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Abstract

A singularly perturbed system of linear differential equations with a small delay is considere
timates of blocks of the fundamental matrix solution to this system uniformly valid for all sufficie
small values of the parameter of singular perturbations are obtained in the cases of time-inde
and time-dependent coefficients of the system. In the first case the system is considered on a
time-interval, while in the second case it is considered on a finite one. These estimates are ap
justify a uniform asymptotic solution of an initial-value problem for this system in both cases.
 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The notion of the fundamental matrix solution is a basic one in the theory of l
differential systems without as well as with delay. Majority of results in this theory
obtained by application of this notion. Therefore, it is very important to study va
properties of the fundamental matrix solution. In the present paper, we derive a bloc
estimate of the fundamental matrix solution (or, simply, the fundamental matrix) t
following system:
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dt
=

0∫
−h

[
dηAε(t, η)

]
z(t + εη), t � 0, (1.1)

whereε > 0 is a small parameter (ε � 1), h > 0 is a given constant independent ofε, the
matrixAε(t, η) and the vectorz have the block form

Aε(t, η)=
(

A1(t, η) A2(t, η)

(1/ε)A3(t, η) (1/ε)A4(t, η)

)
, z=

(
x

y

)
, (1.2)

where the blocksA1(t, η) andA4(t, η) are of the dimensionsn×n andm×m, respectively,
the blocksx andy are of the dimensionsn andm, respectively.

Such a type of singularly perturbed systems with the small delay has a consid
interest in the theory as well as in applications. Theoretically, it is interesting be
the system contains simultaneously two types of perturbations, associated with the
multiplier for a part of the derivatives and with the small delay. Practically, such sys
are interesting because they can serve as mathematical models in engineering pr
Some examples of such problems and the corresponding references can be found i

Estimates of the fundamental matrix for various particular cases of system (1.1)
were obtained in a number of works in the open literature. Thus in [12], the sy
containing only the “fast” variabley (the “fast” system) and a single pointwise del
was considered. An exponent-type estimate of the fundamental matrix was obtain
a finite interval of the time. Further, this result was extended to the “fast” system
single pointwise and distributed delays [6], and to the “fast” system with the genera
of delay [1]. In [5,10], a blockwise estimate of the fundamental matrix of the sys
containing both (“slow”x and “fast” y) variables, was derived on a finite time-interv
In [5], the case of single pointwise and distributed delays was considered, while in
the case of multiple pointwise and distributed delays was studied. The case of
independent system on an infinite time-interval was analysed in [11]. A blockwise es
of the fundamental matrix was obtained for the system containing single pointwis
distributed delays. Various applications of the above mentioned results on the est
of the fundamental matrix can be found in [1,5,6,9–12]. Note that estimates o
fundamental matrix for some singularly perturbed differential systems with non
delay were obtained in [2,3,14]. Since singularly perturbed differential systems with
and nonsmall delay much differ each other, methods for analysis of these two ty
singularly perturbed systems are essentially different.

In the present paper, we obtain blockwise estimates of the fundamental matrix o
tem (1.1)–(1.2) in the following two cases: (1) the matrixAε is time-independent an
t ∈ [0,+∞) (Section 2); (2) the matrixAε is time-dependent andt ∈ [0, T ], whereT > 0 is
a given constant independent ofε (Section 3). In Section 4, a uniform asymptotic solut
of system (1.1)–(1.2) with a given initial condition is constructed and justified in
cases. The justification of this asymptotic solution is based on the blockwise estim
the fundamental matrix obtained in the previous sections.

The following main notations are applied in this paper:
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(1) En is then-dimensional real Euclidean space;
(2) ‖·‖ denotes the Euclidean norm of either a vector or a matrix with complex, in ge

elements;
(3) In is then-dimensional identity matrix;
(4) C denotes the set of complex numbers;
(5) Reλ denotes the real part of a complex numberλ;
(6) Imλ denotes the imaginary part of a complex numberλ;
(7) i denotes the imaginary unit, i.e.,i = √−1;
(8) Var[a1,a2]A(η) denotes the variation of a matrix-functionA(η) on the intervalη ∈

[a1, a2];
(9) col(x, y), wherex ∈En, y ∈Em, denotes the block vector with the upper blockx and

the lower blocky.

2. The case of the time-independent matrix Aε

We shall assume:

A1. The matrix-functionsAj(η) (j = 1, . . . ,4) are given forη ∈ (−∞,+∞) and satisfy
the following conditions:

(a) Aj(η)= 0, ∀η � 0;
(b) Aj(η)=Aj(−h), ∀η � −h;
(c) Aj(η) is continuous from the left forη ∈ (−h,0);
(d) Aj(η) has bounded variation on the intervalη ∈ [−h,0].

Consider two systems associated with the original system (1.1)–(1.2). The first s
is the reduced-order one

dx̄(t)

dt
= Āx̄(t), t � 0, x̄ ∈En, (2.1)

where

Ā= Ā1 − Ā2Ā
−1
4 Ā3, Āj =

0∫
−h

dAj(η) (j = 1, . . . ,4). (2.2)

Here, we assume that the matrixĀ4 is invertible.
The second system is the boundary-layer one

dỹ(ξ)

dξ
=

0∫
−h

[
dA4(η)

]
ỹ(ξ + η), ξ � 0, ỹ ∈Em. (2.3)

We shall assume:

A2. All eigenvalues of the matrix̄A lie inside the left-hand half-plane.
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A3. All rootsµ of the equation

det∆̃(µ)= 0, ∆̃(µ)=
0∫

−h

exp(µη) dA4(η)−µIm,

satisfy the inequality Reµ<−γ , whereγ > 0 is some constant.

Obtaining the estimate of the fundamental matrix to system (1.1)–(1.2) in the ca
the time-independent coefficients is based on the asymptotic analysis (asε → +0) of the
set of roots of the characteristic equation of this system

det∆(λ, ε)= 0, ∆(λ, ε)=
0∫

−h

exp(ελη) dAε(η)− λIn+m. (2.4)

2.1. Asymptotic analysis of the set of roots of the characteristic equation

Consider the following equation forµ:

det∆̂(µ, ε)= 0, ∆̂(µ, ε)= ε

0∫
−h

exp(µη) dAε(η)−µIn+m. (2.5)

It is clear that if, for anyε > 0, λ(ε) is a root of Eq. (2.4), thenµ(ε)= ελ(ε) is a root of
Eq. (2.5). Similarly, ifµ(ε) is a root of (2.5), thenλ(ε)= µ(ε)/ε is a root of (2.4).

Settingε = 0 in (2.5), one obtains the equation

µn det∆̃(µ)= 0. (2.6)

Note that the set of roots of Eq. (2.6) consists ofµ= 0 and the set of roots of the equati
det∆̃(µ)= 0.

Lemma 2.1. Under assumptionsA1 andA3, let {εk} and{µk} be two sequences such th:

(1) {εk} is positive and convergent to zero;
(2) Reµk � −γ ;
(3) Eq. (2.5) is satisfied for all(µ, ε)= (µk, εk) (k = 1,2, . . .).

Then the sequence{µk} converges to zero.

Proof (by contradiction). Assume that the statement of the lemma is wrong. Then t
exists a numberδ > 0 and a subsequence of the sequence{µk}, such that this subsequen
lies outside of the closed circle which center is at the origin, and the radius equalsδ. For
the sake of simplicity (but without loss of generality), we assume that this subseq
coincides with the sequence{µk}. Thus, we have

|µk|> δ (k = 1,2, . . .). (2.7)
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The sequence{µk} can be either bounded or not. First, let us consider the case o
bounded sequence{µk}. In this case, there exists a convergent subsequence of{µk}. For
the sake of simplicity (but without loss of generality), we assume that this subseq
coincides with the sequence{µk}. Let µ̄= limk→+∞µk . Then due to the second conditio
of the lemma (Reµk � −γ ) and Eq. (2.7), we obtain that Reµ̄ � −γ and |µ̄| � δ.
Substitutingµ= µk andε = εk into Eq. (2.5), and calculating the limit ask → +∞ of the
resulting equation, one has thatµ̄ is a root of Eq. (2.6). However, the latter is impossi
becausēµ �= 0 and it cannot be a root of the equation det∆̃(µ)= 0 (see assumption A3).

Now, let us proceed to the case of the unbounded sequence{µk}. In this case, there
exists a subsequence of{µk} which tends to infinity. For the sake of simplicity (but witho
loss of generality), we assume that this subsequence coincides with the sequenc{µk}.
Then limk→+∞ |µk| = +∞. Taking into account (1.2), one can rewrite Eq. (2.5) w
(µ, ε)= (µk, εk) as follows:

(−1)n+mµn+m
k +µn+m−1

k f1(µk, εk)+ · · · + fn+m(µk, εk)= 0, (2.8)

wherefj (µk, εk) (j = 1,2, . . . , n+m) are polinoms ofεk with coefficients depending o
µk . Due to the second condition of the lemma, these coefficients are bounded uni
in k. Hence,{fj (µk, εk)} is bounded uniformly inj andk. Dividing both parts of Eq. (2.8
by µn+m

k and calculating the limit of the resulting equation ask → +∞, we obtain the
contradiction(−1)n+m = 0. This contradiction and the one in the case of the boun
sequence{µk} imply that the statement of the lemma is true.✷

Let λ̄s (s = 1, . . . , q � n) be all different eigenvalues of the matrix̄A.

Lemma 2.2. Under assumptionsA1 andA3, let {εk} and{λk} be two sequences such th:

(1) {εk} is positive and convergent to zero;
(2) limk→+∞ εkλk = 0;
(3) Eq. (2.4) is satisfied for all(λ, ε)= (λk, εk) (k = 1,2, . . .).

Then the sequence{λk} can be partitioned into a finite number(no more thanq) of different
subsequences each of which converges to one of the numbersλ̄s (s = 1, . . . , q).

Proof (by contradiction). Assume that the statement of the lemma is wrong. Then t
exists a numberδ > 0 and a subsequence of the sequence{λk}, such that this subsequen
lies outside of all the closed circles with the centers at the pointsλ̄s (s = 1, . . . , q) and with
the same radiusδ. For the sake of simplicity (but without loss of generality), we assu
that this subsequence coincides with the sequence{λk}. Thus, we have

|λk − λ̄s |> δ (k = 1,2, . . . , s = 1, . . . , q). (2.9)

Due to the second condition of the lemma and to assumption A3, one has|det∆̃(εkλk)| � a

for all sufficiently largek, where a > 0 is some constant independent ofk. Hence,
applying the formula for the determinant of a block matrix, one can rewrite the equ
det∆(λk, εk)= 0 in the equivalent form for all sufficiently largek:
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{ 0∫
−h

exp(εkλkη) dA1(η)− λkIn

−
( 0∫

−h

exp(εkλkη) dA2(η)

)(
∆̃(εkλk)

)−1

( 0∫
−h

exp(εkλkη) dA3(η)

)}
= 0.

(2.10)

The sequence{λk} can be either bounded or not. First, we consider the case of the bo
sequence{λk}. In this case there exists a convergent subsequence of{λk}. For the sake
of simplicity (but without loss of generality), we assume that this subsequence coin
with the sequence{λk}. Let λ̄ = limk→+∞ λk . Due to (2.9),|λ̄ − λ̄s | � δ (s = 1, . . . , q).
Calculating the limit of Eq. (2.10) ask → +∞, one has det(Ā − λ̄In) = 0. The latter
contradicts to the assumption thatλ̄s (s = 1, . . . , q) are all different eigenvalues of th
matrix Ā.

Now, let us proceed to the case of the unbounded sequence{λk}. This case is analyse
similarly to the case of the unbounded sequence{µk} in the proof of Lemma 2.1, an
it yields the contradiction(−1)n = 0. This contradiction and the one in the case of
bounded sequence{λk} show that the statement of the lemma is true.✷
Remark 2.1. Note that Lemmas 2.1 and 2.2 are an extension of results of [7].

Let σ1 > σ2 > 0 andρ1 < ρ2 are numbers, such that

−σ1 < Reλ̄s <−σ2, ρ1 < Im λ̄s < ρ2 (s = 1, . . . , q). (2.11)

Consider the domainsD1 = {λ ∈ C: −σ1 < Reλ < −σ2, ρ1 < Imλ < ρ2} andD2(ε) =
{λ ∈ C: Reλ <−γ /ε}.

Theorem 2.1. Under assumptionsA1–A3, for all sufficiently smallε > 0, any root of the
characteristic equation(2.4)belongs either to the domainD1 or to the domainD2(ε).

Proof (by contradiction). Assume that the statement of the theorem is wrong. Then
exist sequences{εk} and{λk}, such that:

(a) {εk} is positive and convergent to zero;
(b) Reλk � −γ /εk (k = 1,2, . . .);
(c) {λk} does not belong toD1;
(d) Eq. (2.4) is satisfied for all(λ, ε)= (λk, εk) (k = 1,2, . . .).

Consider the sequence{µk}, such thatµk = εkλk (k = 1,2, . . .). It is easy to see that th
sequences{εk} and{µk} satisfy the conditions of Lemma 2.1. Hence, limk→+∞ µk = 0.
The latter implies that the sequences{εk} and{λk} satisfy the conditions of Lemma 2.
Consequently, using (2.11), one has thatλk ∈ D1 for all sufficiently largek. The latter
contradicts to the condition (c), which proves the theorem.✷
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Corollary 2.1. Under assumptionsA1–A3, there exists a positive numberα, such that the
following inequality is satisfied for all sufficiently smallε > 0: Reλ(ε) < −α, whereλ(ε)
is any root of Eq.(2.4).

Proof. The corollary is an immediate consequence of Theorem 2.1. The numberα can be
taken as 0< α � σ2. ✷
2.2. Estimation of some integrals

Let Ψ (t, ε) be the fundamental matrix of system (1.1)–(1.2) in the case of the t
independent coefficients. Based on the well-known result of the representation
fundamental matrix to a linear autonomous differential system with delay [13], and
results of Section 2.1 (Corollary 2.1), one has for any sufficiently smallε > 0

Ψ (t, ε)= 1

2πi
lim

β→+∞

−α+iβ∫
−α−iβ

Ω(λ, t, ε) dλ,

Ω(λ, t, ε)= exp(λt)∆−1(λ, ε), t > 0, (2.12)

where 0< α � σ2, and the curve of the integration is the straight-line segment conne
the initial and terminal points.

Along with the integral in (2.12), let us consider the following integrals:

Φ1(t, ε)=
∫

∂D1

Ω(λ, t, ε) dλ, Φ2(t, ε)= lim
β→+∞

−γ /ε+iβ∫
−γ /ε−iβ

Ω(λ, t, ε) dλ, (2.13)

Φ3(t, ε)= lim
β→+∞

−ν2+iβ∫
−ν1+iβ

Ω(λ, t, ε) dλ, Φ4(t, ε)= lim
β→+∞

−ν2−iβ∫
−ν1−iβ

Ω(λ, t, ε) dλ,

(2.14)

where∂D1 is the boundary of the domainD1 with any direction of the motion along i
ν1 andν2 are any real numbers satisfying the inequalityγ /ε � ν1 � ν2 � σ2. In the second
integral in (2.13) and in both integrals in (2.14), the curve of the integration is the stra
line segment connecting the initial and terminal points.

In this section, we derive estimates of the integrals in (2.13) and (2.14), which w
used in the sequel.

Lemma 2.3. Under assumptionsA1–A3, the following inequality is satisfied for allt > 0
and sufficiently smallε > 0: ‖Φ1(t, ε)‖ � a exp(−σ2t), wherea > 0 is some constan
independent ofε.

Proof. First, let us note that for all sufficiently smallε > 0∥∥Ω(λ, t, ε)
∥∥� exp(−σ2t)

∥∥∆−1(λ, ε)
∥∥ ∀t > 0, λ ∈ ∂D1. (2.15)
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Thus, in order to prove the lemma, one has to estimate properly the norm of∆−1(λ, ε) on
the boundary ofD1.

Since limε→+0 ελ = 0 uniformly in λ ∈ ∂D1, we obtain that limε→+0 ∆̃(ελ) = Ā4
uniformly in λ ∈ ∂D1. Hence,∆̃(ελ) is invertible for all sufficiently smallε > 0 and
λ ∈ ∂D1, and∥∥∆̃−1(ελ)

∥∥� a1, λ ∈ ∂D1, (2.16)

wherea1 > 0 is some constant independent ofε.
Let us denote

∆1(λ, ε)=
0∫

−h

exp(ελη) dA1(η)− λIn, ∆2(µ)=
0∫

−h

exp(µη) dA2(η),

∆3(µ)=
0∫

−h

exp(µη) dA3(η). (2.17)

Using (2.17), the matrix∆(λ, ε) can be rewritten in the form

∆(λ, ε)=
(

∆1(λ, ε) ∆2(ελ)

(1/ε)∆3(ελ) (1/ε)∆̃(ελ)

)
. (2.18)

Now, applying the Frobenius formula [4] to the matrix∆(λ, ε), one can conclude tha
if the matrixH(λ, ε) = ∆1(λ, ε) − ∆2(ελ)∆̃

−1(ελ)∆3(ελ) is invertible, then the matrix
∆−1(λ, ε) exists and has the form

∆−1(λ, ε)=
(

H−1(λ, ε) −εH−1(λ, ε)∆2(ελ)∆̃
−1(ελ)

−∆̃−1(ελ)∆3(ελ)H
−1(λ, ε) ε∆̃−1(ελ)H1(λ, ε)

)
,

(2.19)

where

H1(λ, ε)= Im +∆3(ελ)H
−1(λ, ε)∆2(ελ)∆̃

−1(ελ). (2.20)

Since limε→+0H(λ, ε)= Ā− λIn uniformly in λ ∈ ∂D1, and all the eigenvalues of̄A lie
inside the domainD1, the matrixH(λ, ε) is invertible for all sufficiently smallε > 0 and
λ ∈ ∂D1, and∥∥H−1(λ, ε)

∥∥� a2, λ ∈ ∂D1, (2.21)

wherea2 > 0 is some constant independent ofε.
Thus, the matrix∆−1(λ, ε) exists for all sufficiently smallε > 0 and λ ∈ ∂D1.

Moreover, Eqs. (2.19), (2.20) and inequalities (2.16), (2.21) yield for all sufficiently s
ε > 0 ∥∥∆−1(λ, ε)

∥∥� a3, λ ∈ ∂D1, (2.22)

wherea3 > 0 is some constant independent ofε. Now, estimating the matrix-functio
Φ1(t, ε) by application of inequalities (2.15) and (2.22), one immediately obtains the
ment of the lemma. ✷
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Lemma 2.4. Under assumptionsA1–A3, the following inequality is satisfied for allt > 0
and sufficiently smallε > 0: ‖Φ2(t, ε)‖ � a exp(−γ t/ε), wherea > 0 is some constan
independent ofε.

Proof. First, assuming that∆−1(λ, ε) exists, let us rewrite it in the form

∆−1(λ, ε)=N(λ, ε)− 1

λ
In+m, N(λ, ε) = 1

λ
∆−1(λ, ε)

0∫
−h

exp(ελη) dAε(η),

(2.23)

yielding

−γ /ε+iβ∫
−γ /ε−iβ

Ω(λ, t, ε) dλ=
−γ /ε+iβ∫

−γ /ε−iβ

exp(λt)N(λ, ε) dλ−
−γ /ε+iβ∫

−γ /ε−iβ

exp(λt)

λ
In+m dλ.

(2.24)

Since

lim
β→+∞

−γ /ε+iβ∫
−γ /ε−iβ

exp(λt)

λ
dλ= 0, t > 0, ε > 0, (2.25)

one has to estimate (asβ → +∞) only the first integral in the right-hand part of (2.24).
We have

∥∥exp(λt)N(λ, ε)
∥∥= exp

(−γ t

ε

)∥∥N(λ, ε)
∥∥ ∀t > 0, λ ∈L(ε), (2.26)

whereL(ε)= {λ ∈ C: λ= −γ /ε+ iβ, β ∈ (−∞,+∞)}.
Thus, the proof of the lemma is reduced to a proper estimation of the norm of the m

N(λ, ε) on the straight lineL(ε).
Begin with a block-form representation for the matrix∆−1(λ, ε). Applying the Frobe-

nius formula [4] to the matrix∆(λ, ε), given by its block form (2.18), one can conclude t
if the matrices∆1(λ, ε) andG(λ, ε) = ∆̃(ελ) − ∆3(ελ)∆

−1
1 (λ, ε)∆2(ελ) are invertible,

then the matrix∆−1(λ, ε) exists and has the form

∆−1(λ, ε)=
(

∆−1
1 (λ, ε)G1(λ, ε) −ε∆−1

1 (λ, ε)∆2(ελ)G
−1(λ, ε)

−G−1(λ, ε)∆3(ελ)∆
−1
1 (λ, ε) εG−1(λ, ε)

)
,

(2.27)

where

G1(λ, ε)= In +∆2(ελ)G
−1(λ, ε)∆3(ελ)∆

−1
1 (λ, ε). (2.28)

Using Eq. (2.17), we can rewrite the matrix∆1(λ, ε) as follows:
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∆1(λ, ε)= λM(λ, ε), M(λ, ε)= 1

λ

0∫
−h

exp(ελη) dA1(η)− In, λ ∈L(ε).

(2.29)

Since|1/λ| � ε/γ , λ ∈ L(ε), we obtain that limε→+0M(−γ /ε + iβ, ε)= −In uniformly
in β ∈ (−∞,+∞). Hence,M(λ, ε) (and, consequently,∆1(λ, ε)) is invertible for all
sufficiently smallε > 0 andλ ∈ L(ε), and∥∥∆−1

1 (λ, ε)
∥∥� a1

[(γ /ε)2 + (Imλ)2]1/2 , λ ∈ L(ε), (2.30)

wherea1 > 0 is some constant independent ofε. Note that inequality (2.30) implies tha
‖∆−1

1 (λ, ε)‖ � εa1/γ for all sufficiently smallε > 0 andλ ∈ L(ε).
Now, let us proceed to the matrixG(λ, ε). In order to prove the existence of its inver

matrix, first we shall show the existence of the matrix∆̃−1(µ) for µ ∈ M = {µ ∈ C: µ =
−γ + iβ, β ∈ (−∞,+∞)}. The latter follows directly from assumption A3. Moreov
this assumption yields∥∥∆̃−1(ελ)

∥∥� a2/ε

[(γ /ε)2 + (Imλ)2]1/2 , ε > 0, λ ∈L(ε), (2.31)

wherea2 > 0 is some constant independent ofε. Note that inequality (2.31) implies th
uniform boundness of the matrix̃∆−1(ελ) for all ε > 0 andλ ∈ L(ε).

Rewriting the matrixG(λ, ε) in the form

G(λ, ε)= ∆̃(ελ)
[
Im − ∆̃−1(ελ)∆3(ελ)∆

−1
1 (λ, ε)∆2(ελ)

]
and taking into account inequalities (2.30) and (2.31), one directly obtains that the m
G(λ, ε) is invertible for all sufficiently smallε > 0 andλ ∈L(ε), and∥∥G−1(λ, ε)

∥∥� a3/ε

[(γ /ε)2 + (Imλ)2]1/2 , λ ∈ L(ε), (2.32)

wherea3 > 0 is some constant independent ofε. Note that (2.32) implies the uniform
boundness ofG−1(λ, ε) for all sufficiently smallε > 0 andλ ∈ L(ε). The latter along
with the inequality (2.30) yields the uniform boundness of the matrixG1(λ, ε) for all suf-
ficiently smallε > 0 andλ ∈L(ε).

Thus, the matrix∆−1(λ, ε) exists for all sufficiently smallε > 0 andλ ∈ L(ε), and has
the form (2.27)–(2.28).

Now, by using (2.27) and the block form of the matrixAε(η) (see Eq. (1.2)), the matri
N(λ, ε) becomes

N(λ, ε)= 1

λ

(
N1(λ, ε) N2(λ, ε)

N3(λ, ε) N4(λ, ε)

)
, (2.33)

where

Nj (λ, ε)=∆−1
1 (λ, ε)

[
G1(λ, ε)Aj (ελ)−∆2(ελ)G

−1(λ, ε)Aj+2(ελ)
]

(j = 1,2), (2.34)

Nk(λ, ε)=G−1(λ, ε)
[
Ak(ελ)−∆3(ελ)∆

−1(λ, ε)Ak−2(ελ)
]

(k = 3,4), (2.35)
1
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l

Al (µ)=
0∫

−h

exp(µη) dAl(η) (l = 1, . . . ,4). (2.36)

Equations (2.33)–(2.36) and inequalities (2.30), (2.32) yield for all sufficiently smallε > 0

∥∥N(λ, ε)
∥∥� a4/ε

[(γ /ε)2 + (Imλ)2] , λ ∈ L(ε), (2.37)

wherea4 > 0 is some constant independent ofε.
Now, Eqs. (2.24)–(2.26) and inequality (2.37) leads directly to the statement o

lemma. ✷
Lemma 2.5. Under assumptionA1, the following equations hold: Φk(t, ε)= 0 (k = 3,4),
t > 0, ε > 0.

Proof. We have

∥∥Ω(λ, t, ε)
∥∥�

∥∥∆−1(λ, ε)
∥∥, λ ∈ N (β, ε), t > 0, ε > 0, (2.38)

whereN (β, ε)= {λ ∈ C: λ= −ν + iβ, σ2 � ν � γ /ε}.
Transforming the matrix∆(λ, ε) to the form

∆(λ, ε)= λ

[
1

λ

0∫
−h

exp(ελη) dAε(η)− In+m

]
,

one directly obtains that, for anyε > 0, there exist two constantsb(ε) > 0 andc(ε) > 0,
such that∆(λ, ε) is invertible for allλ ∈ N (β, ε), |β|> b(ε), and

∥∥∆−1(λ, ε)
∥∥� c(ε)

|β| , λ ∈N (β, ε), |β|> b(ε). (2.39)

Inequalities (2.38) and (2.39) directly yield the statement of the lemma.✷
2.3. Another representation for the fundamental matrixΨ (t, ε)

In this section, using the integral representation (2.12) of the fundamental m
Ψ (t, ε), we obtain another integral representation for this matrix, which is based o
structure of the set of roots of the characteristic equation (2.4) studied in Sectio
Further in this section, the new integral representation forΨ (t, ε) is applied to obtain a
preliminary estimate of this matrix.

Theorem 2.2. Under assumptionsA1–A3, for any sufficiently smallε > 0, the fundamenta
matrixΨ (t, ε) has the form
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Ψ (t, ε)= 1

2πi

{ ∫
∂D1

Ω(λ, t, ε) dλ+ lim
β→+∞

−γ /ε+iβ∫
−γ /ε−iβ

Ω(λ, t, ε) dλ

}
, t > 0,

where the direction of the motion along∂D1 is opposite to the clockwise one.

Proof. Let ε > 0 be any such small that Theorem 2.1 is valid, andt be any positive.
For anyβ > max{|ρ1|, |ρ2|}, consider the domains

D3 = {λ ∈ C: −σ1 < Reλ <−σ2, −β < Imλ < ρ1},
D4 = {λ ∈ C: −σ1 < Reλ <−σ2, ρ2 < Imλ < β},

and

D5 = {λ ∈ C: −γ /ε < Reλ <−σ1, −β < Imλ < β},
whereσk andρk (k = 1,2) are given in (2.11). Then, taking into account Theorem 2.1,
has due to the Cauchy theorem∫

∂Dl

Ω(λ, t, ε) dλ= 0 (l = 3,4,5), (2.40)

where∂Dl is the boundary of the domainDl (l = 3,4,5) with the clockwise direction o
the motion along it.

Using (2.40) yields the following for anyβ > max{|ρ1|, |ρ2|}:
−σ2+iβ∫

−σ2−iβ

Ω(λ, t, ε) dλ=
−σ2+iβ∫

−σ2−iβ

Ω(λ, t, ε) dλ+
5∑

l=3

∫
∂Dl

Ω(λ, t, ε) dλ

=
∫

∂D1

Ω(λ, t, ε) dλ+
−γ /ε+iβ∫

−γ /ε−iβ

Ω(λ, t, ε) dλ

+
−γ /ε−iβ∫
−σ2−iβ

Ω(λ, t, ε) dλ+
−σ2+iβ∫

−γ /ε+iβ

Ω(λ, t, ε) dλ. (2.41)

Applying Lemma 2.5, one obtains from (2.41)

lim
β→+∞

−σ2+iβ∫
−σ2−iβ

Ω(λ, t, ε) dλ=
∫

∂D1

Ω(λ, t, ε) dλ+ lim
β→+∞

−γ /ε+iβ∫
−γ /ε−iβ

Ω(λ, t, ε) dλ.

(2.42)

Now, the statement of the theorem follows directly from Eqs. (2.12) and (2.42).✷
Lemma 2.6. Under assumptionsA1–A3, the fundamental matrixΨ (t, ε) satisfies the
following inequality for all sufficiently smallε > 0: ‖Ψ (t, ε)‖ � a exp(−σ2t), t > 0, where
a > 0 andσ2 > 0 are some constants independent ofε (σ2 is given in(2.11)).
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Proof. The statement of the lemma follows immediately from Theorem 2.2 and L
mas 2.3 and 2.4. ✷
2.4. Main result

Let Ψ1(t, ε), Ψ2(t, ε), Ψ3(t, ε), andΨ4(t, ε) be the upper left-hand, upper right-han
lower left-hand, and lower right-hand blocks of the fundamental matrixΨ (t, ε) of the
dimensionsn× n, n×m, m× n, andm×m, respectively.

Theorem 2.3. Under assumptionsA1–A3, the following inequalities are satisfied for a
t > 0 and sufficiently smallε > 0:∥∥Ψk(t, ε)

∥∥� a exp(−σ2t) (k = 1,3),
∥∥Ψ2(t, ε)

∥∥� aεexp(−σ2t),∥∥Ψ4(t, ε)
∥∥� a

[
εexp(−σ2t)+ exp

(−γ t

ε

)]
,

wherea > 0, σ2 > 0, andγ > 0 are some constants independent ofε (σ2 andγ are given
in (2.11)and assumptionA3, respectively).

Proof. The inequalities forΨ1(t, ε) andΨ3(t, ε), claimed in the theorem, follow directl
from Lemma 2.6. Let us prove the inequalities forΨ2(t, ε) andΨ4(t, ε). Denoting

Γ (t, ε)=
(
Ψ2(t, ε)

Ψ4(t, ε)

)
(2.43)

and taking into account thatΨ2(t, ε) andΨ4(t, ε) are the corresponding blocks of th
fundamental matrix to system (1.1)–(1.2) in the case of the time-independent coeffi
we obtain the equation forΓ (t, ε)

dΓ (t, ε)

dt
=

0∫
−h

[
dAε(η)

]
Γ (t + εη, ε), t > 0, (2.44)

and the initial conditions

Γ (0, ε)=
(

0
Im

)
, Γ (t, ε)= 0, t < 0. (2.45)

Let the(m×m)-matrixΘ(t, ε) be the fundamental matrix of the equation

ε
dy(t)

dt
=

0∫
−h

[
dA4(η)

]
y(t + εη), t > 0, y ∈Em. (2.46)

Assumption A3 and results of [13] directly yield for allε > 0

∥∥Θ(t, ε)
∥∥� a exp

(−γ t

ε

)
, t > 0, (2.47)

wherea > 0 is some constant independent ofε.
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Transforming the variableΓ in (2.44) and (2.45) as

Γ (t, ε)= Γ̃ (t, ε)+ Γ̂ (t, ε), Γ̂ (t, ε)=
(

0
Θ(t, ε)

)
, (2.48)

we obtain the problem

dΓ̃ (t, ε)

dt
=

0∫
−h

[
dAε(η)

]
Γ̃ (t + εη, ε)+ F(t, ε), t > 0,

Γ̃ (t, ε)= 0, t � 0, (2.49)

where

F(t, ε)=
(∫ 0

−h
[dA2(η)]Θ(t + εη, ε)

0

)
.

From (2.47), one has for allε > 0

∥∥F(t, ε)∥∥� a exp

(−γ t

ε

)
, t > 0, (2.50)

wherea > 0 is some constant independent ofε.
Rewriting problem (2.49) in the equivalent integral form (by application of the varia

of-constant formula [13])

Γ̃ (t, ε)=
t∫

0

Ψ (t − s, ε)F (s, ε) ds, t > 0, (2.51)

and using Lemma 2.6 and inequality (2.50), one obtains from (2.51) the following ine
ity for all sufficiently smallε > 0∥∥Γ̃ (t, ε)

∥∥� aεexp(−σ2t), t > 0, (2.52)

wherea > 0 is some constant independent ofε.
Now, Eq. (2.48) and inequalities (2.47) and (2.52) yield the inequalities forΨ2(t, ε) and

Ψ4(t, ε) claimed in the theorem.✷

3. The case of the time-dependent matrix Aε

We shall assume:

A4. The matrix-functionsAj(t, η) (j = 1, . . . ,4) are given for(t, η) ∈ [0, T ]×(−∞,+∞)

and satisfy the following conditions:

(a) Aj(t, η)= 0, ∀t ∈ [0, T ], η � 0;
(b) Aj(t, η)=Aj(t,−h), ∀t ∈ [0, T ], η � −h;
(c) Aj(t, η) is continuous int ∈ [0, T ] uniformly in η ∈ (−∞,+∞);
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(d) Aj(t, η) is continuous from the left inη ∈ (−h,0) for eacht ∈ [0, T ];
(e) Aj(t, η) has bounded variation inη on the interval[−h,0] for eacht ∈ [0, T ] and

Var[−h,0]Aj(t, ·)� d , whered > 0 is some constant.

A5. All roots λ(t) of the equation

det

[ 0∫
−h

exp(λη) dηA4(t, η)− λIm

]
= 0

satisfy the inequality Re[λ(t)] � −2χ for all t ∈ [0, T ], whereχ > 0 is some constant.

Let Ψ (t, s, ε) be the fundamental matrix of system (1.1)–(1.2). LetΨ1(t, s, ε),
Ψ2(t, s, ε), Ψ3(t, s, ε), andΨ4(t, s, ε) be the upper left-hand, upper right-hand, lower le
hand, and lower right-hand blocks of the matrixΨ (t, s, ε) of the dimensionsn× n, n×m,
m× n, andm×m, respectively.

Theorem 3.1. Under assumptionsA4 andA5, the following inequalities are satisfied fo
all sufficiently smallε > 0 and0 � s � t � T :∥∥Ψk(t, s, ε)

∥∥� a (k = 1,3),
∥∥Ψ2(t, s, ε)

∥∥� aε,∥∥Ψ4(t, s, ε)
∥∥� a

[
ε + exp

(
−χ(t − s)

ε

)]
,

wherea > 0 is some constant independent ofε.

Proof. Let us prove the inequalities forΨl(t, s, ε) (l = 2,4). The two other inequalitie
are proved similarly.

Taking into account thatΨ2(t, s, ε) andΨ4(t, s, ε) are the corresponding blocks of th
fundamental matrix to system (1.1)–(1.2), we obtain that they satisfy the equations

∂Ψ2(t, s, ε)

∂t
=

0∫
−h

[
dηA1(t, η)

]
Ψ2(t + εη, s, ε)+

0∫
−h

[
dηA2(t, η)

]
Ψ4(t + εη, s, ε),

t > s, (3.1)

ε
∂Ψ4(t, s, ε)

∂t
=

0∫
−h

[
dηA3(t, η)

]
Ψ2(t + εη, s, ε)+

0∫
−h

[
dηA4(t, η)

]
Ψ4(t + εη, s, ε),

t > s, (3.2)

and the initial conditions

Ψ2(t, s, ε)= 0, t � s, (3.3)

Ψ4(s, s, ε)= Im, Ψ4(t, s, ε)= 0, t < s. (3.4)
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LetX(t, s, ε) andY (t, s, ε) be the fundamental matrices of the equations

dx(t)

dt
=

0∫
−h

[
dηA1(t, η)

]
x(t + εη), t > 0, x ∈En,

and

ε
dy(t)

dt
=

0∫
−h

[
dηA4(t, η)

]
y(t + εη), t > 0, y ∈Em,

respectively.
From assumptions A4, A5, and results of [1], one directly has for all sufficiently s

ε > 0 ∥∥X(t, s, ε)
∥∥� a, 0 � s � t � T , (3.5)∥∥Y (t, s, ε)∥∥� a exp

[
−χ(t − s)

ε

]
, 0� s � t � T , (3.6)

wherea > 0 is some constant independent ofε.
Using the variation-of-constant formula [13], we can rewrite Eqs. (3.1)–(3.4) in

equivalent form

Ψ2(t, s, ε)=
t∫

s

X(t, τ, ε)

{ 0∫
−h

[
dηA2(τ, η)

]
Ψ4(τ + εη, s, ε)

}
dτ, t � s, (3.7)

Ψ4(t, s, ε)= Y (t, s, ε)+ 1

ε

t∫
s

Y (t, τ, ε)

{ 0∫
−h

[
dηA3(τ, η)

]
Ψ2(τ + εη, s, ε)

}
dτ,

t � s. (3.8)

Substituting (3.8) into (3.7), changing the order of the integration (by the Fubini’s
rem), and taking into account (3.3), (3.4), and thatY (t, s, ε)= 0, t < s, one obtains

Ψ2(t, s, ε)= F1(t, s, ε)+
t∫

s

dτ

0∫
−h

[
dηF2(t, τ, η, ε)

]
Ψ2(τ + εη, s, ε), t � s, (3.9)

where

F1(t, s, ε)=
t∫

s

X(t,ω, ε)

{ 0∫
−h

[
dζA2(ω, ζ )

]
Y (ω+ εζ, s, ε)

}
dω, (3.10)

F2(t, τ, η, ε)= 1

ε
F1(t, τ, ε)A3(τ, η). (3.11)

Using (3.5) and (3.6) yields for all sufficiently smallε > 0



V.Y. Glizer / J. Math. Anal. Appl. 278 (2003) 409–433 425

g into
ently
lity
the

e

d and
n
ned in

tic so-
nstruc-
rities
∥∥F1(t, s, ε)
∥∥� aε, 0 � s � t � T , (3.12)

wherea > 0 is some constant independent ofε.
Now, applying the method of successive approximations to Eq. (3.9) and takin

account inequality (3.12) and assumption A4, one directly obtains, for all suffici
small ε > 0, the inequality forΨ2(t, s, ε) claimed in the theorem. Then, the inequa
for Ψ4(t, s, ε), claimed in the theorem, directly follows from Eq. (3.8) using (3.6) and
inequality forΨ2(t, s, ε). ✷

4. Asymptotic solution

Consider the problem

dz(t)

dt
=

0∫
−h

[
dηAε(t, η)

]
z(t + εη)+ fε(t), t � 0, (4.1)

z(τ )= ϕ(τ), τ ∈ [−εh,0], (4.2)

where the matrixAε(t, η) and the vectorz have the block form given in (1.2), and th
vectorsfε(t) andϕ(τ) have the block form

fε(t)= col

{
f1(t),

1

ε
f2(t)

}
, ϕ(τ )= col

{
ϕ1(τ ), ϕ2(τ )

}
, (4.3)

the blocksf1 and ϕ1 are of the dimensionn, while the blocksf2 and ϕ2 are of the
dimensionm.

In this section, a uniform asymptotic solution of problem (4.1)–(4.2) is constructe
justified in both, time-independent and time-dependent matrixAε, cases. The justificatio
of the asymptotic solution is based on the estimate of the fundamental matrix obtai
the previous sections. We shall begin with the case of the time-dependent matrixAε. Then,
the case of the time-independent matrixAε will be considered.

4.1. Asymptotic solution of (4.1)–(4.2) (the time-dependent case)

In order to save the space, we restrict the consideration by the first-order asympto
lution. Such a restriction does not lead to the loss of generality because the formal co
tion and the justification of the first-order asymptotic solution contain all the peculia
arising in the obtaining asymptotic solution of arbitrary order.

In this section, in addition to assumptions A4 and A5, we shall assume:

A6. The matricesAj(t, η) (j = 1, . . . ,4) satisfy the following conditions:

(a) Aj(t, η) is twice continuously differentiable with respect tot ∈ [0, T ] uniformly in
η ∈ (−∞,+∞);
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on
(b) the first- and second-order partial derivatives ofAj(t, η) with respect tot have
bounded variations inη on the interval[−h,0] for eacht ∈ [0, T ] and

Var
[−h,0]

∂kAj (t, ·)
∂tk

� d (k = 1,2),

whered > 0 is some constant.

A7. The vector-functionsfj (t) (j = 1,2) are twice continuously differentiable fort ∈
[0, T ].

A8. There exists a numberε0 > 0, such that the vector-functionsϕj (τ ) (j = 1,2) are twice
continuously differentiable forτ ∈ [−ε0h,0].

4.1.1. Formal representation of the first-order asymptotic solution
We seek the first-order asymptotic solutionz1(t, ε) = col{x1(t, ε), y1(t, ε)} of (4.1)–

(4.2) on the intervalt ∈ [0, T ] in the form

x1(t, ε)= x̄0(t)+ εx̄1(t)+ xb0(ξ)+ εxb1(ξ), ξ = t

ε
, (4.4)

y1(t, ε)= ȳ0(t)+ εȳ1(t)+ yb0(ξ)+ εyb1(ξ). (4.5)

In (4.4)–(4.5), terms with an overbar form the outer asymptotic solution, while the t
with the superscriptb form the boundary correction in a neighborhood oft = 0. The bound-
ary correction terms are considerable only for nonlarge values ofξ , and they vanish a
ξ → +∞. Such an approach and its modifications (the boundary function method)
applied in the open literature to obtain an asymptotic solution of singularly perturbe
ferential equations without delays as well as to differential-difference equations (incl
neutral type ones) with a small delay but without the small multiplier for a part o
derivatives (see [16–19]). Its modification was also applied to a boundary-value pr
for a class of singularly perturbed functional-differential equations with small devia
of the argument (see [8]). In [5], the zeroth-order asymptotic solution of the form si
to (4.4)–(4.5) was constructed and justified for a particular case of problem (4.1)–(4.
asymptotic solution for singularly perturbed linear time-independent systems with
mall delay was obtained in [15]. Although the structure of this solution (the outer sol
plus the boundary-layer correction) is similar to that in (4.4)–(4.5), the obtaining th
ymptotic solution as well as its justification substantially differ from those in the ca
the small delay.

Equations and initial conditions for the terms of the asymptotic solution (4.4)–
are obtained substitutingz1(·, ε) into the problem (4.1)–(4.2) instead ofz(·) and equating
terms of the same power ofε on both sides of the equations, separately dependingt
andξ .

4.1.2. Equations for̄x0(t) and ȳ0(t)

These equations have the form

dx̄0(t) = Ā1(t)x̄0(t)+ Ā2(t)ȳ0(t)+ f1(t), t ∈ [0, T ], (4.6)

dt
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ave to
0 = Ā3(t)x̄0(t)+ Ā4(t)ȳ0(t)+ f2(t), t ∈ [0, T ], (4.7)

whereĀj (t)= ∫ 0
−h

dηAj (t, η) (j = 1, . . . ,4).
Due to assumption A5, the matrix̄A4(t) is nonsingular fort ∈ [0, T ]. Hence, Eq. (4.7

can be uniquely resolved with respect toȳ0(t) as follows:

ȳ0(t)= −Ā−1
4 (t)

[
Ā3(t)x̄0(t)+ f2(t)

]
, t ∈ [0, T ]. (4.8)

Substituting (4.8) into Eq. (4.6) yields the differential equation forx̄0(t)

dx̄0(t)

dt
= [

Ā1(t)− Ā2(t)Ā
−1
4 (t)Ā3(t)

]
x̄0(t)+ f1(t)− Ā2(t)Ā

−1
4 (t)f2(t),

t ∈ [0, T ]. (4.9)

The initial condition for this equation will be obtained below.
Completing this section, let us note that, due to assumption A6, the matrix-func

Āj (t) (j = 1, . . . ,4) are twice continuously differentiable on the intervalt ∈ [0, T ]. The
latter along with assumption A7 provides the twice continuous differentiability ofx̄0(t)

andȳ0(t) on the intervalt ∈ [0, T ].

4.1.3. Equations forxb0(ξ) andyb0(ξ)
These equations have the form

dxb0(ξ)

dξ
= 0, ξ � 0, (4.10)

dyb0(ξ)

dξ
=

0∫
−h

[
dηA3(0, η)

]
xb0(ξ + η)+

0∫
−h

[
dηA4(0, η)

]
yb0(ξ + η), ξ � 0. (4.11)

According to the above-mentioned property of the boundary correction terms, we h
require thatxb0(ξ)→ 0 asξ → +∞. Due to this requirement, one has from (4.10)

xb0(ξ)= 0, ∀ξ ∈ [0,+∞). (4.12)

4.1.4. Initial conditions for obtaining the zeroth-order terms
These conditions have the form

x̄0(0)+ xb0(ζ )= ϕ1(0), (4.13)

ȳ0(0)+ yb0(ζ )= ϕ2(0), (4.14)

whereζ = τ/ε, ζ ∈ [−h,0].
Due to (4.12), one has from (4.13) the initial condition for Eq. (4.9)

x̄0(0)= ϕ1(0), (4.15)

yielding a unique solution̄x0(t) of problem (4.9), (4.15) on the intervalt ∈ [0, T ]. Once
this solution is known,̄y0(t) is obtained directly from Eq. (4.8) fort ∈ [0, T ].
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Remark 4.1. Since the solutionz(t, ε)= {x(t, ε), y(t, ε)} of problem (4.1)–(4.2) is deter
mined not only on the interval[0, T ] but also on the interval[−εh,0), one has to determin
the outer zeroth-order terms̄x0 andȳ0 for negative values of their argument. We shall
this as follows:x̄0(τ ) = ψ0

1(τ ), ȳ0(τ ) = ψ0
2(τ ), τ < 0, whereψ0

j (τ ) (j = 1,2) are any
twice continuously differentiable functions forτ � 0 satisfying the conditions:

dkψ0
1(τ )

dτ k

∣∣∣∣
τ=0

= dkx̄0(t)

dtk

∣∣∣∣
t=0

,
dkψ0

2(τ )

dτ k

∣∣∣∣
τ=0

= dkȳ0(t)

dtk

∣∣∣∣
t=0

, k = 0,1,2.

Now, Eqs. (4.13) and (4.14) yield

xb0(ζ )= 0, ζ ∈ [−h,0], (4.16)

yb0(ζ )= ϕ2(0)− ȳ0(0), ζ ∈ [−h,0]. (4.17)

Using (4.12), (4.16), and assumption A5, and taking into account results of [13]
directly obtains that problem (4.11), (4.17) has a unique solution satisfying the inequ∥∥yb0(ξ)∥∥� a exp(−κξ), ∀ξ � 0, (4.18)

wherea > 0 andκ > 0 are some constants.

4.1.5. Equations for̄x1(t) and ȳ1(t)

These equations have the form

dx̄1(t)

dt
= Ā1(t)x̄1(t)+ Ā2(t)ȳ1(t)+

0∫
−h

η dηA1(t, η)
dx̄0(t)

dt

+
0∫

−h

η dηA2(t, η)
dȳ0(t)

dt
, (4.19)

dȳ0(t)

dt
= Ā3(t)x̄1(t)+ Ā4(t)ȳ1(t)+

0∫
−h

η dηA3(t, η)
dx̄0(t)

dt

+
0∫

−h

η dηA4(t, η)
dȳ0(t)

dt
. (4.20)

Similarly to Section 4.1.2, this set of equations can be rewritten in an equivalent fo
follows:

dx̄1(t)

dt
= [

Ā1(t)− Ā2(t)Ā
−1
4 (t)Ā3(t)

]
x̄1(t)+ Ā2(t)Ā

−1
4 (t)

dȳ0(t)

dt

+
[ 0∫

η dηA1(t, η)− Ā2(t)Ā
−1
4 (t)

0∫
η dηA3(t, η)

]
dx̄0(t)

dt

−h −h
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+
[ 0∫

−h

η dηA2(t, η)− Ā2(t)Ā
−1
4 (t)

0∫
−h

η dηA4(t, η)

]
dȳ0(t)

dt
,

t ∈ [0, T ], (4.21)

ȳ1(t)= Ā−1
4 (t)

{
dȳ0(t)

dt
− Ā3(t)x̄1(t)−

0∫
−h

η dηA3(t, η)
dx̄0(t)

dt

−
0∫

−h

η dηA4(t, η)
dȳ0(t)

dt

}
, t ∈ [0, T ]. (4.22)

The initial condition for Eq. (4.21) will be obtained below.
Taking into account that̄x0(t) and ȳ0(t) are twice continuously differentiable fo

t ∈ [0, T ], and using assumption A6, one directly has thatdx̄1(t)/dt is continuous, as
well asdȳ1(t)/dt exists and is continuous, fort ∈ [0, T ].

4.1.6. Equations forxb1(ξ) andyb1(ξ)
These equations have the form

dxb1(ξ)

dξ
=

0∫
−h

[
dηA2(0, η)

]
yb0(ξ + η), ξ � 0, (4.23)

dyb1(ξ)

dξ
=

0∫
−h

[
dηA3(0, η)

]
xb1(ξ + η)+

0∫
−h

[
dηA4(0, η)

]
yb1(ξ + η)

+
0∫

−h

[
dA41(η)

]
ξyb0(ξ + η), ξ � 0, (4.24)

whereA41(η)= ∂A4(t, η)/∂t|t=0.
Integrating Eq. (4.23) fromξ = 0 to an arbitraryξ yields

xb1(ξ)= xb1(0)+
ξ∫

0

{ 0∫
−h

[
dηA2(0, η)

]
yb0(s + η)

}
ds, ξ � 0. (4.25)

Requiring thatxb1(ξ)→ 0 asξ → +∞, one directly has from (4.25)

xb1(0)= −
+∞∫
0

{ 0∫
−h

[
dηA2(0, η)

]
yb0(s + η)

}
ds. (4.26)

Note that the convergence of the integral in (4.26) directly follows from (4.18).
Using (4.25) and (4.26), we obtain
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xb1(ξ)= −
+∞∫
ξ

{ 0∫
−h

[
dηA2(0, η)

]
yb0(s + η)

}
ds, ξ � 0, (4.27)

yielding by (4.18)∥∥xb1(ξ)∥∥� a exp(−κξ), ξ � 0, (4.28)

wherea > 0 andκ > 0 are some constants.

4.1.7. Initial conditions for obtaining the first-order terms
These conditions have the form

ζ

[
dx̄0(t)

dt

∣∣∣∣
t=0

]
+ x̄1(0)+ xb1(ζ )= ζ

[
dϕ1(τ )

dτ

∣∣∣∣
τ=0

]
, ζ ∈ [−h,0], (4.29)

ζ

[
dȳ0(t)

dt

∣∣∣∣
t=0

]
+ ȳ1(0)+ yb1(ζ )= ζ

[
dϕ2(τ )

dτ

∣∣∣∣
τ=0

]
, ζ ∈ [−h,0]. (4.30)

Settingζ = 0 in Eq. (4.29) and using Eq. (4.26), one obtains

x̄1(0)=
+∞∫
0

{ 0∫
−h

[
dηA2(0, η)

]
yb0(s + η)

}
ds, (4.31)

yielding a single solution̄x1(t) of problem (4.21), (4.31) on the intervalt ∈ [0, T ]. Once
this solution is known,̄y1(t) is obtained directly from Eq. (4.22) on the intervalt ∈ [0, T ].
Remark 4.2. Similarly to Remark 4.1, we have to extend the outer first-order termsx̄1 and
ȳ1 to the domain of negative values of their argument. We shall do this extension as fo
x̄1(τ ) = ψ1

1(τ ), ȳ1(τ ) = ψ1
2(τ ), τ < 0, whereψ1

j (τ ) (j = 1,2) are any continuousl
differentiable functions forτ � 0 satisfying the conditions:

dkψ1
1(τ )

dτ k

∣∣∣∣
τ=0

= dkx̄1(t)

dtk

∣∣∣∣
t=0

,
dkψ1

2(τ )

dτ k

∣∣∣∣
τ=0

= dkȳ1(t)

dtk

∣∣∣∣
t=0

, k = 0,1.

From Eqs. (4.29) and (4.30), one directly has the initial conditions for the first-o
boundary corrections

xb1(ζ )= ζ

[
dϕ1(τ )

dτ

∣∣∣∣
τ=0

− dx̄0(t)

dt

∣∣∣∣
t=0

]
− x̄1(0), ζ ∈ [−h,0], (4.32)

yb1(ζ )= ζ

[
dϕ2(τ )

dτ

∣∣∣∣
τ=0

− dȳ0(t)

dt

∣∣∣∣
t=0

]
− ȳ1(0), ζ ∈ [−h,0]. (4.33)

Using (4.17), (4.18), (4.28), (4.32), and assumption A5, and taking into account r
of [13], one directly obtains that problem (4.24), (4.33) has a unique solution satisfyin
inequality∥∥yb1(ξ)∥∥� a exp(−κξ), ξ � 0, (4.34)

wherea > 0 andκ > 0 are some constants.
Thus, we have completed the formal construction of the first-order uniform asym

solution to problem (4.1)–(4.2) in the case of the time-dependent matrixAε.
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4.1.8. Justification of the first-order asymptotic solution

Theorem 4.1. Under assumptionsA4–A8, the unique solution of problem(4.1)–(4.2)
z(t, ε) = col{x(t, ε), y(t, ε)} satisfies the inequality‖z(t, ε) − z1(t, ε)‖ � aε2 for t ∈
[0, T ] and all sufficiently smallε > 0, wherez1(t, ε) = col{x1(t, ε), y1(t, ε)} is the first-
order asymptotic solution obtained in Sections4.1.1–4.1.7, and a > 0 is some constan
independent ofε.

Proof. First of all, let us note that the existence and uniqueness of solution of pro
(4.1)–(4.2) directly follows from results of [13].

Let us make the following transformation of variables in (4.1)–(4.2):

z(t, ε)= z1(t, ε)+ v(t, ε). (4.35)

Substituting (4.35) into (4.1)–(4.2) and applying results of Sections 4.1.1–4.1.7
obtains after some rearrangement the following problem for the new variablev(t, ε):

dv(t, ε)

dt
=

0∫
−h

[
dηAε(t, η)

]
v(t + εη, ε)+ g(t, ε), t ∈ [0, T ], (4.36)

v(τ, ε) = φ(τ, ε), τ ∈ [−εh,0], (4.37)

where

g(t, ε)= col
{
g1(t, ε), g2(t, ε)

}
, φ(τ, ε)= col

{
φ1(τ, ε),φ2(τ, ε)

}
, (4.38)

g1 ∈En, g2 ∈Em, φ1 ∈En, φ2 ∈Em, the vector-functionsgj (t, ε), φj (τ, ε) (j = 1,2) are
expressed in a known way byz1(t, ε), they are continuous int ∈ [0, T ] andτ ∈ [−εh,0],
respectively, and satisfy the following inequalities for all sufficiently smallε > 0:

∥∥g1(t, ε)
∥∥� aε

[
ε + exp

(
−κt

ε

)]
,

∥∥g2(t, ε)
∥∥� aε, t ∈ [0, T ], (4.39)∥∥φj (τ, ε)∥∥� aε2, j = 1,2, τ ∈ [−εh,0], (4.40)

wherea > 0 andκ > 0 are some constants independent ofε.
Using the variation of constant formula [13], one directly has from (4.36) and (4.3

v(t, ε)= Ψ (t,0, ε)φ(0, ε)+
εh∫

0

Ψ (t,ω, ε)Λε

{ −ω/ε∫
−h

[
dηA(t, η)

]
φ(ω + εη)

}
dω

+
t∫

0

Ψ (t, s, ε)g(s, ε) ds, t ∈ [0, T ], (4.41)

whereΨ (t, s, ε) is the fundamental matrix of system (1.1)–(1.2), and

Λε =
(
In 0
0 (1/ε)I

)
, A(t, η)=

(
A1(t, η) A2(t, η)

A (t, η) A (t, η)

)
. (4.42)
m 3 4
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Using Theorem 3.1 and inequalities (4.39), (4.40), one directly obtains from Eq. (4.4
all sufficiently smallε > 0∥∥v(t, ε)∥∥� aε2, t ∈ [0, T ]. (4.43)

Now, the statement of the theorem directly follows from Eq. (4.35) and inequality (4.✷
4.2. Asymptotic solution of (4.1)–(4.2) (the time-independent case)

In this section, in addition to assumptions A1–A3 and A8, we shall assume:

A9. The vector-functionsfj (t) (j = 1,2) are twice continuously differentiable fort ∈
[0,+∞), anddkfj (t)/dtk (j = 1,2, k = 0,1,2) are bounded fort ∈ [0,+∞).

The formal representation of the first-order asymptotic solutionz1(t, ε)= col{x1(t, ε),

y1(t, ε)} of (4.1)–(4.2) on the intervalt ∈ [0,+∞) in the case of the time-independe
matrixAε is the same as (4.4)–(4.5). The algorithm of obtaining the terms of the asym
expansion is the same as presented in Sections 4.1.2–4.1.7 with obvious simplifi
owing to the time-independent character ofAε. Assumption A9 along with assumptions A
and A2 provide the existence and boundness ofdkx̄0(t)/dt

k , dkȳ0(t)/dt
k (k = 0,1,2)

anddkx̄1(t)/dt
k , dkȳ1(t)/dt

k (k = 0,1) for t ∈ [0,+∞). The justification of the first
order asymptotic solution is carried out very similarly to the proof of Theorem 4.1 u
Theorem 2.3 instead of Theorem 3.1. Thus, we have the following proposition.

Theorem 4.2. Let the matrixAε be time independent. Then, under assumptionsA1–A3,
A8, andA9, the unique solution of problem(4.1)–(4.2)z(t, ε) = col{x(t, ε), y(t, ε)} sat-
isfies the inequality‖z(t, ε) − z1(t, ε)‖ � aε2 for t ∈ [0,+∞) and all sufficiently smal
ε > 0, wherez1(t, ε) is the first-order asymptotic solution, anda > 0 is some constan
independent ofε.
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