provided by Elsevier - Publisher Connector

MATHEMATICAL
ANALYSIS AND

ACADEMIC
PRESS J. Math. Anal. Appl. 278 (2003) 409-433 APPLICATIONS

www.elsevier.com/locate/jmaa

POWERED BY SCIENCE DIRECT?®

@ Wi MATHEMATICSWEB.0RG Fauenalef

Blockwise estimate of the fundamental matrix
of linear singularly perturbed differential systems
with small delay and its application to uniform

asymptotic solution

Valery Y. Glizer

Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
Received 12 August 2001
Submitted by P. Broadbridge

Abstract

A singularly perturbed system of linear differential equations with a small delay is considered. Es-
timates of blocks of the fundamental matrix solution to this system uniformly valid for all sufficiently
small values of the parameter of singular perturbations are obtained in the cases of time-independent
and time-dependent coefficients of the system. In the first case the system is considered on an infinite
time-interval, while in the second case it is considered on a finite one. These estimates are applied to
justify a uniform asymptotic solution of an initial-value problem for this system in both cases.

0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The notion of the fundamental matrix solution is a basic one in the theory of linear
differential systems without as well as with delay. Majority of results in this theory was
obtained by application of this notion. Therefore, it is very important to study various
properties of the fundamental matrix solution. In the present paper, we derive a blockwise
estimate of the fundamental matrix solution (or, simply, the fundamental matrix) to the
following system:
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0
dz(tt) =/[d,7A8(t,n)]z(t+£n), t>0, (1.1)

—h

wheree > 0 is a small parametet (« 1), & > 0 is a given constant independentsgthe
matrix A, (¢, n) and the vector have the block form

_ Ax(t, m) Aa(t,m) _(x
AS(t’n)_<(1/8)A3(t,n) (1/s)A4(t,n))’ Z‘(y)’ (1.2

where the blockdl1(z, n) andA4(z, n) are of the dimensionsx n andm x m, respectively,
the blocksy andy are of the dimensions andm, respectively.

Such a type of singularly perturbed systems with the small delay has a considerable
interest in the theory as well as in applications. Theoretically, it is interesting because
the system contains simultaneously two types of perturbations, associated with the small
multiplier for a part of the derivatives and with the small delay. Practically, such systems
are interesting because they can serve as mathematical models in engineering problems.
Some examples of such problems and the corresponding references can be foundin [9].

Estimates of the fundamental matrix for various particular cases of system (1.1)—(1.2)
were obtained in a number of works in the open literature. Thus in [12], the system,
containing only the “fast” variable (the “fast” system) and a single pointwise delay,
was considered. An exponent-type estimate of the fundamental matrix was obtained on
a finite interval of the time. Further, this result was extended to the “fast” system with
single pointwise and distributed delays [6], and to the “fast” system with the general type
of delay [1]. In [5,10], a blockwise estimate of the fundamental matrix of the system,
containing both (“slow’x and “fast” y) variables, was derived on a finite time-interval.

In [5], the case of single pointwise and distributed delays was considered, while in [10],
the case of multiple pointwise and distributed delays was studied. The case of time-
independent system on an infinite time-interval was analysed in [11]. A blockwise estimate
of the fundamental matrix was obtained for the system containing single pointwise and
distributed delays. Various applications of the above mentioned results on the estimates
of the fundamental matrix can be found in [1,5,6,9-12]. Note that estimates of the
fundamental matrix for some singularly perturbed differential systems with nonsmall
delay were obtained in [2,3,14]. Since singularly perturbed differential systems with small
and nonsmall delay much differ each other, methods for analysis of these two types of
singularly perturbed systems are essentially different.

In the present paper, we obtain blockwise estimates of the fundamental matrix of sys-
tem (1.1)—(1.2) in the following two cases: (1) the matrx is time-independent and
t € [0, +00) (Section 2); (2) the matrid, is time-dependentandes [0, T'], whereT > 0is
a given constant independentofSection 3). In Section 4, a uniform asymptotic solution
of system (1.1)—(1.2) with a given initial condition is constructed and justified in both
cases. The justification of this asymptotic solution is based on the blockwise estimate of
the fundamental matrix obtained in the previous sections.

The following main notations are applied in this paper:
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(1) E™ isthen-dimensional real Euclidean space;

(2) |- |l denotes the Euclidean norm of either a vector or a matrix with complex, in general,
elements;

(3) I, is then-dimensional identity matrix;

(4) C denotes the set of complex numbers;

(5) Rex denotes the real part of a complex numbgr

(6) Im2a denotes the imaginary part of a complex number

(7) i denotes the imaginary unit, i.é.= ~/—1;

(8) Va4, A(n) denotes the variation of a matrix-functiof(n) on the intervaly €
[a1, a2];

(9) col(x, y), wherex € E", y € E™, denotes the block vector with the upper blacand
the lower blocky.

2. Thecase of thetime-independent matrix A,
We shall assume:

Al. The matrix-functionsd ;(n) (j =1, ..., 4) are given form e (—oo, +00) and satisfy
the following conditions:

(@ Ajm=0,¥n=>0;

(b) Aj(m) =A;(=h),Yn < —h;

(c) A;(n) is continuous from the left foy € (—A, 0);

(d) A;(n) has bounded variation on the interve [—£, 0].

Consider two systems associated with the original system (1.1)—(1.2). The first system
is the reduced-order one

dx(t)

- =Ax(t), t>0, x € E", (2.1)
where
0
A=A1—AA A, AjzfdA,-(n) (Gj=1,...,9. (2.2)
—h

Here, we assume that the matdy is invertible.
The second system is the boundary-layer one

0
.
% _ / [dAs(D]5E +m. £>0, FeE™ (2.3)

—h
We shall assume:

A2. All eigenvalues of the matrid lie inside the left-hand half-plane.
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A3. All roots u of the equation

0
detA(u) =0, A(n)= / exp(un) dAa(n) — why,
—h

satisfy the inequality Re < —y, wherey > 0 is some constant.

Obtaining the estimate of the fundamental matrix to system (1.1)—(1.2) in the case of
the time-independent coefficients is based on the asymptotic analysis{as0) of the
set of roots of the characteristic equation of this system

0
detA(x, £) =0, A(A,e):/exp(s)m)dAg(n)—)J,,er. (2.4)
~h

2.1. Asymptotic analysis of the set of roots of the characteristic equation

Consider the following equation fou:
0
detA(u,e)=0, A(u.e)=¢ f exp(un) dAe(n) — lnim. (2.5)
—h

Itis clear that if, for any > 0, A(¢) is a root of Eq. (2.4), thep(¢) = eA(¢g) is a root of
Eq. (2.5). Similarly, ifu(e) is a root of (2.5), then(e) = u(e) /e is a root of (2.4).
Settinge = 0 in (2.5), one obtains the equation

w" detA(u) = 0. (2.6)
Note that the set of roots of Eq. (2.6) consistgiof 0 and the set of roots of the equation
detA(n) =0.

Lemma 2.1. Under assumption&1 andA3, let {e;} and{u,} be two sequences such that

(1) {ex} is positive and convergent to zero
(2) Reu > —y;
(3) Eq.(2.5) is satisfied for all(u, &) = (ug, ex) (k=1,2,...).

Then the sequendg} converges to zero.

Proof (by contradiction). Assume that the statement of the lemma is wrong. Then there
exists a numbef > 0 and a subsequence of the sequdpgé, such that this subsequence
lies outside of the closed circle which center is at the origin, and the radius équals

the sake of simplicity (but without loss of generality), we assume that this subsequence
coincides with the sequen¢gy}. Thus, we have

el >8 (k=1,2,...). 2.7)
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The sequencéuy} can be either bounded or not. First, let us consider the case of the
bounded sequendg}. In this case, there exists a convergent subsequenge,df For
the sake of simplicity (but without loss of generality), we assume that this subsequence
coincides with the sequené¢g;}. Let i = lim;_, 1o k. Then due to the second condition
of the lemma (Reyx > —y) and Eq. (2.7), we obtain that Re> —y and || > 3.
Substitutingu = ux ande = g into Eq. (2.5), and calculating the limit &s— +oo of the
resulting equation, one has thatis a root of Eq. (2.6). However, the latter is impossible
becauset # 0 and it cannot be a root of the equation dét.) = 0 (see assumption A3).
Now, let us proceed to the case of the unbounded sequengeln this case, there
exists a subsequence{gf} which tends to infinity. For the sake of simplicity (but without
loss of generality), we assume that this subsequence coincides with the sefugnce
Then lim;_, yo0 |tk| = +00. Taking into account (1.2), one can rewrite Eqg. (2.5) with
(m, &) = (g, x) as follows:

(_1)n+mu;:+m + ILZ-Hn_lfl(lLka &)+ fatm (ks &) =0, (2.8)

wheref;(u, ex) (j =1,2,...,n+m) are polinoms ok, with coefficients depending on

uk. Due to the second condition of the lemma, these coefficients are bounded uniformly
in k. Hence{ f; (1, ex)} is bounded uniformly iry andk. Dividing both parts of Eq. (2.8)

by u}j*’” and calculating the limit of the resulting equationkas> +o00, we obtain the
contradiction(—1)"*" = 0. This contradiction and the one in the case of the bounded
sequencéguy} imply that the statement of the lemma is truezd

Letxs (s =1,...,¢ <n) be all different eigenvalues of the matrix
Lemma 2.2. Under assumption&1 andA3, let {e;} and{1;} be two sequences such that

(1) {ex} is positive and convergent to zero
(2) limg— oo sxAk = 0;
(3) Eq.(2.4)is satisfied for all(x, &) = (g, &) (k=1,2,...).

Then the sequengg,} can be partitioned into a finite numbgro more thary) of different
subsequences each of which converges to one of the nuimbers-1, ..., g).

Proof (by contradiction). Assume that the statement of the lemma is wrong. Then there
exists a numbes > 0 and a subsequence of the sequdngé, such that this subsequence
lies outside of all the closed circles with the centers at the paints =1, . . ., ¢) and with

the same radius. For the sake of simplicity (but without loss of generality), we assume
that this subsequence coincides with the sequénge Thus, we have

Ak —As]l>8 (k=1,2,...,5s=1,...,q). (2.9)

Due to the second condition of the lemma and to assumption A3, oneéas(siiy)| > a

for all sufficiently largek, wherea > 0 is some constant independent /of Hence,
applying the formula for the determinant of a block matrix, one can rewrite the equation
detA (A, ex) = 0 in the equivalent form for all sufficiently large
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0

det: /eXP(Skkkn)dAl(n)—kkln
“n

0 0
- ( / eXp(ek)\kn)dAz(n)>(A(ekkk))_l< / experiin) dAg(n)), =0.
—h —h

(2.10)

The sequencg\} can be either bounded or not. First, we consider the case of the bounded
sequencdi.}. In this case there exists a convergent subsequenége,pf For the sake
of simplicity (but without loss of generality), we assume that this subsequence coincides
with the sequenc@\;}. Let A =lim;_ ;o Ax. Due to (2.9) A —Ag| =8 (s=1,...,q).
Calculating the limit of Eq. (2.10) ak — +o0, one has d€# — 11,) = 0. The latter
contradicts to the assumption that (s = 1, ...,¢) are all different eigenvalues of the
matrix A.

Now, let us proceed to the case of the unbounded seqyepgeThis case is analysed
similarly to the case of the unbounded sequeficg in the proof of Lemma 2.1, and
it yields the contradictio—1)" = 0. This contradiction and the one in the case of the
bounded sequende;} show that the statement of the lemma is truex

Remark 2.1. Note that Lemmas 2.1 and 2.2 are an extension of results of [7].

Leto1 > 02 > 0 andp1 < p2 are numbers, such that
—o1<Rer; < —02, pr<IMigy<pr (s=1, cerq). (2.12)

Consider the domain®; = {» € C: —o1 < ReA < —o2, p1 < IMA < p2} andDa(e) =
{LeC: Rex < —y/e}.

Theorem 2.1. Under assumption81-A3, for all sufficiently smalk > 0, any root of the
characteristic equatiorf2.4) belongs either to the domaif; or to the domairDz(e).

Proof (by contradiction). Assume that the statement of the theorem is wrong. Then there
exist sequences,} and{i;}, such that:

(a) {ex} is positive and convergent to zero;

(b) Rery > —v/er (k=1,2,..));

(c) {ix} does not belong t®;

(d) Eq. (2.4) is satisfied for allh, ) = (g, ex) (k=1,2,...).

Consider the sequenégy}, such thatuy = e A (k=1,2,...). Itis easy to see that the
sequencess;} and{uy} satisfy the conditions of Lemma 2.1. Hence, figy o0 x = 0.
The latter implies that the sequendes} and{);} satisfy the conditions of Lemma 2.2.
Consequently, using (2.11), one has thate D1 for all sufficiently largek. The latter
contradicts to the condition (c), which proves the theorem.
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Coroallary 2.1. Under assumption81-A3, there exists a positive number such that the
following inequality is satisfied for all sufficiently smalk- 0: Rer(e) < —a, wherea(e)
is any root of Eq(2.4).

Proof. The corollary is an immediate consequence of Theorem 2.1. The nwirdzer be
takenas G a <op. O

2.2. Estimation of some integrals

Let ¥ (z, ) be the fundamental matrix of system (1.1)—(1.2) in the case of the time-
independent coefficients. Based on the well-known result of the representation of the
fundamental matrix to a linear autonomous differential system with delay [13], and using
results of Section 2.1 (Corollary 2.1), one has for any sufficiently senalD

1 —a+if
U, e)=— lim /Q(A,t,s)dx,
27i f—>+oco
—a—if
R, 1,8) =exprn)A"(h,e), >0, (2.12)

where 0< o < o2, and the curve of the integration is the straight-line segment connecting
the initial and terminal points.
Along with the integral in (2.12), let us consider the following integrals:

—y/e+ip
<P1(t,£)=/!2(k,t,8)dk, @2(t,8)=ﬂ|im / Q0 t,e)dr, (2.13)
—+00
aDy —y/e—ip
—vo+if —vp—if
P3(t,e) = lim / Q0 t,e)d, ®u(t,e) = lim / Q0 t,e)d,
B——+o0 B—>+o0
—v1+if —v1—if

(2.14)

wheredD; is the boundary of the domaiR; with any direction of the motion along it,
v1 andvy are any real numbers satisfying the inequalifye > v1 > v2 > o2. In the second
integral in (2.13) and in both integrals in (2.14), the curve of the integration is the straight-
line segment connecting the initial and terminal points.

In this section, we derive estimates of the integrals in (2.13) and (2.14), which will be
used in the sequel.

Lemma 2.3. Under assumptionA1-A3, the following inequality is satisfied for all> 0
and sufficiently smalk > 0: | @1(z, ¢)|| < aexp(—o2t), wherea > 0 is some constant
independent of.

Proof. First, let us note that for all sufficiently small> 0

|20t e)| <exp—o2t)| A7 (. )| Ve>0, xedDa. (2.15)
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Thus, in order to prove the lemma, one has to estimate properly the noam'of,, £) on
the boundary oD;.

Since lim_ 40eA = 0 uniformly in A € 9D1, we obtain that lim_, ;o Aer) = Aa
uniformly in A € 8D1. Hence, A(ex) is invertible for all sufficiently smalk > 0 and
A € 0Dy, and

[A™ e | <ai, redDy, (2.16)
wherea; > 0 is some constant independentof
Let us denote
0 0
Al()\aS)Z/eXF(S)‘n) dA1(n) — Ay, AZ(M)=/GXI0(W7)dA2(77),
—h —h
0
As(w) = / exp(uun) d As(n). (217)
—h
Using (2.17), the matrixA (X, &) can be rewritten in the form
Ax(h, €) Az(eA) >
(1/e)As(er)  (1/e)A(er) )
Now, applying the Frobenius formula [4] to the matix(, €), one can conclude that

if the matrix H (A, &) = A1(h, &) — Aa(eA) A~ L(er) Az(e)) is invertible, then the matrix
A1), ¢) exists and has the form

A, €) :( (2.18)

) H (%, ¢) —eH Y\, 6) As(er) A7 L(eN)
A ()"5)2( A-1 -1 A1 >
— (eX)Az(eM)H (A, ) eAT(eAM)H1(A, &)
(2.19)
where
Hi(h, &) = Ly + Az(eN)H YA, £) Aa(sM) AL (eN). (2.20)

Since lim_, .0 H(x, &) = A — A, uniformly in 1 € 3D1, and all the eigenvalues of lie
inside the domairDy, the matrixH (A, €) is invertible for all sufficiently smalk > 0 and
A € 0Dy, and

|H 0.8 <az, redDa, (2.21)

whereas > 0 is some constant independentof

Thus, the matrixA=1(x,¢) exists for all sufficiently smalle > 0 and A € 9D1.
Moreover, Egs. (2.19), (2.20) and inequalities (2.16), (2.21) yield for all sufficiently small
e>0

[A7th, o)| <as, redDy, (2.22)

whereaz > 0 is some constant independentesofNow, estimating the matrix-function
@1(t, ¢) by application of inequalities (2.15) and (2.22), one immediately obtains the state-
ment of the lemma. O
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Lemma 2.4. Under assumptionA1-A3, the following inequality is satisfied for all> 0
and sufficiently smalt > 0: ||®2(z, ¢)|| < aexp(—yt/e), wherea > 0 is some constant
independent of.

Proof. First, assuming that—1(x, ¢) exists, let us rewrite it in the form

0
1 1
A7 L e) =N, e) — “am, NG e) = X”l“’ £) / explern) dA. (),
—h

(2.23)
yielding
—y/e+iB —y/e+ip —y/e+ip
exp(At)
20, t,e)dr= expAt)N(h,e)dr — Lyt dA.
—y/e—ip —y/e—ip —y/e—ip
(2.24)
Since
—y/e+ip N
. exp(At
lim / pe) dr =0, t>0,¢e>0, (2.25)
B—>—+00 A
—y/e—ip

one has to estimate (@#s— +o00) only the first integral in the right-hand part of (2.24).

We have

lexpn)N G, &) = exp(Tyt) INGLe)| Vi>0, xeL) (2.26)

wherel(e) ={LeC: A=—y/e+ifB, B € (—00, +00)}.

Thus, the proof of the lemma is reduced to a proper estimation of the norm of the matrix
N (A, ) on the straight lineC(¢).

Begin with a block-form representation for the matdx (1, ). Applying the Frobe-
nius formula [4] to the matrixA (A, ), given by its block form (2.18), one can conclude that
if the matricesA1(x, ¢) andG(h, &) = A(gr) — Ag(ek)AIl(A, g)Az(e)) are invertible,
then the matrixa—1(, ¢) exists and has the form

o ATT0L 0)Ga(h, ) —eATY, £) A2(e) G0, 8)
AR, e) = ( —1 -1 -1 )
-G (A,s)Ag(sk)Al (A, &) eG7(\,¢)
(2.27)
where
G1(h, &) = I + A2(eM) G L(h, £) As(eM) AT (A, ). (2.28)

Using Eq. (2.17), we can rewrite the mateix (A, ¢) as follows:
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0
A1(h, &) =AM (A, ¢), M(A,s):%/exr(s)»n)dAl(n)—1,1, re L(g).
—h

(2.29)

Since|l/A| < ¢/y, A € L(¢g), we obtain that linp, yo M(—y /e +iB, &) = —1I,, uniformly
in B € (—oo, +00). Hence,M (1, ¢) (and, consequentlyd1(X, ¢)) is invertible for all
sufficiently smalle > 0 andi € L(¢), and
ai

[(¥/e)? 4+ (Im2)2]L/2°
wherea; > 0 is some constant independentsofNote that inequality (2.30) implies that
IAT (A, &)l < eax/y for all sufficiently smalle > 0 andx e L(e).

Now, let us proceed to the matriX(a, ¢). In order to prove the existence of its inverse
matrix, first we shall show the existence of the matfix(x) for p e M ={u eC: p=
—y +iB, B € (—o0,+00)}. The latter follows directly from assumption A3. Moreover,
this assumption yields

re L), (2.30)

|aT. e <

az/e
[(y/e)2+ (Imr)2]L/2’
whereaz > 0 is some constant independentsofNote that inequality (2.31) implies the
uniform boundness of the matrix—1(¢) for all ¢ > 0 andx € L(¢).
Rewriting the matrixG (1, ¢) in the form

G(r,8) = AeM)[In — A Hen) Az(eM) AT (L, £) Aa(eM)]

and taking into account inequalities (2.30) and (2.31), one directly obtains that the matrix
G (1, ¢) is invertible for all sufficiently smalt > 0 andx € L(¢), and

[A72En ]| < e>0, reL(e), (2.31)

az/e

[(y/e)2+ (Imn)2)Y/2’
whereaz > 0 is some constant independentsofNote that (2.32) implies the uniform
boundness ofz1(x, ¢) for all sufficiently smalle > 0 andx € L(¢). The latter along
with the inequality (2.30) yields the uniform boundness of the magrixi, ¢) for all suf-
ficiently smalle > 0 andx € L(e).

Thus, the matrixA—1(1, ¢) exists for all sufficiently smalt > 0 andx € L(¢), and has
the form (2.27)—(2.28).

Now, by using (2.27) and the block form of the matrix(n) (see Eg. (1.2)), the matrix
N(X, &) becomes

reL(e), (2.32)

670 0 <

NG e) = = <N1(A’ &) N2, 8)) , (2.33)
A \N3(A,e) Na(A,e)
where
Nj(h,e) = ATT(h, ©)[G1(h, ) Aj(ed) — A2(eM)G LR, £) Aj42(e0) ]
(j=12), (2.34)

Ne(h, &) = G0, o) [Ar(eh) — As(eM) AT, ) Ak—2(er)]  (k=3,4), (2.35)
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0
A() = / expun)dAi(y) (U =1,....4). (2.36)
Zh

Equations (2.33)—(2.36) and inequalities (2.30), (2.32) yield for all sufficiently smal

as/e
[(y/e)2+ (mu)?]’
whereaq > 0 is some constant independentof

Now, Egs. (2.24)—(2.26) and inequality (2.37) leads directly to the statement of the
lemma. O

ING.o <

A e L(e), (2.37)

Lemma 2.5. Under assumptioi1, the following equations holdb, (t, ) =0 (k = 3, 4),
t>0,¢>0.

Proof. We have

[26.t, e <[a7 (e

, AeN(@B,e),t>0, >0, (2.38)

whereN(B,e) ={L€C: A=—v+ifB, oo <v < y/s)
Transforming the matrixA (A, ¢) to the form

0
A(k,«?)=k|:%/eXP(8M)dAs(n)— n+m:|,

—h

one directly obtains that, for any> 0, there exist two constanigs) > 0 andc(s) > 0,
such thatA(x, ¢) is invertible for allx € N (B8, €), |B] > b(s), and

[a7r0, )| < % reN(B,e), |B]>b(e). (2.39)

Inequalities (2.38) and (2.39) directly yield the statement of the lemma.
2.3. Another representation for the fundamental mafrix, ¢)

In this section, using the integral representation (2.12) of the fundamental matrix
v (¢, ¢), we obtain another integral representation for this matrix, which is based on the
structure of the set of roots of the characteristic equation (2.4) studied in Section 2.1.
Further in this section, the new integral representationifdr, ¢) is applied to obtain a
preliminary estimate of this matrix.

Theorem 2.2. Under assumption&1—-A3, for any sufficiently small > 0, the fundamental
matrix ¥ (¢, ¢) has the form
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1 —y/e+ip
W(r,e)z%{/Q(A,t,s)d)wﬂﬂr?oo / Q(A,t,s)d)\}, t>0,
D1 —y/e—ip

where the direction of the motion aloa@; is opposite to the clockwise one.

Proof. Lete > 0 be any such small that Theorem 2.1 is valid, abé any positive.
For anys > max{|p1l, | 02|}, consider the domains

D3={re(C: —o1 <Rer < —o2, =8 <IMmA < p1},

Dy={reC:. —o1 <Rer < —o7, p2 <IMmA < 8},
and

Ds={reC. —y/e <Rer < —0o1, —B <ImA < 8},

whereo, andpy (k =1, 2) are givenin (2.11). Then, taking into account Theorem 2.1, one
has due to the Cauchy theorem

/Q(A,t,e)d)\zo (=3,4,5), (2.40)
Dy

wheredD; is the boundary of the domaily; (I = 3, 4, 5) with the clockwise direction of
the motion along it.
Using (2.40) yields the following for ang > max| p1|, | o2l}:

—o+if —o+if 5
Q0 t,8)dh= / Q(A,t,s)d)wZ/Q(x,t,e)dx
—op—if —op—if I=3;p,
—y/e+iB
=/S2(A,t,8)dk+ / 2, t,e)dr
9Dy —y/e~ip
—y/e—if —oa+if
+ / Q0 t,e)dh+ / Q0 te)dh.  (2.41)
—op—if —y/e+ip

Applying Lemma 2.5, one obtains from (2.41)

—oo+if —y/e+ip
lim / Q(A,t,s)dk:/ﬂ(k,t,s)dl+ lim / (A, t,e)dA.
B— 400 B—+o0

—op—if 9D, —y/e—ip

(2.42)
Now, the statement of the theorem follows directly from Eqgs. (2.12) and (2.42).
Lemma 2.6. Under assumption®1-A3, the fundamental matrix (z, ¢) satisfies the

following inequality for all sufficiently smadl > O: | ¥ (¢, ¢)|| < aexp(—o2t), t > 0, where
a > 0ando» > 0 are some constants independent @b is given in(2.11))
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Proof. The statement of the lemma follows immediately from Theorem 2.2 and Lem-
mas 2.3and 2.4. O

2.4. Main result

Let Wy(z,¢), Wa(t, €), Wa(t, e), andWu(t, ) be the upper left-hand, upper right-hand,
lower left-hand, and lower right-hand blocks of the fundamental makrix, ¢) of the
dimensions: x n, n x m, m x n, andm x m, respectively.

Theorem 2.3. Under assumption81—A3, the following inequalities are satisfied for all
¢t > 0 and sufficiently smal > 0:

[@(t, o) <aexp(—o2t) (k=1,3), |wa(t, e)|| < asexp(—oat),
[wa(t,e)| <a [s exp(—oat) + exp(%w)},

wherea > 0, 02 > 0, andy > 0 are some constants independent @&, andy are given
in (2.11)and assumptioA3, respectively.

Proof. The inequalities for1 (¢, ¢) andWs(t, €), claimed in the theorem, follow directly
from Lemma 2.6. Let us prove the inequalities a1z, ¢) andW¥,(z, ). Denoting

(Wt e)
It e)= <W4(t’£)) (2.43)

and taking into account thak,(z, £) and Wu(z, ¢) are the corresponding blocks of the
fundamental matrix to system (1.1)—(1.2) in the case of the time-independent coefficients,
we obtain the equation far (¢, ¢)

0
dF;tt, £) = /[dAs(n)] I'(t+en,e), t>0, (2.44)

—h

and the initial conditions

r,s)= <IO ) , Ir'(t,e)=0, r<0O. (2.45)

Let the(m x m)-matrix @ (¢, ¢) be the fundamental matrix of the equation
0

= /[dA4(n)] y(t+en), t>0, yeE™. (2.46)
—h
Assumption A3 and results of [13] directly yield for alt> 0

dy(1)
dt

&

lo¢. )| <a exp(%”), r>0, (2.47)

wherea > 0 is some constant independentof
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Transforming the variabl€ in (2.44) and (2.45) as

Lt,e)=Tte)+ e, ['(te)= <@(? 8)) , (2.48)
we obtain the problem

0

drg’ 2 =/[dA5(n)]f(t+8n,8)+F(t,e), £>0,
—h
I'(t,e)=0 <0, (2.49)
where

F(t,e)= <foh[dA2(77)] O +en, s))
9 0 .
From (2.47), one has for afl> 0

F, o) <aexp L), >0, (2.50)
&

wherea > 0 is some constant independentof
Rewriting problem (2.49) in the equivalentintegral form (by application of the variation-
of-constant formula [13])

t
[t e)= / U(t—s,8)F(s,e)ds, >0, (2.51)
0
and using Lemma 2.6 and inequality (2.50), one obtains from (2.51) the following inequal-
ity for all sufficiently smalle > 0
|t e)| <acexp(—oat), >0, (2.52)

wherea > 0 is some constant independentof
Now, Eq. (2.48) and inequalities (2.47) and (2.52) yield the inequalitiegfor, £) and
Wu(t, ¢) claimed in the theorem. O

3. Thecase of thetime-dependent matrix A

We shall assume:

A4. The matrix-functions\; (t,n) (j =1, ...,4) aregivenfor, n) € [0, T] x (=00, +-00)
and satisfy the following conditions:

(@ A;,m=0,vVte[0,T],n=0;
(c) Aj(t,n)is continuous it € [0, T] uniformly in n € (—o0, 4+-00);



V.Y. Glizer / J. Math. Anal. Appl. 278 (2003) 409-433 423

(d) A;(,n) is continuous from the left in € (—#, 0) for eachr € [0, T,
(e) A;(t,n) has bounded variation in on the interval[—#, 0] for eachr € [0, T'] and
Var_p,01Aj(t,-) < d, whered > 0 is some constant.

Ab5. All roots A(¢) of the equation

0
det[/exp(kn)dnA4(t, n) — A1n1:| =0

—h

satisfy the inequality Re.(r)] < —2y for all ¢ € [0, T'], wherey > 0 is some constant.

Let ¥(t,s,¢) be the fundamental matrix of system (1.1)-(1.2). Li(,s, €),
Uo(t, s, e), W3(t, s, €), andWy(t, s, €) be the upper left-hand, upper right-hand, lower left-
hand, and lower right-hand blocks of the matéixz, s, ¢) of the dimensiona x n, n x m,

m X n, andm x m, respectively.

Theorem 3.1. Under assumptiond4 and A5, the following inequalities are satisfied for
all sufficiently smale > 0and0<s <t <T:

|Gos.o] <a k=13,  |va.s.6)] <ae.
oo 2]

wherea > 0 is some constant independentof

Proof. Let us prove the inequalities fa¥; (¢, s, ¢) (I = 2,4). The two other inequalities
are proved similarly.

Taking into account thabs(z, s, ¢) andWu(t, s, €) are the corresponding blocks of the
fundamental matrix to system (1.1)—(1.2), we obtain that they satisfy the equations

0 0
LZ(;}& 2 / [dyAs(t. m)] Wa(t +en.5.8) + / [dyAa(t. )] Walt +en. s, ),
“n kA
t>s, (3.1)
0 0
8% =/[dnA3(t,n)] Yot +em,s,¢€) +/[d,,A4(t,n)] Wat + en, s, €),
“n kA
t>s, (3.2)

and the initial conditions

Ur(t,s,e)=0, r<s, (3.3)
Wals, s, &) =1, Wu(t,s,e) =0, r<s. (3.4)
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Let X (¢, s, ) andY (¢, s, ¢) be the fundamental matrices of the equations

0
dzy) = /[dnAl(t, m]x(t+en), t>0, xekE",
—h
and
0
s% = /[dnA4(t, m]y+en), t>0,yeE",
—h

respectively.
From assumptions A4, A5, and results of [1], one directly has for all sufficiently small
e>0
[X@. s, e)|<a, 0<s<t<T, (3.5)
x(t—s)
&

[Y(@. s, 0 gaexp[— } 0<s<t<T, (3.6)

wherea > 0 is some constant independentof
Using the variation-of-constant formula [13], we can rewrite Egs. (3.1)—(3.4) in the
equivalent form

t 0

Wg(t,s,e):/X(t,t,e): /[dnAz(r, ] l1/4(r+8n,s,8)}dt, t>s, (3.7)
K} —h
1 t 0
Uy(t,s, &) =Y(t,s,6) + g/Y(t,r, g){ /[dnAg(r, m|Wa(r +en,s, 8)}611’,
s —h
t>s. (3.8)

Substituting (3.8) into (3.7), changing the order of the integration (by the Fubini's theo-
rem), and taking into account (3.3), (3.4), and th&t, s, ) = 0, r < s, one obtains

t 0
Uo(t,s, ) = Fi(t, s, 8)+/dt/[an2(t,r,n,8)] Uo(t +¢en,5,6), t=s5, (3.9
—h

N

where
t 0
Fi(, s, 8)=/X(t,a),£): /[d;Az(a),g)]Y(a)+8§,s,s) dow, (3.10)
s —h
Fat,t,n,e) = %Fl(t, 7,8)A3(t, n). (3.11)

Using (3.5) and (3.6) yields for all sufficiently small> 0
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|Fi(t,s, )| <as, 0<s<t<T, (3.12)

wherea > 0 is some constant independentof

Now, applying the method of successive approximations to Eq. (3.9) and taking into
account inequality (3.12) and assumption A4, one directly obtains, for all sufficiently
small ¢ > 0, the inequality fords(z, s, ¢) claimed in the theorem. Then, the inequality
for wy(z, s, €), claimed in the theorem, directly follows from Eg. (3.8) using (3.6) and the
inequality forw,(z,s,¢). O

4. Asymptotic solution

Consider the problem

0
d
0 = [[aacwmlza+en+ 10, 10 @D

Zh
Z(t) = QD(T)7 TE [_8h7 O]a (4.2)

where the matrixA.(z, n) and the vectot have the block form given in (1.2), and the
vectorsf, (r) andg(t) have the block form

1
fs(t)=00|{f1(t),gf2(t)}, ¢(t) = col{p1(), p2() }, (4.3)

the blocks f1 and ¢; are of the dimensiom, while the blocksf> and ¢, are of the
dimensionm.

In this section, a uniform asymptotic solution of problem (4.1)—(4.2) is constructed and
justified in both, time-independent and time-dependent matsixcases. The justification
of the asymptotic solution is based on the estimate of the fundamental matrix obtained in
the previous sections. We shall begin with the case of the time-dependent maffiken,
the case of the time-independent matixwill be considered.

4.1. Asymptotic solution of (4.1)—(4.2) (the time-dependent case)

In order to save the space, we restrict the consideration by the first-order asymptotic so-
lution. Such a restriction does not lead to the loss of generality because the formal construc-
tion and the justification of the first-order asymptotic solution contain all the peculiarities
arising in the obtaining asymptotic solution of arbitrary order.

In this section, in addition to assumptions A4 and A5, we shall assume:

AG6. The matricesA (¢, n) (j =1,...,4) satisfy the following conditions:

(@) Aj(t,n) is twice continuously differentiable with respect#e [0, '] uniformly in
1 € (—00, +00);
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(b) the first- and second-order partial derivatives of(¢,n) with respect tor have
bounded variations ip on the interval—#, O] for eachr € [0, T] and

REALYGD)
(—h,0] Otk
whered > 0 is some constant.

<d (k=1,2),

A7. The vector-functionsf;(r) (j = 1,2) are twice continuously differentiable fore
[0, T].

A8. There exists a numbep > 0, such that the vector-functiopg(r) (j = 1, 2) are twice
continuously differentiable for € [—soh, 0].

4.1.1. Formal representation of the first-order asymptotic solution
We seek the first-order asymptotic solutigf(z, ¢) = col{x1(z, €), y1(¢, &)} of (4.1)—
(4.2) on the interval € [0, T'] in the form

x1(t, &) = Fo(t) + ex1(0) + x5(E) + exb(€), &= g (4.4)

yi(t, &) = Jo(t) + e31(0) + Y3 (&) + ey (£). (4.5)

In (4.4)—(4.5), terms with an overbar form the outer asymptotic solution, while the terms
with the superscripi form the boundary correction in a neighborhood ef 0. The bound-

ary correction terms are considerable only for nonlarge valués ahd they vanish as

& — +o00. Such an approach and its modifications (the boundary function method) were
applied in the open literature to obtain an asymptotic solution of singularly perturbed dif-
ferential equations without delays as well as to differential-difference equations (including
neutral type ones) with a small delay but without the small multiplier for a part of the
derivatives (see [16-19]). Its modification was also applied to a boundary-value problem
for a class of singularly perturbed functional-differential equations with small deviations
of the argument (see [8]). In [5], the zeroth-order asymptotic solution of the form similar
to (4.4)—(4.5) was constructed and justified for a particular case of problem (4.1)—(4.2). An
asymptotic solution for singularly perturbed linear time-independent systems with nons-
mall delay was obtained in [15]. Although the structure of this solution (the outer solution
plus the boundary-layer correction) is similar to that in (4.4)—(4.5), the obtaining the as-
ymptotic solution as well as its justification substantially differ from those in the case of
the small delay.

Equations and initial conditions for the terms of the asymptotic solution (4.4)—(4.5)
are obtained substituting (-, ¢) into the problem (4.1)—(4.2) instead of ) and equating
terms of the same power efon both sides of the equations, separately depending on
and¢.

4.1.2. Equations fokg(r) and yo(r)
These equations have the form
dxo(t)

dt

= A1(D%o(1) + A2()Fo(1) + f1(1), t€[0,T], (4.6)
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0= Az(t)%o(t) + Aa()yo(t) + f2(t), t€[0,T], (4.7)

whereA (1) = [, dyA;(t, ) (j = 1.4,
Due to assumption A5, the matrigs(z) is nonsingular fot € [0, T']. Hence, Eq. (4.7)
can be uniquely resolved with respectyiz) as follows:

o) = A (O[As(DFo() + f2(1)]. t€[0,T). (4.8)
Substituting (4.8) into Eq. (4.6) yields the differential equationsigir)
dx - S o
x;:t) =[A1(1) — A2 A1 (D A3(1)] To() + f1(1) — Aa() AZ (1) f2(1),
t [0, 7). 4.9)

The initial condition for this equation will be obtained below.

Completing this section, let us note that, due to assumption A6, the matrix-functions
A.,' ) (j=1,...,4) are twice continuously differentiable on the interyal [0, T']. The
latter along with assumption A7 provides the twice continuous differentiabilityo¢f)
andyo(t) on the intervat € [0, T].

4.1.3. Equations foxj (&) andy§(é)
These equations have the form

dxg(®)
gz O 520 (4.10)
b [ 0
yss = /[dnAg(O, m]xg € +n) + /[d,,A4(O, m]ygE +m), £>0. (4.11)
—h “n

According to the above-mentioned property of the boundary correction terms, we have to
require thatxg(g) — 0 as¢ — +o0. Due to this requirement, one has from (4.10)

x§(£)=0, V& e[0,+o00). (4.12)

4.1.4. Initial conditions for obtaining the zeroth-order terms
These conditions have the form
%0(0) + xg(2) = ¢1(0), (4.13)
0(0) + ¥5(¢) = ¢2(0), (4.14)
where¢ =t/¢e, ¢ € [—h,0].
Due to (4.12), one has from (4.13) the initial condition for Eq. (4.9)
x0(0) = ¢1(0), (4.15)

yielding a unique solutiorrg(¢) of problem (4.9), (4.15) on the intervak [0, T]. Once
this solution is knownyg(r) is obtained directly from Eq. (4.8) fare [0, T1].
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Remark 4.1. Since the solution(z, ¢) = {x(¢, ¢), y(¢, €)} of problem (4.1)—(4.2) is deter-
mined not only on the intervd0, T'] but also on the intervdl-<h, 0), one has to determine
the outer zeroth-order termxg and yo for negative values of their argument. We shall do
this as follows:%o(t) = ¥2(2), jo(r) = ¥ (1), T <0, Wherew?(r) (j =1,2) are any
twice continuously differentiable functions fer< 0 satisfying the conditions:

@ | d*xo() @ | d o) 012
dth oo dit |y dTh o dth | T
Now, Egs. (4.13) and (4.14) yield
@) =0, fe[-h.0l (4.16)
¥§() =¢2(0) — 50(0), ¢ €[—h,0l. (4.17)

Using (4.12), (4.16), and assumption A5, and taking into account results of [13], one
directly obtains that problem (4.11), (4.17) has a unique solution satisfying the inequality

6@ | < aexp—k&), V& =0, (4.18)

wherea > 0 andx > 0 are some constants.

4.1.5. Equations fok1(¢) and y1(¢)
These equations have the form

0
dx _ _ dx
xdl(” = L0720 + A20)5100) + / ndy Ax(r, ) 4200
t dt
—h
0 .
+ / ndyAa(t, n) y;t(t), (4.19)
Zh
dyo(t) : dxo(t)
t - - t
yj( _ A3(0F1(0) + As)5100) + / ndy As(t, ) 2%
t dt
—h
0 .
+ / ndyAa(t, n) y;t(t). (4.20)
Zh

Similarly to Section 4.1.2, this set of equations can be rewritten in an equivalent form as
follows:
dx1(t)
dt

dyo(t)

= [A1(t) — A2() A1 (D) As(D)] F1(1) + A2()AZ (1) "

0

0
- — d_
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0 0
_ _ e
" |: / ndy Azl m = AZ(t)AZl(t) / ndyAat, 77)] );?t(t),

rel (4.21)

0

- dy _ di
ya() :A4l(t){ y;t(t) — Az()x1(1) _/UdnAs(t,n) x;t(t)
~h
0 pu

—/ndnA4(t,n) y;t(t)}, te[0,T]. (4.22)

—h

The initial condition for Eq. (4.21) will be obtained below.

Taking into account thakg(z) and yo(¢) are twice continuously differentiable for
t € [0, T], and using assumption A6, one directly has #i&i(r)/dt is continuous, as
well asdy1(t)/dt exists and is continuous, fore [0, T'].

4.1.6. Equations fox? (&) andy? (&)
These equations have the form

0
dxy(€)

L f [dyA200. )] 38E + ). £>0. (4.23)
" 0
dyéf) =/[dnA3(0, m]xt & +n) +/[d,,A4(O, m] ¥ & +n)
—h —h
0
+ / [dAa)]Ey8E +m). £>0, (4.24)

—h

whereA1(n) = 0A4(t, n)/0t];—o.
Integrating Eqg. (4.23) fromg = 0 to an arbitrary: yields

£, 0
d©=x0+ [ { [ [y4200 n)]y8<s+n>}ds, £>0. (4.25)
0 ‘-h
Requiring tharxll’(g) — 0 as¢ — 400, one directly has from (4.25)

+oo, O
x’;(0)=—/:/[d,7A2(o, n)]yg(s+n)}ds. (4.26)
0 “—h

Note that the convergence of the integral in (4.26) directly follows from (4.18).
Using (4.25) and (4.26), we obtain
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400 0

xﬂ@=—f{/ﬁmhmwﬂ%m+m}m,s>a (4.27)
& —h

yielding by (4.18)

[x2@©)| <aexp—kg), &=0, (4.28)

wherea > 0 andx > 0 are some constants.

4.1.7. Initial conditions for obtaining the first-order terms
These conditions have the form

dx d
c[ X;(’) } +51(0) + x2(0) =c[ 7w } ¢ e[—h,0], (4.29)
U P dt |i—o
dy d
;[ f?“) }-+&ﬂ0)+)€(€)=§[—%%92 }, ¢ €[~h,0l. (4.30)
t t=0 T =0
Setting¢ = 0in Eq. (4.29) and using Eq. (4.26), one obtains
400 0
%1(0) = / : / [d;A200, )] v§(s + n)} ds, (4.31)
0 —h

yielding a single solutiorx1(¢) of problem (4.21), (4.31) on the intervak [0, T]. Once
this solution is knownyy(¢) is obtained directly from Eq. (4.22) on the intervad [0, T'].

Remark 4.2. Similarly to Remark 4.1, we have to extend the outer first-order tainasid

y1 to the domain of negative values of their argument. We shall do this extension as follows:
%1(7) = ¥i(), 31(x) = ¥3(x), T <0, where 1//}(1) (j = 1,2) are any continuously
differentiable functions fot < 0 satisfying the conditions:

dyr|  dw) 3@ d
dek |._o  ditt |_g dek | _o  dtf

, k=01
t=0

From Egs. (4.29) and (4.30), one directly has the initial conditions for the first-order
boundary corrections

oy [do®| _diow| )
x1<c>—¢[ 0| - ,:J %00, ¢ el—h,0L, 4.32)
b o] dioo)| ] - )

y1<¢>-c[ 22 R ,:o] 5100, ¢ el—h,0l 4.33)

Using (4.17), (4.18), (4.28), (4.32), and assumption A5, and taking into account results
of [13], one directly obtains that problem (4.24), (4.33) has a unique solution satisfying the
inequality

y7®)] <aexp—«&), &=0, (4.34)

wherea > 0 andx > O are some constants.
Thus, we have completed the formal construction of the first-order uniform asymptotic
solution to problem (4.1)—(4.2) in the case of the time-dependent mairix
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4.1.8. Justification of the first-order asymptotic solution

Theorem 4.1. Under assumption®\4—A8, the unique solution of problerft.1)—(4.2)
z(t, &) = col{x(z, €), y(t, )} satisfies the inequalityz(r, &) — z1(z, €)|| < ag? for ¢ €
[0, T] and all sufficiently smalt > 0, wherez1(z, ¢) = col{x1(z, &), y1(¢, €)} is the first-
order asymptotic solution obtained in Sectich4.1-4.1.7anda > 0 is some constant
independent of.

Proof. First of all, let us note that the existence and uniqueness of solution of problem
(4.1)—(4.2) directly follows from results of [13].
Let us make the following transformation of variables in (4.1)—(4.2):

z(t,8) = z1(t, &) + v(t, €). (4.35)

Substituting (4.35) into (4.1)—(4.2) and applying results of Sections 4.1.1-4.1.7, one
obtains after some rearrangement the following problem for the new variable:

0
dv;tt, &) = /[dnAg(t, m]v(t +en.e)+g(t,e), tel0,T], (4.36)
“h
v(z,e) =¢(t,8), 1€[—¢h,0l, (4.37)
where
g(t,e) =col{gi(t, ¢), g2(t, )},  ¢(z,e) =col{gi(z, ), P2z, &)}, (4.38)

g1€E" g2 E™, ¢p1€ E", ¢ € E™, the vector-functiong; (¢, ¢), ¢;(t,¢) (j =1, 2) are
expressed in a known way hy(¢, ), they are continuous ine [0, T] andt € [—¢h, 0],
respectively, and satisfy the following inequalities for all sufficiently smaall O:

lestt. )] < ae[s +exp<—%t>}, leat. )| <as. tel0.T1, (4.39)

|¢j(z. o) <ae? j=1,2, te[-eh,0], (4.40)
wherea > 0 andk > 0 are some constants independent.of
Using the variation of constant formula [13], one directly has from (4.36) and (4.37)
eh —w/e
v(t, ) =¥ (1,0, (0, 8)+/l11(t,a),£)Ag{ / [d, A, n)]¢(w+8n),dw

0 —h
t

+ / w(t,s,e)g(s,e)ds, te€l0,T], (4.42)
0
wherev (¢, s, ¢) is the fundamental matrix of system (1.1)—(1.2), and

et 0 _ (Ast,m) Az(r,m)
A€—<o (1/8)1”1)’ A“””‘(As(t,n) A4(t,n))‘ (4.42)
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Using Theorem 3.1 and inequalities (4.39), (4.40), one directly obtains from Eq. (4.41) for
all sufficiently smalls > 0

vt, o) <ae?, te[0,TI. (4.43)
Now, the statement of the theorem directly follows from Eq. (4.35) and inequality (4.43).
O

4.2. Asymptotic solution of (4.1)—(4.2) (the time-independent case)
In this section, in addition to assumptions A1-A3 and A8, we shall assume:

A9. The vector-functionsf; (r) (j = 1,2) are twice continuously differentiable fare
[0, +00), andd* f;(t)/dt* (j =1,2, k=0, 1, 2) are bounded for ¢ [0, +-00).

The formal representation of the first-order asymptotic solutign ¢) = col{x1(z, &),
y1(t, )} of (4.1)—(4.2) on the interval € [0, +00) in the case of the time-independent
matrix A, is the same as (4.4)—(4.5). The algorithm of obtaining the terms of the asymptotic
expansion is the same as presented in Sections 4.1.2-4.1.7 with obvious simplification
owing to the time-independent characterof Assumption A9 along with assumptions Al
and A2 provide the existence and boundnesg*ay(r)/dt*, d*yo(r)/dt* (k = 0,1, 2)
anddfxy(r)/dt*, d*y1(r)/dt* (k = 0, 1) for ¢ € [0, +00). The justification of the first-
order asymptotic solution is carried out very similarly to the proof of Theorem 4.1 using
Theorem 2.3 instead of Theorem 3.1. Thus, we have the following proposition.

Theorem 4.2. Let the matrixA, be time independent. Then, under assumptidhsA3,
A8, and A9, the unique solution of probled.1)—(4.2)z(z, &) = col{x(z, ¢), y(¢, &)} sat-
isfies the inequalityz(z, €) — z1(z, €)|| < a&? for 1 € [0, +00) and all sufficiently small
e > 0, wherezi(z, ¢) is the first-order asymptotic solution, ard> 0 is some constant
independent of.
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