JOURNAL OF ALGEBRA 118, 447-454 (1988)

Cayley Graphs of Finite Groups

PAUL-HERMANN ZIESCHANG

Mathematisches Seminar der Universität Kiel, Olshausenstrasse 40, D-2300 Kiel 1, West Germany

Communicated by G. Stroth

Received February 19, 1987

Let $\Gamma(G, T)$ denote the Cayley graph of a finite group G with respect to a normal subset T of $G - \{1\}$.

We compute explicitly the spectrum of $\Gamma(G, T)$ in terms of complex character values. This allows us to determine the number of paths of length *n* between two arbitrary vertices of $\Gamma(G, T)$ for each $n \in \mathbb{N}$.

Finally, we apply these results to obtain the following theorem. Suppose that G is a finite group which contains a cyclic self-normalizing subgroup W of order pq, where p and q are two different odd prime numbers. Define W_0 to be the set of all elements of order pq of W and let $T := \bigcup_{g \in G} W_{g}$. Then for any $n \in \mathbb{N}$, the number of paths of length n between two adjacent vertices of the Cayley graph $\Gamma(G, T)$ does not depend on the choice of the two adjacent vertices. Moreover, the rank of $\Gamma(G, T)$ is 4 or 5. \mathbb{C} 1988 Academic Press, Inc

1. THE SPECTRUM OF A CAYLEY GRAPH

Let G be a finite group and T the union of a family of conjugacy classes of $G - \{1\}$. Then by

$$g \rightarrow h : \Leftrightarrow hg^{-1} \in T \qquad (g, h \in G)$$

there is defined a graph $\Gamma(G, T)$ on the elements of G. In general, $\Gamma(G, T)$ is directed and it is undirected if and only if $t \in T$ implies $t^{-1} \in T$. $\Gamma(G, T)$ is called the *Cayley graph* of G with respect to T.

Let A be the complex group algebra of G. Then for each $a \in A$ we define the vectorspace endomorphism ρ_a of A by

$$\rho_a(g) := ga, \qquad (g \in G)$$

and by α we mean the (linear) adjacency map of $\Gamma(G, T)$ which is defined on A by

$$\alpha(g) := \sum_{g \to h} h. \qquad (g \in G)$$
447

0021-8693/88 \$3.00

Now let

$$z := \alpha(1).$$

Then

$$z = \sum_{t \in T} t.$$
 (1)

Thus, since T is the union of certain conjugacy classes of G, we clearly have $z \in Z(A)$.

Let $A = A_1 \oplus \cdots \oplus A_s$ be the decomposition of A into its minimal ideals and for all $i \in \{1, ..., s\}$ let e_i be the unit of A_i . Since $z \in Z(A)$, there are $\lambda_1, ..., \lambda_s \in \mathbb{C}$ such that

$$z = \sum_{i=1}^{s} \lambda_i e_i.$$
 (2)

In particular, $\{\lambda_1, ..., \lambda_s\}$ is the set of all eigenvalues of ρ_z and the eigenspaces of ρ_z are ideals of A.

On the other hand, for each $g \in G$ we have

$$\alpha(g) = \sum_{g \to h} h = \sum_{1 \to h} gh = g\alpha(1) = gz = \rho_z(g),$$

thus

$$\alpha = \rho_z \tag{3}$$

and $\{\lambda_1, ..., \lambda_s\}$ is the set of all eigenvalues of α and the eigenspaces of α are ideals of A.

Now for each $i \in \{1, ..., s\}$ let φ_i be the irreducible representation of G which belongs to A_i and let χ_i be the character of φ_i .

Let $j \in \{1, ..., s\}$. Then, by (1) and (2), we have

$$\varphi_j(z) = \varphi_j\left(\sum_{t \in T} t\right) = \sum_{t \in T} \varphi_j(t)$$

and

$$\varphi_j(z) = \varphi_j\left(\sum_{i=1}^s \lambda_i e_i\right) = \sum_{i=1}^s \lambda_i \varphi_j(e_i).$$

Thus we conclude

$$\sum_{t \in T} \chi_j(t) = \chi_j(z) = \lambda_j \chi_j(1)$$

and have proved the following theorem.

448

CAYLEY GRAPHS

THEOREM 1. Let G be a finite group and $\Gamma(G, T)$ a Cayley graph of G. Let further $\{\chi_1, ..., \chi_s\}$ be the set of all irreducible complex characters of G and define

$$\lambda_j := \frac{1}{\chi_j(1)} \sum_{t \in T} \chi_j(t)$$

for all $j \in \{1, ..., s\}$.

Then $\{\lambda_1, ..., \lambda_s\}$ is the set of all values of the spectrum of $\Gamma(G, T)$. Moreover, if m_i is the multiplicity of λ_i , then

$$m_j = \sum_{\substack{k=1\\\lambda_k = \lambda_j}}^s \chi_k(1)^2.$$

Theorem 1 shows how to compute explicitly the spectrum of a Cayley graph of a finite group in terms of complex character values. In particular, we see that the rank of a Cayley graph of a finite group G which by definition is the number of different values of its spectrum does not exceed the number of the irreducible complex representations of G.

We now head for a graph theoretic consequence of Theorem 1.

For each $g \in G$ and $n \in \mathbb{N}$ let c(g, n) denote the number of paths of length n from the vertex 1 to the vertex g of the Cayley graph $\Gamma(G, T)$. Then, by induction over n, we have

$$\alpha^n(1) = \sum_{g \in G} c(g, n) g$$

for all $n \in \mathbb{N}$. This together with (3) yields

$$z^{n} = \sum_{g \in G} c(g, n) g.$$
(4)

On the other hand, by (2) and Theorem 1, z^n has the representation

$$z^n = \sum_{i=1}^s \frac{1}{\chi_i(1)^n} \left(\sum_{t \in T} \chi_i(t)\right)^n e_i.$$

Furthermore, by [3, Theorem 2.12] we have

$$e_i = \frac{1}{|G|} \sum_{g \in G} \chi_i(1) \chi_i(g^{-1}) g.$$

Thus

$$z^{n} = \sum_{g \in G} \left[\frac{1}{|G|} \sum_{i=1}^{s} \frac{\chi_{i}(g^{-1})}{\chi_{i}(1)^{n-1}} \left(\sum_{t \in T} \chi_{i}(t) \right)^{n} \right] g.$$
(5)

Now by (4) and (5) we may deduce the following result which generalizes [2, Theorem 4.2.8] and is similar to [4, Lemma 1].

THEOREM 2. Let G be a finite group and $\Gamma(G, T)$ a Cayley graph of G. Let further $\{\chi_1, ..., \chi_s\}$ be the set of all irreducible complex characters of G.

For each $g \in G$ and $n \in \mathbb{N}$ let c(g, n) denote the number of paths of length n from the vertex 1 to the vertex g of $\Gamma(G, T)$.

Then we have

$$c(g, n) = \frac{1}{|G|} \sum_{i=1}^{s} \frac{\chi_i(g^{-1})}{\chi_i(1)^{n-1}} \left(\sum_{t \in T} \chi_i(t)\right)^n.$$

Clearly, G acts by left and by right multiplication as a group of graph automorphisms on the points of $\Gamma(G, T)$. Thus Theorem 2 also enables us to compute the number of paths of length $n, n \in \mathbb{N}$, between two arbitrary vertices of $\Gamma(G, T)$.

2. Some Cayley Graphs of Small Rank

Within this section we investigate finite groups G which satisfy the following hypothesis.

Hypothesis 3. G possesses a cyclic subgroup W with w := |W| odd. Suppose that $W = W_1 \times W_2$, where $w_i := |W_i|$ and $w_i \neq 1$ for $i \in \{1, 2\}$. Let

$$W_0 := W - W_1 - W_2$$
.

For any non-empty subset A of W_0 let

$$\mathbf{C}_G(A) = \mathbf{N}_G(A) = W.$$

Let κ_{01} , κ_{10} be faithful irreducible complex characters of W/W_1 , W/W_2 , respectively. Define

$$\kappa_{ij} := \kappa_{10}^i \kappa_{01}^j$$

for $i \in \{0, ..., w_1 - 1\}$, $j \in \{0, ..., w_2 - 1\}$. Finally, let

$$T := \bigcup_{g \in G} W_0^g.$$

The purpose of this section is the application of the results of the first section on the Cayley graph $\Gamma(G, T)$ which now obviously is undirected. The following result is due to Feit and Thompson.

LEMMA 4. Suppose that G satisfies Hypothesis 3. Then

- (i) W_0 is a TI set in G.
- (ii) There exists an orthonormal set

$$\left\{\bar{\kappa}_{ij}: 0 \leq i \leq w_1 - 1, 0 \leq j \leq w_2 - 1\right\}$$

of generalized complex characters of G such that the following conditions are true.

(a) For all $i \in \{0, ..., w_1 - 1\}$, $j \in \{0, ..., w_2 - 1\}$ the values assumed by $\bar{\kappa}_{ij}$, $\bar{\kappa}_{i0}$, $\bar{\kappa}_{0j}$ lie in \mathbb{Q}_w , \mathbb{Q}_{w_1} , \mathbb{Q}_{w_2} , respectively.

(b) $\bar{\kappa}_{00} = \mathbf{1}_G$.

(c) If $t \in W_0$, then $\bar{\kappa}_{ii}(t) = \kappa_{ii}(t)$.

(d) $\mathbf{1}_{G} - \bar{\kappa}_{i0} - \bar{\kappa}_{0j} + \bar{\kappa}_{ij} = (\mathbf{1}_{W} - \kappa_{i0} - \kappa_{0j} + \kappa_{ij})^{*}$ for all $i \in \{0, ..., w_{1} - 1\}, j \in \{0, ..., w_{2} - 1\}.$

(e) Every irreducible character of G distinct from all $\pm \bar{\kappa}_{ij}$ vanishes on T.

Let χ be a generalized complex character of G. We write $\mathbb{Q}(\chi)$ to denote the subfield of \mathbb{C} generated by \mathbb{Q} and the character values $\chi(g)$ for $g \in G$.

Let *e* be the exponent of *G*. By a theorem of Brauer [3, Theorem 10.3], \mathbb{Q}_e is a splitting field for *G*. Moreover, we have $\mathbb{Q} \subseteq \mathbb{Q}(\chi) \subseteq \mathbb{Q}_e$ and \mathbb{Q}_e is a Galois extension of \mathbb{Q} . In particular, each automorphism α of $\mathbb{Q}(\chi)$ is afforded by an automorphism of \mathbb{Q}_e . Thus

$$\chi^{\alpha} \colon G \to \mathbb{Q}(\chi)$$
$$g \mapsto \chi(g)^{\alpha}$$

is a character of G.

Assume χ and ψ are two generalized complex characters of G. We say that χ and ψ are algebraically conjugate if $\mathbb{Q}(\chi) = \mathbb{Q}(\psi)$ and there exists $\alpha \in \text{Gal}(\mathbb{Q}(\chi) : \mathbb{Q})$ such that $\chi^{\alpha} = \psi$.

LEMMA 5. Let $p, r \in \{0, ..., w_1 - 1\}$ and $q, s \in \{0, ..., w_2 - 1\}$. Then the generalized characters $\bar{\kappa}_{pq}$ and $\bar{\kappa}_{rs}$ are algebraically conjugate iff $\ker(\kappa_{pq}) = \ker(\kappa_{rs})$.

Proof. Let $C(\bar{\kappa}_{pq})$ be the set of all elements of $\{\bar{\kappa}_{ij}: 0 \le i \le w_1 - 1, 0 \le j \le w_2 - 1\}$ which are algebraically conjugate to $\bar{\kappa}_{pq}$ and $D(\bar{\kappa}_{pq})$ the set of the generalized characters $\bar{\kappa}_{ij}$ with ker $(\kappa_{ij}) = \text{ker}(\kappa_{pq})$.

Let $\bar{\kappa}_{rs} \in C(\bar{\kappa}_{pq})$. Then there exists $\alpha \in \text{Gal}(\mathbb{Q}(\bar{\kappa}_{pq}):\mathbb{Q})$ such that $\bar{\kappa}_{pq}^{\alpha} = \bar{\kappa}_{rs}$. Let $t \in G$ such that $\langle t \rangle = W$. Then $t \in W_0$, hence Lemma 4(ii)(c) yields $\bar{\kappa}_{pq}(t) = \kappa_{pq}(t)$. In particular, if $d := |\ker(\kappa_{pq})|$, then $\bar{\kappa}_{pq}(t)$ is a primitive wd^{-1} th root of unity. But then $\kappa_{rs}(t) = \bar{\kappa}_{rs}(t) = \bar{\kappa}_{pq}^{\alpha}(t) = \bar{\kappa}_{pq}(t)^{\alpha}$ is a primitive wd^{-1} th root of unity, which implies $|\ker(\kappa_{rs})| = d$. Since W is cyclic, hence $\ker(\kappa_{rs}) = \ker(\kappa_{pq})$. Thus $\bar{\kappa}_{rs} \in D(\bar{\kappa}_{pq})$. Since $\bar{\kappa}_{rs}$ was chosen arbitrarily in $C(\bar{\kappa}_{pq})$, we have

$$C(\bar{\kappa}_{pq}) \subseteq D(\bar{\kappa}_{pq}). \tag{6}$$

Clearly

$$|D(\bar{\kappa}_{pq})| = \varphi(wd^{-1}), \tag{7}$$

where φ is the Euler function and $d := |\ker(\kappa_{pq})|$. By [3, Lemma 9.17(c)] we have

$$|C(\bar{\kappa}_{pq})| = |\mathbb{Q}(\bar{\kappa}_{pq}):\mathbb{Q}|.$$
(8)

Finally, since $\bar{\kappa}_{pq}(t)$ is a primitive wd^{-1} th root of unity for each $t \in G$ with $\langle t \rangle = W$, hence

$$|\mathbb{Q}(\bar{\kappa}_{pq}):\mathbb{Q}| \ge \varphi(wd^{-1}).$$
(9)

Now the conditions (6), (7), (8), and (9) yield the desired conclusion.

The following abbreviation may be convenient. For each $i \in \{0, ..., w_1 - 1\}$ and $j \in \{0, ..., w_2 - 1\}$ let

$$\sigma_{y} := \begin{cases} (w_{1}-1)(w_{2}-1) & \text{if } i=0=j, \\ -(w_{1}-1) & \text{if } i=0\neq j, \\ -(w_{2}-1) & \text{if } i\neq 0=j, \\ 1 & \text{if } i\neq 0\neq j. \end{cases}$$

LEMMA 6. (i) For every irreducible character χ of G distinct from all $\pm \bar{\kappa}_{ij}$ we have

$$\sum_{t \in T} \chi(t) = 0.$$

(ii) For all $i \in \{0, ..., w_1 - 1\}$, $j \in \{0, ..., w_2 - 1\}$ we have

$$\sum_{t \in T} \bar{\kappa}_y(t) = \frac{|G|}{w} \sigma_y.$$

Proof. (i) This is an immediate consequence of Lemma 4(ii)(e).

(ii) Let $i \in \{0, ..., w_1 - 1\}$, $j \in \{0, ..., w_2 - 1\}$. Then, by Lemma 4(i) and (ii)(c),

$$\sum_{t \in T} \bar{\kappa}_{ij}(t) = \frac{|G|}{w} \sum_{t \in W_0} \kappa_{ij}(t).$$

Now clearly

$$\sum_{t \in W_0} \bar{\kappa}_{00}(t) = |W_0| = (w_1 - 1)(w_2 - 1).$$

If $(i, j) \neq (0, 0)$, then $\sum_{t \in W} \kappa_{ij}(t) = 0$, thus we have

$$\sum_{t \in W_0} \kappa_{ij}(t) = 1 - \sum_{t \in W_1} \kappa_{ij}(t) - \sum_{t \in W_2} \kappa_{ij}(t).$$
(10)

Further i = 0 is equivalent to $W_1 \subseteq \ker(\kappa_{ij})$, thus

$$\sum_{t \in W_1} \kappa_{ij}(t) = \begin{cases} w_1 & \text{if } i = 0, \\ 0 & \text{if } i \neq 0. \end{cases}$$
(11)

Similarly we have

$$\sum_{t \in W_2} \kappa_{ij}(t) = \begin{cases} w_2 & \text{if } j = 0, \\ 0 & \text{if } j \neq 0. \end{cases}$$
(12)

Now the full claim follows from (10), (11), and (12).

THEOREM 7. Suppose that G satisfies Hypothesis 3 and let $\bar{\kappa}_{ij}$ be the generalized complex characters of Lemma 4.

Let $\{d_1, ..., d_r\}$ be the set of all divisors of w and for each $k \in \{1, ..., r\}$ choose representatives $i(k) \in \{0, ..., w_1 - 1\}$ and $j(k) \in \{0, ..., w_2 - 1\}$ such that $|\ker(\kappa_{i(k)j(k)})| = d_k$.

Finally, define

$$\lambda_k := \frac{|G| \cdot \sigma_{\iota(k)j(k)}}{\bar{\kappa}_{\iota(k)j(k)}(1) \cdot w}$$

for all $k \in \{1, ..., r\}$.

Then $\{\lambda_1, ..., \lambda_r\}$ is the set of all values of the spectrum of the Cayley graph $\Gamma(G, T)$ different from 0.

Moreover, if w is square free, then λ_k is an integer for all $k \in \{1, ..., r\}$.

Proof. The values of the spectrum are easily obtained from Theorem 1, Lemma 5, and Lemma 6.

Suppose w is square free. Then, by a theorem of Brauer [3, Theorem 8.17] and Lemma 4(ii)(c), w divides $|G|/\bar{\kappa}_{ij}(1)$ for all $i \in \{0, ..., w_1-1\}, j \in \{0, ..., w_2-1\}$. Thus all values of the spectrum of $\Gamma(G, T)$ are integers.

THEOREM 8. Suppose that G satisfies Hypothesis 3.

For each $g \in G$ and $n \in \mathbb{N}$ let c(g, n) denote the number of paths of length n between the vertices 1 and g of the Cayley graph $\Gamma(G, T)$.

Let s and t be two elements of T such that the orders of s and t are equal. Then for any $n \in \mathbb{N}$, we have c(s, n) = c(t, n).

Proof. Let $\{d_1, ..., d_r\}$ be the set of all divisors of w and for each $k \in \{1, ..., r\}$ choose representatives $i(k) \in \{0, ..., w_1 - 1\}$ and $j(k) \in \{0, ..., w_2 - 1\}$ such that $|\ker(\kappa_{i(k)j(k)})| = d_k$.

Assume without loss of generality that $t \in W_0$. Then Theorem 2, Lemma 4(ii)(c), (e), Lemma 5, and Lemma 6 yield

$$c(t,n) = \frac{1}{|G|} \sum_{\iota=0}^{w_1-1} \sum_{j=0}^{w_2-1} \frac{\kappa_{ij}(t^{-1})}{\bar{\kappa}_{ij}(1)^{n-1}} \cdot \frac{|G|^n}{w^n} \sigma_{ij}^n$$

= $\frac{|G|^{n-1}}{w^n} \sum_{k=1}^r \frac{(\sigma_{\iota(k)j(k)})^n}{(\bar{\kappa}_{\iota(k)j(k)}(1))^{n-1}} \sum_{\substack{\kappa_{rs} \\ |\ker(\kappa_{rs})| = d_k}} \kappa_{rs}(t^{-1})$

for all $t \in T$ and $n \in \mathbb{N}$.

Clearly the value on the right-hand side does not change if t is replaced by another element of W_0 of the same order.

The following theorem is an immediate consequence of Theorem 7 and Theorem 8.

THEOREM 9. Suppose that G is a finite group which contains a cyclic selfnormalizing subgroup W of order pq, where p and q are two different odd prime numbers.

Define W_0 to be the set of all elements of order pq of W and let $T := \bigcup_{g \in G} W_0^g$.

Then for any $n \in \mathbb{N}$, the number of paths of length n between two adjacent vertices of the Cayley graph $\Gamma(G, T)$ does not depend on the choice of the two adjacent vertices. Moreover, the rank of $\Gamma(G, T)$ is 4 or 5.

ACKNOWLEDGMENT

The author thanks Professor H. Bender for his encouragement of this work.

REFERENCES

- 1. W. FEIT AND J. G. THOMPSON, Solvability of groups of odd order, *Pacific J. Math.* 13 (1963), 775–1029.
- 2. D. GORENSTEIN, "Finite Groups," Harper & Row, New York, 1968.
- 3. I. M. ISAACS, "Character Theory of Finite Groups," Academic Press, New York, 1976.
- 4. G. R. ROBINSON, Some uses of class algebra constants, J. Algebra 91 (1984), 64-74.