluid node and particle node

∈ (0, 1]. (5)
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Fig. 3. Delta calculation for the curved particle surfaces.

Fig. 4. Bounce back boundaries for different values of δ.

For each pair of neighboring fluid and particle nodes, one delta value has to be calculated. Delta values of zero are
not possible due to the fact that a node on the surface is counted as a particle node. The algorithm for this calculation is
taken from computer graphics [5]. It tests for an intersection between a ray in direction d and a sphere, and calculates
the distance between the fluid cell and the particle surface. Fig. 3 presents the algorithm and an illustration for the
calculation of a delta value for the case that a ray is shot from a fluid node towards the neighboring particle node.

Fig. 4 shows the three possible situations for delta values in the interval of (0, 1]. Since the fluid particles in the
LBM are always considered to move one cell length per time step (δx/δt), for delta values smaller than 0.5 and
larger than 0.5, the fluid particles would come to rest at an intermediate node (xi ). In order to calculate the reflected
distribution function in node x f , an interpolation scheme has to be applied.

In [6] several interpolation schemes ranging from linear interpolations, which only take two fluid nodes into
account, to quadratic interpolations, which use three fluid nodes, are compared. Based on this work, the linear
interpolation scheme of Yu et al. was chosen [1,3]. This scheme uses two fluid nodes and the interpolation is
represented by a single equation independent of whether the value of δ is less or larger than 0.5. With this scheme, the
reflected distribution function is calculated as

fᾱ(x f , t + δt) =
1

1 + δ
·

[
(1 − δ) · fα(x f , t + δt) + δ · fα(xb, t + δt)

+ δ · fᾱ(x f 2, t + δt) − 2waρw

3

c2 ea · uw

]
, (6)

where wα is the same weighting factor as in Eq. (4), ρw is the fluid density in node x f , and uw is the velocity of the
bounce-back wall. For the coupling between the fluid and the particle agglomerates, the LBM also has to be extended
by a force interaction scheme. In order to calculate the fluid force acting on the particle surface, the momentum
exchange method was used [2,3]. With this method, the total physical force acting on a particle agglomerate is
calculated as the sum over all fluid/particle node pairs, resulting in

F =

∑
xb

19∑
α=1

eα[ fα(xb, t) + fᾱ(x f , t)]δx/δt. (7)

An example for the accuracy of this approach can be found in [7], where the drag force on several agglomerates
was determined.

After the force calculations, one step in the coupled rigid body physics engine can be simulated in order to move the
particle agglomerates according to the applied forces. Since no open source physics engine provides the capabilities
to accurately calculate the resulting contact forces and torques, a special rigid body physics engine was implemented,
which focuses on the simulation of complex particle agglomerates. This engine uses a second order Störmer–Verlet
time integration for solving the equations of motion. For the contact force and torque calculation, the free body
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Fig. 5. Sinking particle for the comparison between analytical and simulation results.

diagram method is used: for each contact point, the rigid body is split into two sections, which are considered to be
rigid bodies on their own. For both sections, the connected other section is replaced by a contact force and contact
torque [8]. The contact forces Fc, which might be used to simulate ruptures in the particle agglomerate structure, are
calculated as

Fc(t) = Ms · as(t) − Fs(t), (8)

where Ms is the total mass of one of the two sections of the connection, as is the acceleration of this section, and Fs
is the total force acting on this section [8]. The contact torque Tc, which might cause structural displacements within
the particle agglomerate, or which also might cause ruptures, can be calculated as

Tc(t) = Is(t) ∗ ω̇(t) + ω(t) × Is(t)ω(t) − dc × Fc(t) − Ts(t), (9)

where Is is the moment of inertia, ω̇ is the angular acceleration, ω is the angular velocity, and Ts is the torque of
one of the two sections. dc is the distance between the center of this section and the center of mass of the particle
agglomerate [8].

5. Results

One of the possible test scenarios for a comparison between analytical results and the moving particle simulation
is to compare the sinking velocities of a heavy particle [9]. A particle with a density of 2.0 kg

dm3 (lattice density of 2)

is put in the upper half of a box completely filled with fluid of density 1.0 kg
dm3 (lattice density of 1) and having no

external stimulations (Fig. 5). The analytical sinking velocity for spherical bodies and Reynolds numbers smaller than
0.25 (Re < 0.25) can be calculated as

v =
2gr2

· (ρP − ρF )

9η
, (10)

where g is the acceleration due to gravity which is 9.81 m
s2 , r is the particle radius, ρP is the particle density, ρF the

fluid density and η is the dynamic fluid viscosity. The analytical solution calculated with Eq. (10) is v = 5.45×10−3 m
s

for a particle with a physical radius r = 5 × 10−5 m and a lattice radius of r = 5. Fig. 6 shows the simulation results
for the sinking velocity and the total force acting on the sinking particle for a simulation in a 603 domain with free-slip
boundary conditions. Although slightly larger than the analytical result, the sinking velocity essentially agrees with
the exact value. The difference can be explained by the periodic force fluctuations caused by the change in the number
of fluid cells surrounding the particle due to the flag changes.

Based on the verification of test problems, which can be compared to analytical results, several test cases of
complex particle agglomerates were investigated. One example is the simulation of a symmetric dual star particle
agglomerate with 13 particles and 12 connections, which is rotating in a symmetric shear flow (see Fig. 7).

Due to the completely symmetric setup, the agglomerate is supposed to start a pure rotational movement around its
center of mass in the center of the central sphere. Each particle has a radius of 4×10−4 m, which results in a maximum
agglomerate length of 4 × 10−3 m. The shear flow results from a flow to the right in the upper half of the fluid domain
and a flow to the left in the lower half. The value of interest in this simulation is the force in the two connections of the
central particle. Due to the complexity of the simulation, no analytical solution for this force exists, so no comparisons
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Fig. 6. Simulation results for the sinking particle simulation. The used size of the LBM simulation domain was 603 cells and the radius of the
sphere was 5 cells.

Fig. 7. Rotating dual star particle agglomerate.

between analytical results and the simulation can be made. However, we expect to see a sinusoidal shape of the forces
in x- and z-directions and no force in y-direction, since the agglomerate is rotating around the y-axis. The forces in
the connection to the right of the central sphere should be the inverse of the forces in the connection to the left of the
central sphere. The norm of the force in both connections should result in the same value due to the symmetric setup
of the simulation. For the first simulation run, a lattice cell length of dx = 5 × 10−5 m is used, which results in a
lattice domain discretized to 1203 lattice cells and a particle radius of 8 lattice cells. Fig. 8 shows the forces on both
center connections.

The basic sinus oscillation of the x- and z-forces can be monitored, which results from the pure rotational movement
of the dual star agglomerate due to its symmetric structure. It also becomes obvious that the force on the right
connection is exactly the inverse of the force on the left connection due to the symmetric setup of this simulation.
In both cases, a maximum norm of 7.00557 × 10−7 N acts on the connections. It is obvious that the gradient of
the curve is not completely smooth and that several leaps in the force calculation occur. This again results from the
changing number of fluid cells around the particle agglomerate.

Fig. 9 shows three examples for complex, asymmetric particle agglomerates. The left illustration shows an
agglomerate with 16 spheres, the second illustration an agglomerate with 32 spheres, and the third illustration an
agglomerate with 64 spheres.

All three simulations offer insight into the behavior of the particle agglomerates in a flow. However, when using
several particles in the simulation, the memory requirements soon reach critical levels due to the growing number of
particles and a fixed minimal particle radius that is necessary because of accuracy constraints. The last illustration in
Fig. 9 shows a simulation of three agglomerates, which requires 640 MByte of memory. Additionally, the boundary
influences should be minimized by a huge distance between the agglomerates and the boundaries, which only increases
the memory problem. Therefore, for the simulation of more agglomerates, memory reduction techniques like grid
refinement [10,3], grid compression [11] or the parallelization [12] of the simulation have to be applied.
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Fig. 8. Contact forces for the two center contacts of the dual star agglomerate. The used size of the LBM simulation domain was 1203 cells and
the radius of the sphere was 8 cells.

Fig. 9. Examples for complex particle agglomerates with 16, 32 and 64 spheres. The right illustration shows a simulation of three complex
agglomerates in one simulation domain.

Fig. 10. Collision between two particle agglomerates in a channel flow.

Fig. 10 demonstrates a collision between two particle agglomerates in a channel flow. Due to the kinetic energy
during the collision, these two particle agglomerates can concatenate and build a new particle agglomerate.

6. Conclusion

The investigation of the flow behavior of particles can be supported by the numerical simulation approach presented
in this paper. By extending the LBM with a treatment for curved boundaries and a force interaction method between the
fluid and the particles, and by coupling the LBM fluid simulation to a rigid body physics engine, an accurate simulation
of moving agglomerates can be implemented. This simulation is also able to calculate the contact forces and torques
between several sintered particles and, therefore, predict connection break-ups. However, in some simulations, the
accuracy of the simulation results still need to be improved. For example, the momentum exchange approach could
be extended by a finite volume calculation in order to reduce the force fluctuations. Additionally, the problem of the
excessive memory usage has to be addressed by memory reduction techniques or parallelization.
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