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1. INTRODUCTION

This paper studies the regularity of the free boundary which arises from
a stationary problem of singular stochastic control in which the state space
has dimension greater than one. The optimal cost function u will be shown
to satisfy a variational inequality of the form

Lu<f, Vu+cz20,

(Lu—f) H (%H,.):o,

i=1 i

where L is a second-order linear elliptic operator with constant coefficients,
fis a given function, and ¢ = (¢, .., ¢,) is a given constant vector. It is well
known that such a variational inequality gives rise to a free-boundary
problem.

In one dimension, this type of singular control problem has been
investigated by many authors, including Bather and Chernoff [ BC], Benes
et al. [BSW], Karatzas [Kar], Menaldi and Robin [MR], and Chow et
al. [CMR]. One result shown in these papers is that the optimal control
is a diffusion process with reflection at the free boundary (one or two
points in the one-dimensional case). In the higher-dimensional case, a
similar optimal policy has not been constructed (except in the [SS] paper
described below) due to the lack of information about the regularity of the
associated free boundary. This regularity question has been a long-standing
open question and a serious obstacle to the development of a satisfactory
theory of singular stochastic control in higher dimensions.

In the present paper, the regularity question will be partially answered.
We will show that under certain assumptions the free boundary is smooth
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away from some “corner points” (see Theorem 4.11). The method used is
to show that the optimal cost function u is smooth enough to apply the
known results of Caffarelli [Caf] and Kinderlehrer and Nirenberg [KN]
which then guarantee the required degree of smoothness of the free
boundary. In a closely related work, Soner and Shreve [SS] used this same
method to prove the regularity of the free boundary for the singular
stochastic control problem they studied. (In their problem it is possible to
exert control in any direction, while in the problem considered here control
can be exerted only in the positive coordinate directions. Largely as a result
of this, their free boundary is bounded and has no “corner points,” while
in this paper the free boundary is unbounded and points can exist having
less then C' regularity.) Their paper is limited to two dimensions while this
paper is not. On the other hand, their paper constructs an optimal control
process (as a diffusion with reflection at the free boundary) while this paper
does not. (In [MT] an optimal control is constructed in a higher-dimen-
sional setting by use of probabilistic methods which do not require precise
knowledge about the regularity of the free boundary.)

This paper is organized as follows. Section 2 introduces the singular
control problem to be studied and some important notation. Section 3
proves some preliminary results about the smoothness of the optimal cost
function and studies certain other functions that approximate it. The
smoothness of the free boundary is proved in Section 4, with the main
result being Theorem 4.11.

The authors would like to give special thanks to Avner Friedman for
making three crucial suggestions. The authors would also like to thank
Luis Caffareili for his help.

2. PRELIMINARIES AND NOTATION

Let y(t)=(y(¢), .., y.(t)) denote the state at time ¢ of a controlled
system governed for >0 by the following It6 equations

0 =xtv 0+ [ gD ds+ X [ 0,6 dyls) =1

j=1

(2.1)

where x = (x, ..., X,,) is the initial state, v=(v,, ..., v,) is the control vector,
g=1(81, - &) is the drift vector, ¢ = [g,]7,_, is the diffusion matrix, and
w(2) = (w(¢), ..., w,(?)) is a standard Wiener process in R". The control
vector {v(1);t=0} is assumed to be a progressively measurable random
process whose components are non-negative, right continuous, and
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nondecreasing and have finite moments of all orders for every >0 (see
[MR, CMR 7). The set of all such controls v will be denoted by V.

The associated optimal control problem is to minimize an expected cost
function defined by

s =E{[ fomyeat ¥ e [T e sof @)

0 i=1

where y, is used in place of y to emphasize the dependence on the initial
state x, f(x) and ¢, >0, i=1, 2, .., n, represent the unit costs for operating
and controlling the system, respectively, and « >0 is the discount factor.
(A good way to think of this is as an inventory problem, with y,(¢)
the stock level at time ¢ of the ith product. Interpreting v,(t) as the
cumulative amount of the ith product ordered up to time ¢ it is natural
that v, be non-negative and nondecreasing.)
The value function u is the optimal cost given by

u(x)=1inf{J (v);ve V}, xeR”, (2.3)

where the infimum is over the admissible set V' of singular controls v. To
reduce the difficulties of dealing with singular controls, related problems
with classical control will now be introduced (which will be seen later to
be penalized problems). For each ¢ >0, let V/, denote the set of all controls
ve V such that v is Lipschitz continuous with probability one and

i 1
0< %vt—' (n<- ae.for t=0,i=1,2,..,n, almost surely. (24)
3

The corresponding optimal cost function u° is given by
wix)y=1inf{J (v);ve V,}. (2.5)

In the subsequent analysis it is assumed that the following conditions
hold:

(i) the drift vector g = (g, ..., £,,) is constant

(ii) the diffusion matrix ¢ = [¢,]7,_, is constant, with (2.6)
oo " positive definite (6T denotes the transpose of o).

Let L be the linear elliptic operator defined by

" d%u 5 Ou
Lu=—.'z_ aijm_.g g,-g;ﬁ-du, (2.7)
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where a;=353%_,0,0,. Then for problem (2.5) an application of the
dynamic programming principle yields the following Hamilton-Jacobi-
Bellman equation (see [MR] or [CMR]) for the value function u®:

ou*

Lu‘+% Zn: (——+c,»)‘=f, xeR" (2.8)

i=1

ox;

i

(Throughout this paper, for any reR, let t* =max{s,0} and ¢t~ =
max{~—1,0} be the positive and negative parts of ¢ as usual.) As e >0+,
one deduces from (2.8) that the solution # of the original problem (2.3)
satisfies the variational inequality

Lqu,EIi

+¢; =20, i=1,.,n,
ox;

ae. for xeR" (2.9)
Oou

L= 11 (55

i=1

+ c,-> =0
which involves a free-boundary problem [KS].

In other terminology and notation, for any open 2 = R”, let (-, -) denote
the usual inner product in L%(£2). Let W™?(§2) denote the usual Sobolev
space of real-valued functions on Q whose generalized derivatives of order
less than or equal to m are in L#(2), | <p< 0. Let H™(Q)= W™ (Q) for
m=0,1,2,.., and let H,(2) denote the closure of C&(R2) in H(Q).
A bilinear form a(u, v) is coercive on H,(£2) if there is a constant o, >0
such that

a(u,u)>a, |u|®>  forevery wue Hl(RQ), (2.10)

where |-|| is the norm in H'(2) (and also the norm in H}(Q) when
restricted to that space). The bilinear form a(u, v) we will consider is that
associated with the operator L of (2.7), namely,

n a ”n
a(u,v)sfn{ Y uQ—Zgi%v+auv}dx, (2.11)
i=1 i

a,—
i
ijZy | 0x;0x;

where the open set 2 <R” will be chosen later. Let W2 ™ denote the

Sobolev space of functions on R” whose restrictions to any bounded open
QcR"are in W>=(Q).

3. PRELIMINARY RESULTS ON THE SMOOTHNESS OF u
AND STUDY OF CERTAIN APPROXIMATING FUNCTIONS u,

To obtain some a priori estimates for the value function, we assume that
there exist constants K=k >0 and m>1 such that the unit-cost function
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/- R” >R, the unit-cost vector ce R” for control, and the discount factor
o€ R satisfy the following conditions:
(i) klx*t|"—K<f(x)SK(1+ |x|™), VxeR",
(i) )= S KA+ 1x™ )X ) fx = x),
¥x, x'eR",
(iii)  fe C*R")and fis convex, with
f (3.1)
Osb—;(x)sK(l+|xl") ¥xeR",
g=(m—2)", and for any second order
directional derivative 8%/8z2,

(iv) x>0 and ;20 for i=1,..,n, /

where x* =(x}, .., x}).

n

THEOREM 3.1. Suppose that the conditions (2.6) and (3.1) hold. Then the
optimal cost function u defined by (2.3) is a continuous function such that, for
the same mz=1 and g=(m—2)" and for some other constants K=k >0
(independent of x and x'), the following properties are satisfied:

(i) k|x*|"—K<u(x)<K(l+|x|™), VxeR"

(ii) [u(x) —u(x") S K+ |x|" "+ X" 1) [x = x),
VYx, x'eR",
(3.2)

2, ©
loc

(1) u belongs to W2 * and is convex, with

62
0<57—‘§(x)<1<(1 +1x1%),  aefor xeR”

for any second order directional derivative 6°/0z°.

Proof. Under the conditions (2.6) and (3.1), it foliows from a known
estimate (see (2.15) in [MR] with p=m, T— oc and A large enough so
that «) < «/2) that the solution y of (2.1) with v=0 satisfies

ij 1yo()" e * dt <K(1+|x|™),  VxeR", (3.3)
0

for some constant K> 0. Using (2.3), (2.2), and (3.1-i), we easily obtain
u(x)<J0) < K(1 + [x]™), VxeR",

where K >0 is some other constant. (In what follows, for convenience, K
and k will denote “generic” positive constants which may denote different
constants in different estimates.) Thus the upper bound of (3.2-i) is proved.



180 WILLIAMS, CHOW, AND MENALDI

For each fixed xeR", let
V.={veV,J (v)<J.(0)}.

Using (2.2) and the lower bound from (3.1-i), we obtain for some K> 0
that

ij [y T 1" e ¥ dt < K(1+ [x]™), VxeR", VveV,. (34)
0
Because of assumption (2.6), y% =y, —v, so (3.3) gives
E[ Iy —vi" e di<K1+1x"),  VxeR.  (35)
0

Since each v; 20, |y ()| <[y (£)]1 7] + |y.(1) — V], s0 (3.4) and (3.5) imply
that there is a constant K> 0 (independent of x and v) such that

Ejo ly()me = dt<K(1+|x|™), VxeR"VveV,  (3.6)

On the other hand, defining &(¢)=1g + ow(s) (ow is a matrix product
with w considered a column vector here), (2.1) gives y.(t)=x+ v+ (1),
so [[y (D172 1y () —v)TI=1(x+&)"|, and [{f=x —(x+ &) =[x ~
(x+&)*| = Ix*| = [(x+&)7), so that

Ly 2 x* =180

Thus for some constants K> k>0 we have the lower bound
Efowl[yx(t)]ﬂ’"e‘“’dt;klx*l"’—K, YxeR.  (37)
In view of the fact that
J,,(v);Eff(yx(z)) e di,  WveV,

(2.3), (3.1-i), and (3.7) easily give the lower bound in (3.2-i).
For any x, x"eR", it is easy to check that

lu(x) — u(x')| <sup{|J(v) =T (v);veV UV, .} (3.8)
But

) = TN <E [ 1/ A =) e .
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Property (3.2-ii) for u follows from this by using (3.1-ii), the fact that
y{t)—y (t)=x—x" (from (2.1) and (2.6)), and the fact that there is a
positive constant K such that for any ve V', u V.. we have

E[7 polm e ar< KU+ 12" 4 X177, (39)
0

with the corresponding fact also true for y.(z). In fact, if ve V_, (3.9)
follows immediately from (3.6) by using the Holder inequality. On the
other hand, if ve V., (3.9) follows from the corresponding fact for y,.(¢)
and the estimate
1™ < Hyel + e —x1]7 1
<27 [y, 17 27 )]
Fori=1, .. n, let 4,x be the row n-vector with 4x; as ith entry and all

other entries zero. For i =1, ..., n and for any function F: R” — R, define the
second difference of F in the x; direction by

82F(x)y= F(x + 4,x) — 2F(x) + F(x — 4,x), VxeR" (3.10)
It is easy to check the fact that
S2u(x) < sup{62J (v);ve V. }. (3.11)
Since fe C*(R"), we clearly have for i=1, .., n and xeR" that

1 ed g2
82f(x) = (4x,)? '[o J_ ’ # (X 1y oo Xi+ pAX;y oy X,) dudA. (3.12)

Since y, . 4.(t)=yp. (1) + A;x, the results (3.11), (2.2), (3.12), condition
(3.1-iii), and the Holder inequality applied to (3.6) imply the upper bound
on the following:

0<d2u(x) <K(1+|x|9)(dx,)?, 1<i<n, xeR" |dx,|<1. (3.13)

To prove the lower bound of (3.13), it clearly suffices to prove the
convexity of u. In view of the definition of u in (2.3), to show the convexity
of u it clearly suffices to prove the joint convexity of J (v} in (x, v), that is,
that

Jox+ -0 (O +(1-0)V) <O (v)+ (1 -8) J.(v'),

for any x, x’eR", any v,v' eV, and any A€ [0, 1]. But convexity of J (v)
in (x, v) clearly follows from the fact that y (¢, v) depends linearly on (x, v)
and from the fact that the set V" and the function f are both convex.
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It remains only to prove that ue WX ™. Let B be any open ball and let
e C(R") be any test function with support contained in B. Since
(4x;)"26%u(x) is bounded on B for |4x,<1 (by (3.13)), there is a
sequence n, —0+ as k— oo such that, denoting by g, the result of
replacing 4x; by n, in (4x;) ~? 2u(x), we have g, —» Q weakly in L?(B) for
some p with 1 <p < oo. It is then easy to show that

62
[ emromd=[ SLuxyax,  voecy),
R” R" xi

so that Q = d%u/dx? is a generalized derivative. Existence and local boun-
dedness of mixed second-order generalized derivatives can now be proved
easily as follows. For k=1, .., n, let ¢, denote the unit vector in the
direction of the positive x, axis. For any fixed i#j with 1 <i, j<n, let y
be a new coordinate whose axis points in the (e, + ej)/\/i direction. Then
O%ufox,0x;= 0*u/dy* — (0%u/0x} + 0*ufox})j2. |

Recall that Eq. (2.8) is

L 1 & souf T "
Lu+ei§1(aXi+c,-) =f, xeR" (3.14)

In what follows, we will study the related equation

1 g 0
Lu+7 Y8 o)< xer (3.15)

o1 \0x,

in which the nonsmooth function A~ has been replaced by a smooth (1),
with fe C*(R), § convex and nonincreasing, and

0 if 420,
PlA)y=4{-2i-1 if A< —1, (3.16)
positive if A<0.

Note that such a f§ can easily be constructed by mollification of a function
with similar properties which is only piecewise smooth.

We will now show that (3.15) is the Hamilton-Jacobi-Bellman equation
of a control problem. For any £>0, let U, denote the set of all
progressively measurable random processes (5, £) from [0, cc) into R*xR"
whose components #; and ¢, are nonnegative and satisfy for 1 <i<n, 120,
and all seR that

M | -

1
—sn,-(t)—gli(s)séi(t)s
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Note that for s = —1 this gives n,(7) < 2/e. Let

Jx(ﬂ,f)=J_,(v)+EJ; S &(e-*d,  with v=f0'n(s)ds. (3.17)

i=1
Define
u(x)=inf{J . (n, &); (n,&)eU,}, xeR" (3.18)

The Hamilton-Jacobi-Bellman equation for this problem is fairly easily
seen to be (3.15). (In checking this it is useful to keep in mind that for each
fixed r+ and i, the condition —sn,(¢)— f(s)/e<&,;(r) for all seR in the
definition of U, is equivalent to the line y = —£,(¢) — sn,(¢) in the sy-plane
being below y = f(s)/e, the graph of ff/e. Clearly, the convex function f/e is
the supremum of all such linear functions.)

THEOREM 3.2. With the same assumptions as in Theorem 3.1, there exist
positive constants K, k, and ¢, such that for all & with 0 <e < g, the optimal
cost u, given by (3.18) satisfies the following:

(i) kIxT["—K<u(x)<K(+1x]™)

(ii) <K+ |x" 1)

e
Ox; x)

(iii) u. € Wk, u, is convex, and
o, S (3.19)
% (x) <K(1+[x]9)

withg=(m—2)", for every xe R"

0<

and every second order directional derivative
82/0z>.

Moreover, for each xeR", u,(x)—>u(x)as e—0+.

Proof. The properties (3.19) can be proved in virtually the same way as
the properties (3.2) were proved in Theorem 3.1. In place of V, in that
proof, use

Vee=1(n8)e U, JAn, £)<J(0,0)}.
To show the pointwise convergence of u, to u, let ¥, denote the set of
all controls in ¥ such that v(¢) is uniformly Lipschitz continuous for r=0.

It was proved in [CMR] that the optimal cost » can alternatively be
defined by

u(x)=1inf{J (v); ve V,}, VxeR" (3.20)
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It is obvious that u.(x)> u(x) for every £¢>0 and every xeR”". For any
8>0 and any xeR”, because of (3.20) we can find a ve V, such that
J (v) <u(x)+6/2. Taking &,(1)=6a(2n)~" for 1<i<n and >0 and 7
so that v=§{) n(s)ds, for ¢>0 small enough, (5, £)e U,, so (3.17) gives
Jn, S)su(x)+4. 1

The following six lemmas and all the related definitions are used only for
the proof of the next theorem (Theorem 3.9). Define

n 62 n a
Ag=— G — F—, 3.21
0 ,.‘,zﬁ G, ox, DI L (321)
ie, Aqu=Lu—oau. Define y(x)=(4+|x|?)~F for each xeR", where
A>0 and P> 0 are constants to be chosen later. Define

H={o;oy'*e L*(R")} with the norm  |@| = |oy¥'?| 2ga) (3.22)

0 F
V=loeH:fori=1, .. n -2 exists and > y'? e LAR")}, (3.23)
0x; 0x

i i

where d¢/0x, denotes the generalized derivative. In V use the norm

2 172
] . (3.24)

LZ( R")

é‘ﬂwl/z

2
= +
loly [:i(le Z ax,

i=1

Clearly H is a real Hilbert space with inner product
(w, 2> =f w(x)z(x) Y(x) dx  ¥w, zeH. (3.25)
Rﬂ

Let V' be the space dual to V. We consider Va H=H'cV'. For v'e V'
and ve V, denote the value of v’ on v by {v’, v>. (This can be done so as
not to conflict with the use of ¢, > in (3.25).) For V', use the usual norm

v, = sup (v, v, Vo'e V. (3.26)

veV, vy

For any yeR" define B(y)=37_,B(y,+c;). For any «* >0 and
Fe L (R") we say that Ue WL™(R") is a weak solution of

loc loc

1
AU+~ B(VU) +o*U=F (3.27)

if and only if for every test function v e C'(R") of compact support we have

” U dv " ou 1
e e —v+—-B(VU *Uv—Fo ldx=0. 3.28
J‘"I:i,jZ=1aljaxiaxj iglglaxib+8 (VU v+l U:I * ( )
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LEMMA 3.3. There is a large enough constant oy >« such that for every
ge V' there exsits a unique weak solution ue V to the equation

1
A0u+EB(Vu)+cx0u=g. (3.29)

Moreover, the solution uec V depends continuously on ge V',

Proof. Use Corollary 1.8 in Chap. III of [KS] with their K= X equal
to our ¥V and their Au equal to our Agu+ (1/e) B(Vu)+ ogu—g. It is easy
to show that A is continuous from V into V. It is straightforward to show
that for a large enough «, > « there is a constant v, > 0 such that

{Au— Av,u—v)2vylu—vlZ  Vu,velV. (3.30)

This shows that 4 is monotone and coercive. Thus Coro. 1.8 of [KS]
guarantees the existence of a weak solution ue V for every ge V.

From (3.30) we also easily obtain uniqueness and continuous
dependence. |

For any p>0, 4>0, and f: R” —» R, define

U N g = 11O+ 1x12) ) oy (3.31)
For any ¢ >0, let Z, be the set of all continuous functions f: R” — R such
that f(x)(1 +[x]?)~7—0 as |x| = c0.
Lemma 34. If ¢>0 and P> n/2 + 2q, then
(a) feZ,=>feV' and

(b) if feZ,, fueZ, for k=1,2, .., and for some u>0 we have
I fo—Sll,,—0as k-0, then f, - fin V' as k — 0.

Proof. (a) It is easy to see that if feZ,6 with P>n/2+42q, then
feHc V.

(b) Again using P>n/2+ 2q, it is easy to use the Cauchy-Schwarz
inequality to show that |f, —f1, <K | f,—fI, , for some constant K. J

Let ¢ be a mollification kernel (fixed in what follows), i.e., ¢ € C*(R"),
@(x)20 for all xeR", ¢(x)=0 for |x| >1, and (g @(x)dx=1. For any
feZ, k=1,2,.., and xeR", define

flx) i IxI<k
Fi(x)= Jilx)= [ Ko(kix—y) Fu(y) dy.
0 if |x|>k
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LemMa 3.5. Let ¢>0. Let fe Z, and let f,, f,, ... be defined as above.
Then
(a) fie CF(R™) for k=1,2, ..,
(b) for every xeR” lim,_ . fi(x)=f(x), the convergence being
uniform on any compact set,
(c) for every constant >0, || fi—fI; ,~0 as k - o0, and
(d) for every constant >0, lim, , . || fell; ,= 1/l 4-
Proof. Properties (a) and (b) follow immediately from Theorems 1.5

and 1.7 of [Ag]. The proof of (c¢) is straightforward. Once (c) has been
proved, (d) follows immediately. |

LemMA 3.6. Let q>0. Fori=1,2, let F,eZ, and u;e C‘(R")qu. Let
& and a* be positive constants. For i=1, 2, let u, be a weak solution of

1
Aoui+; B(Vu,)+o*u,=F,.

Then for every n with O <n<a* there is a Ay>0 such that for A= A,
(o* — 1) llu, —u2||,1,q< |Fy—F, ||/1,q-

Ag here depends only on n, the coefficients of Aq, q, &, the Lipschitz constant
of B, and n.

Proof. This follows from the method of proof of Thm. 2.14 in [MT].
Theorem 8.19 of [GT] is also used. |

LeMMA 3.7. Let u be the weak solution guaranteed by Lemma 3.3 of
(3.29), where ge V' n C(R"). Then for any ue(0,1), ue CLHAR"). If also
ge C2H#(R"), then ue CL*R").

loc loc

Proof. A bootstrap argument repeatedly using Theorems 8.3 and 8.9
and Lemma 9.16 of [GT] and Theorem 54 in [Ad] shows that
ue CLHR™ for any ue (0, 1). If also ge C2#(R"), by the Schauder theory

loc loc

(e.g., Lemma 6.10 of [GT]) we have ue CZ*(R"). |

LeMMa 3.8. Let >0, P>0, and q> 0 be constants, with P> n/2 + 2q.
Then there is a A, >0 such that for Az A,, if fe Z, and if u is the unique
weak solution guaranteed by Lemmas 3.3 and 34 to

1
A0u+EB(Vu) +ogu =1,

then || f1 4,2 (0/2) [u] 4,
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Proof. Let f,, f5,.. be defined as they were immediately before
Lemma 3.5. For k=1,2, .., let u, be the unique solution in C*(R")n
W (R") of Aguy + (1/¢) B(Vu,) + aou, = f, guaranteed by Propositions 3.2
and 3.3 of [Bur]. Apply Lemma 3.6 with a* = a,, F, =f,, and F,=0. Thus
for n=0u,/2 there is a 4, >0 such that for A > A, we have

o
5 1l < il a o (332)

By Lemma 3.5(c) we have || fi—fl4,—0 as k— cc. Thus by Lemma
3.4(b) we have f,— f in V'. By the continuity part of the statement of
Lemma 3.3, u, —»u in V. Thus some subsequence of {u,}=_ , converges
almost everywhere to u. Taking k — o0 in (3.32) for this subsequence, using
Lemma 3.5(d), we get the stated result. J}

THEOREM 3.9. Let £>0. Let o> 0 be our discount factor. Let m and f be
as in (3.1). Let ¢>m/2. Then (3.15) has a weak solution u.€ Z,,. This weak
solution is unique among all continuous functions of at most polynomial
growth (ie., functions in Z . for some q' > Q). Moreover, for every ue (0, 1),
u,e CL*(R").

loc

Proof. We assume as usual that P> n/2+ 2q. Choose ¢’ with m/2 <
g’ <gq. Note that fe Z,.. For any ue Z,,, define U=T,u to be the weak
solution of

1
A0U+EB(VU)+aOU=(aO—oc)u+f

guaranteed by Lemmas 3.3 and 3.4. For 4, and u, in Z, let U, = T,u,
and U,=T,;u,. Apply Lemma3.6 with F,=(ap—a)u,+f and F,=
(ag—a)u;+f By Lemma 3.8 (with ¢ replaced by ¢'), |U,|l; , and
U, I, - are finite, so U, — U, e Z,. Thus for n = «/2, for large enough A4,
we have

o
(ao—i) 1T s = Tyt g, < [0 — @)ty =)Ly, (3.33)

From the last part of the statement of Lemma 3.6, this same A, works for
all ¢" with m/2 < ¢’ < q. Note that (3.33) shows that Tis a contraction map
in ||| 4, , norm with contraction constant (oo — )y — 2/2) ! < 1. Since
any weak solution of (3.15) in some Z, space is a fixed point of T, this
proves the uniqueness part of the theorem. Having proved this, we may
assume hereafter that P=n+m. Since Z, = Z, for 0 <r <, it suffices to
continue our proof assuming that g¢<m/2+n/4 (so that P=n+m>
n/2 +2q).
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We will now prove that T is a contraction map of Z, into itself. Assume
now that u,, u,€Z,. We wish to prove that (3.33) remains true. Using
Lemma 3.5, we can find sequences {u, .}, and {u, }7_, in CJ(R™)
which converge in | -] 4, , norm to u, and u, respectively. Equation (3.33)
is clearly true when u, and u, are replaced by w, , and u, ,, respectively.
Since, for i=1,2, (ap—a}u, +f—>{(xg—a)u,+f in (4, nOTM as
k— o0, by Lemma 3.4 this convergence also occurs in ¥V’; thus by
Lemma 3.3, T,u;,,— T,u, in V, so some subsequence of {T,u, . }r_,
converges almost everywhere to 7,u,, so

ao—

o
HTful_Tfuz||A0'q<&0_:a—/2‘“ux*uz”/to,,, Vu,, u,€Z,.

(The above argument shows that T,u,—~T,u,eZ,. A similar argument
shows that T,u, and T,u, are individually in Z,.)

Let u be the unique fixed point of T, in Z,. Clearly then u is a weak
solution of (3.15), so u=u, in the sense of the statement of this theorem.
(We will see in the next theorem that this does not conflict with our

previous definition of u, in (3.18).) By Lemma 3.7, the assertions about the
smoothness of u=u, follow immediately. J

Remark. The previous theorem proved existence and uniqueness among
all functions with at most polynomial growth as |x| — oo. That these are
the appropriate functions to study is seen by considering the corresponding
linear problem (the above problem with B=0). See p. 226 of [Mir] for a
brief discussion and a reference to a paper which solves the linear problem
in such spaces.

THeOREM 3.10. Make the same assumptions as in Theorem 3.2. Then the
optimal cost u, given by (3.18) is the solution u, of the Hamilton-Jacobi-
Bellman equation (3.15). Moreover, for every pe (0, 1), u, e CZ#*(R").

loc

Proof. Fix ¢>0 and g >m/2. Let u, be the unique solution of (3.15) in
C 2"‘(R”)r\Zq, for every ue(0, 1), guaranteed by Theorem 3.9. We will

loc

prove that
u(x)=inf{J(n, &); (0, &)e U},  xeR" (3.34)

Indeed, for any (y, {)e U, we can use Itd’s formula to get
T T
w):E{ J, (L)) e = di—| () -Vuy.() e dr

+u€(yx(T))e"}
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for any T'>0. Because u, € Z,, we may let T go to infinity and use (3.15)
to deduce that

w0 =£{[" Sty e ar}

" w© 1 u, Ou, o
+ 3 [ LS e) =m0 FE o | e .
(3.35)
By the definition of U,, we obtain from (3.35) the inequality
u(x)<J(n, &) V(n,¢)eU, YxeR" (3.36)

Now define A(y) = (,(»), - fin(»)) and E(3) = (E,(p), .y E(¥)) DY

Ou,
ax (y)+ Ci)

i

- 1, [cu, Ou, 1 [ou,
L= (Frme)[FEme|-7o(5

i=1,.,n yeR",

oo b,
Hi(y)= _eﬂ <

)+ C_) (3.37)

which produces an optimal feedback law for the penalized problem. That
is, we solve the stochastic differential equation (see [BL, Thm. 3.5 in
Chap. 2])

{dy”x(t) =[g+A(F (1)) dt +adw(t), 1>0,
7 A0)=x,
and for £(1) = &(5.(1)) and #i(1) =A(§ (1)), we have
u(x)=J0, &) and (1), &1)eU.. (3.38)
Clearly (3.36) and (3.38) together prove (3.34). ||
THEOREM 3.11. Make the assumptions of Theorem 3.2. Fix p with n<

p<oo. Let Q< R" be an open ball. Then there is a sequence {&,};_, with
g, =0+ as k— oo such that for 1 <i, j<n

0 ) ~
u, > u and gt;ﬂ L uniformly on Q2
i X
and
0? 0*
Ya |, 9% weakly in L7(8), as k— oo,

0x;0x; 0x,0x;

J
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Proof. By the proof of Theorem 3.2, there is a X, >0 such that

lu.| < K, |Ou,/0x;| < K, and |62ug/6xiaxj|<K1

on Qforl<ij<n0<e<e,.

Since W?2?(Q) is reflexive (see, for example, [Ad, p.46]), there is a
sequence {g;};~, with g, -0+ as k — oo such that u,, converges weakly
in W?>#(R). Since u,, — u pointwise (by Theorem 3.2) and since weak limits
are unique, u, —u weakly in W>?(2) as k— co. Since p>n, by the
Rellich-Kondrachov Theorem (Thm. 6.2 in [Ad]) the imbedding map
wr(2)— CYQ) is compact. Thus wu, —u and du,,/0x;— dufdx, (for
i=1, .., n) uniformly on Q as k —» 0. |

THEOREM 3.12. Make the same assumptions as in Theorem 3.2. Then for
every ue(0,1), u,e C*R").

loc

Proof. Since u, satisfies (3.15), we have

!

1
Lue=f_; Z B

i=1

(-a-yfﬁ- c,), xeR" (3.39)
Ox

Let ue(0,1). Since u,e C2*R") (by Theorem 3.10), fe C*(R"), and

loc

Be C*(R), the RH.S. of (3.39) is in CL*(R"). Thus by Theorem 36,V of

loc

[Mir], u,e C2#(R"). Thus the R.H.S. of (3.39) is in CZ#(R"), so again

loc loc

applying Theorem 36,V of [Mir] we have u,e C:#(R"). |

loc

4. REGULARITY OF THE FREE BOUNDARY AWAY FROM “CORNER POINTS”

THEOREM 4.1. Let the assumptions of Theorem 3.1 be satisfied. Then for
i=1,..,n there exists a real-valued function Y,(X |, ... X;_ (s Xii15 w0 Xn),
such that

ou
E(x)*'cizo Ur xi<¢’i(~xls'~'sxi71’xi+1’""xn)

{

and

Ou

p (x)+¢;>0 I x> W (X0 e Xio 1 X 15 eer Xpy)
i

for each x = (x,, .., x,)€R".

Proof. The proof is essentially the same as that given for Theorem 4.1
in [MR]. 1
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DerFiNiTiON 4.2, For any i with i=1, ..., n, define

d
y;:{xeR";ﬁ(x)+cj>0forallj;éi} (4.1)

J

and
Fi= LN X=X, e Xp) ERY X, =i (Xyy s X1y Xig gy o X)) (42)

The free boundary is ¥ --- NL~(F N -+ ). We will show that
each portion &, i=1, .., n, of this is regular. All other free boundary points
will be called corner points. By symmetry, it clearly suffices to study the
regularity of %,. This is what will be done below.

If n=3 with ¥, (x;, x3)=¥,(x,, x3)=¥a(x, x,) =0, ANFHNSAis the
principal octant. %, %, and % are quarter planes, and the corner points
are points on the nonnegative coordinate axes. The reader should be
warned that this paper does not prove that the corner points always have
this simple type of structure (although the authors believe that to be true).

LEMMA 4.3. Assume (2.6) and assume that o >0 is constant. Let 2 cR”"
be an open ball. Let a(u, v) be defined by (2.11). Then a(u, v) is coercive on
H(£2).

Proof. For any ue Hy(Q) it is easy to prove that

jua—udx=0 for i=1,.,n
Q 6x,-

From the positive definiteness of (a;) and the fact that « >0, the coercivity
of a(u, v) on Hy(R2) follows easily. |

DerNiTION 4.4, (Compare with problem S on pp. 30, 31 of [Fr].) We
say that w is a local solution of

aw,v—w)=(F,v—w) forevery vek, (4.3)
where

K={veH'(Q);v>0ae. in 2}, 4.4)

if and only if we K and for every ne CF () with n >0 we have
a(w, n(v—w));f Fn(v—w) dx forevery vek (4.5)
Q

THEOREM 4.5. Let the assumptions of Theorem 3.2 be satisfied. Let 2 be
an open ball with Q c ¥,. Then w=0u/dx, + c, is a local solution of (4.3)
with K given by (4.4) and F= 0f/0x, + ac,,.

505/111/1-13
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Proof. Let {¢}7., be the sequence in Theorem 3.11 and let u, =u,,
for k=1, 2, ... Since du/éx,+¢,>0, .., du/dx,_,+c,_,>0 on &, since
ue C'(R") (by Theorem 3.1), and since Ju,/0x;— du/dx; for 1<i<n
uniformly on £ as k — oo (by Theorem 3.11), there is a K, such that for
k> K, we have ou,/0x,+c¢,>0,..,0u,/0x,_,+c, ;>0 on Q. Thus
B(Ou,/0x,+¢c)= - =B(0u,/0x, ;+c¢,_;)=0 on Q for k=K, so that
(3.15), which u, satisfies because of Theorem 3.10, becomes

1 0

Luk+—ﬂ< uk+c,,>=f, xeQ k=K,
g, \0x,

Fix 6e(0,1). By Theorem3.10, u,eC?°(2) for k=1,2,... Thus

f—(1/,) B(Ou,/0x,+c,)e C*°(Q2), so that the Schauder theory (see

Theorem 6.17 of [GT]) shows that u, € C*>?(R), so that

5uk 1 , 6“,( 32uk_ af
Lo taf <6x +c,,> ox2 " ox,

axn &y n
Let K be given by (4.4), let ne C;°(£2) with n>0, and let ve K. Defining
we=0u,/0x,+c, for k=1, 2, .., we clearly have for £ > K, that

on Qforkz=K,.

1, 0’u of
(Lo nto =)+ (3 B0 G nte =) ) = (5 s nie =) ).
The first term is clearly equal to a(w,, n(v—wy)). At points where
w2020, f'(w.)=0, so the integrand of the second term is zero. But at
points where w, < v, the integrand of the second term is nonpositive, since
£.>0, B'(we) <0, 8%u,/0x2>0 (by Theorem 3.2), n=0, and v—w,>0.
Thus

a(we, n(v— wk))z(gMc,., "o wk)> for k> K.

Taking the limit as & — oo, using the full strength of the convergence of u,
to u described in Theorem 3.11, we now wish to obtain

alw, n(v—w))>(i+ac,., n(v—w)).
ox

This does not come trivially, since a(w,, n(v — w,)) involves the term
Owy 0wy
J — Z a,jn 5"—5"—(1)(,
2 o Xi OX;
which does not necessarily converge to

: ow Ow
L— Y a,-jna—XiEC;dx as k— oo.

ij=1
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However, all the other terms of a(w,, n(v — w,)) converge to their expected
limits, while

n

J Z Uné—g——dx<hmmfj.n Y a

k— ij=1

(To see this, apply Lemma I1.3.27 of [DS] to LD)® --- @& L} (D) [with
n terms in this sum] with

frr o £ = /jD.Z"; anfif,,  where D={xeR";r7(x)>0}.)

The desired result now follows with no problem. Note that w>0 a.e. in
because of (2.9). }

5wk0wk -
WM ox, ox; (3xj )

THEOREM 4.6. Let the assumptions and notations be the same as in
Theorem 4.5. Then w = du/dx, + ¢, € W* *(82) and w satisfies

Lw 2 F, w=0, (Lw—F)w=0a.e. in . (4.6)

Proof. Let B be an open ball with @ < Bc B< %,. By [Fr, problem 5,
pp. 30, 31], the fact that w=du/dx,+ c, is a local solution as described in
Definition 4.4 (with Q replaced by B) proves that we W?>?(Q) for every p
with 1 <p < 0. (The authors actually used Thm. 1.1 on p. 7 of [Br] to
prove problem 5 of [Fr] instead of using problem 1 on p. 29 of [Fr].)

Using [Fr, problem 1, p.44], we then get w=0du/dx,+c,€ W *(L).
The method of proof of the special case of [Fr, problem 1, p. 44] sufficient
for our needs involves showing that (3.18) on p. 26 of [Fr] holds with A4,
/. u, Q, g, and ¢ replaced by L, F*, yw, B, 0, and 0, respectively. Here
7€ CP(B) with 0<y<1 on Band y=1 on £, while

n oy ow 0Oy 9y
* — — . [ S  —
Fre=yF- X {“'fwax,.ax,” i 3% ox } L &g W

ij=1 i=1

(To understand F*, see the hint for problem 5 on pp. 30, 31 of [Fr].) Then
Theorem 4.1 of [Fr] can be applied with the same replacements as above.
Since y=1 on 2, an easy consequence of this proof is that (4.6) holds. }

LEmMA 4.7. As in problem 6 on p. 203 of [Fr], for x,>0 define
0= 9(x)—cos"(x,,/|x|) Let z=cos 0 =x,/r, where r=|x| as usual. If for
some constant A, u=r*g(z) on some open subset of {xeR”; x,>0}, where
ge C*(R), then

Au=r*"2[g"() 1 =2)+g )1 —n)z+ AL +n—2)g(z)].
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Proof. This can be shown by straightforward (but tedious)
computation. ||

To obtain a crucial technical result (that F=0df/ox,+ ac,<0 on %), we
need a generalization of Lemma 7.3 on p. 195 of [Fr]. This generalization
may be of interest in its own right. Except for ¢ (which we will take to be
0 in our application) and £ (which we will take to be an open ball with
@ c &), the notation chosen below shows how we will apply the theorem.

THEOREM 4.8. Let Q be a domain in R” and let w be a solution of the
obstacle problem

Lw—F>=0, W=, (Lw—F)}w—g@)=0a.e.in £,
[Wletygy S M < o, peC3}Q).

Here L is given by (2.7). We assume that (2.6) holds, that (a;)= 400", and
that = 0.

Assume also that Fe C'(Q) and that —F + Lo and V(—F+ Lo) do not
vanish simultaneously in 2. Then —F+ L@ >0 on the free boundary of w
in Q.

Proof. Let the coincidence set 4 of w in 2 be defined by 4= {xeQ;
w(x)=(x)}. Let the free boundary of w in £ be denoted by I', where
I'=0AnQ. We will first show that —F+ Lo >0 on I. Assume for
contradiction that there were an x,e€ I” at which (— F+ Lo)(x,) <0. Then
v=w— ¢ satisfies Lo=Lw— Lo > F— Lo >0 and v >0 in a neighborhood
of x,, with the minimum 0 of v being attained at the interior point x,.
By the strong maximum principle (e.g., Thm. 8.19 of [GT] with their L
and u replaced by our —L and —v, respectively) we have v=0 on
that neighborhood. Thus w=¢ on that neighborhood, contradicting our
assumption that x,e 1.

Making the nonsingular linear change of variables y=2""%¢"'x
converts the above problem into a similar one in which (a;) is replaced
by the identity matrix. Thus, without loss of generality, we will assume
from now on that (a,) is the identity matrix, so that Lw= —Adw—
L8 0W[Ox,+ aw.

Using problem 6 on p. 203 of [Fr] there is a  with 0 <y <n/2 and a
4 with 1<1<?2 such that the function v=|x|*f,(6) is harmonic and
positive on the cone K, = {x;x,>0, cos™ '(x,/|x|)<y}, with v=0 on
0K, . (The method of construction of v in [Fr] guarantees that v will also
be harmonic on a slightly larger cone K. introduced below.) Taking
z =cos@ and g(z) = f,(6), we have g(cosy) = f,(¢) = 0. Clearly
g'(cos ) #0 (since otherwise g(z) would be the zero solution of its
ordinary differential equation). Since g(z)>0 for cosy <z<1 (ie, for
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¥ >620), we clearly must have g'(cos ) >0. Thus there is a y* with
¥ <y* <n/2 such that £,(6) = g(cos 8) <0 for Yy < @ <y *. This Y * gives us
the opening size we will use for a new cone

Ko = {x;x,>0,cos ~!(x,/Ix]) <y*}.

Let Y= —F+ Lp. We have already proved that ¥ >0 on /. What we
have to prove is that ¥ >0 on I. Thus assume for contradiction that for
some point x,e I’ we have ¥(x,)=0. Since, by assumption, ¥(x,) and
V¥(x,)} cannot both be zero, we must have V¥(x,) #0. We can assume,
without loss of generality (by translating and rotating our coordinate
system if necessary), that our origin is at x, and that the positive x,-axis
points opposite to the direction of V¥(x,). For a small enough R>0 we
then have

¥Y<0 in Ky« Bg(xo),

where Bg(x,) is the open ball of radius R centered at x,. The function
V=w—@has LV=Lw—Lo=2F—Lo= -, so

LV>0 in Ky« Bg(xg).

Since V=0, the strong maximum principle (e.g., Thm. 8.19 of [GT]; note
that « >0 is used here) gives

V>0 in Ky Br(Xo).

Fix an ¢>0 such that A +¢<2. Let r=|x| as usual. As we will prove
below, there is an r, with 0 <r, < R such that

L(Ff(0)+r 75 <0 in K. B, (xo). (4.7)

Since f;(¥*)<0 and £>0, there is an r, with 0<r,<r, such that
rf(W*)+r <0 for 0<r<r,. Thus for any K with 0< K< 1 we have

V0>K(r'fi(0)+r' %) in 8K,.n B, (Xo)

But on the other portion of the boundary of K,.n B, (x,) (ie, on
K,.n0B,(x,)), since V>0 on K,.n0B,(x,), we can easily find a
constant K with 0 < K< 1 such that

VZK(rf(0)+r'*%)  on K,.ndB,(x,)

Thus (as soon as we have proved that (4.7) holds for some 0 <r, < R), we
have

V—K(r'f;(8)+r**°)>0  onthe boundary of K. B, (x,)
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and
LV = K(r'f(8) +r***))
=LV —KL(r*f(6)+r**5)>0  on K,.n B, (x,),
so that by the maximum principle (e.g., Thm. 8.1 of [GT]) we have
V—K(rfi(®)+r'*y=0  on K,.n B, (x,).

But on the coincidence set A, w=¢ so that V=0 and V¥ =0. Since
xo€04, V(x,)=0 and V¥(x,)=0. Since w and ¢ are both in C" (), so
is V'=w — ¢. Thus for some M, >0 and some neighborhood N of x,,

V(x) S M| |x—x,)|? for xeN,

so that ¥(x) can grow no faster than M, r? going away from x,. But on the
positive x,-axis (with § =0) we have

Vix)= Kr'f,(0)+ Kr*t® for O<r<r,,

so (since l <A< A+e<2, K>0, and f,(0) >0} V(x) is growing faster than
M r?, which gives our contradiction.

Thus it remains only to prove that there is an r, with 0 <ry< R such
that (4.7) holds. Note that r*f,(6) and r**© are both of the form considered
in Lemma 4.7 (with g(cos 8)=f,(8) in the first case and g(z)=1 in the
second). Using the fact that |g(cos 8)] and |g'(cos )| are bounded for
0<O<y*, while 4(r*f(0))=0 and Ar**e=r***"2(J+e)A+e+n—2),
straightforward calculations and estimates give the result without too much
difficulty. |}

In addition to the above assumptions on f, we will also assume that

for i=1,.,n (df/dx;)+ac; and V(df/dx;) never vanish
simultaneously. (4.8)

COROLLARY 4.9. Let the assumptions and notation be the same as in
Theorem 4.5. Assume that (4.8) holds. Then 0f/ox, + ac, <0 on Z,.

Proof. Let x, be any point of Z,. Let 22 be an open ball centered at x,
with Q< %, Let ¢=0. Let w=0u/dx,+ c, and F= df/dx,+ ac, as usual.
Then the hypotheses of Theorem 4.8 are satisfied because of Theorem 4.6
and (4.8). (we C"(Q) follows from we W2 =().) The conclusion is that
—F+ Lo= —0df/6x,—ac,>0 on the free boundary of w in £2. Because of
the result of Theorem 4.1, w(x)=0 and w(x)>0 both happen at points x
arbitrarily close to x,, so x4 is in the free boundary of w in Q. Thus
offox,+ac, <0 at x,. 1
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One more technical result must be proved before the main result can be
stated and proved. The proof of the following theorem is a modified form
of the proof in [Ath], which itself derived from the original idea in [Alt].

THEOREM 4.10. Let the assumptions and notation be the same as in
Theorem 4.5. Assume that (4.8) holds. Then any point x€ %, is a point of
positive Lebesgue density for the coincidence set.

Proof. Let ¥=(x%,,.. %, €%, Let 2, be an open ball of radius 2R
(with R>0) centered at ¥ with 2,c.%,. By Corollary49 we may
take R small enough so that df/ox, + ac, < 0 on £,. Since
w(X,, ., X,_ 1, X, + R)>0, we may take r with 0 <r < R so that w(x)>0
whenever xeR” is no more than r units of distance away from
(X(y .y X,_1, X, + R). Let p=p(x) be the function which assigns to any
x e R" its distance to the “vertical” line through %, ie.,

p(x)=p(xy, .., x,) = [(xl—xl)z'*' +(xn—l—jn—l)2]l/2'
Now define the set
D= {(x;, ., x,)eR" p(x, .., x,)<rand ¥ (x,, .., x,_,) <x,< X,+ R}.

Note that since 0df/dx,+ac,<0 on Dn{x,=x,+ R}, the fact that
0%f/6x2>0 on R" implies that df/dx, +ac, <0 on D. Also define

r + 4

Note that 70, ne C}(R"), and that when p <r/2 we have n=0. For a
(“large”) M > 0 and for (“small”’) § > 0 and ¢ > 0 to be chosen later, for any
E=(&), .n &, )R with |¢] < 8, and for any x e D, define

ow "l ow

Wx)=M (x)+ Y fkg)c—k(x)—w(x)+sn(x).

ox,

We will apply the maximum principle (e.g., Thm. 6 in Chap. 2 of [PW]) to
the function — W, the operator — L, and the set D.

Before we do this, let us make the (trivial) modification of Theorem 4.5
and our other results which allows Q to be a ball which has been (linearly)
stretched in the x,-direction. Since the set D might be extremely long in the
x,-direction, we may need such a set in order to have DcQc Q@< %, (It
may be that no ball Q can satisfy these inclusions.) We will assume that
Theorem 4.5 and our other results have been modified in this way and
that Dc Q=R <%, To achieve this last, it is crucial to know that x=
(x,,.., X,) €%, implies that £=(%,,..,Xx,_,, x,)€%, for every x,<X,.
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(To see this, assume for contradiction that du/dx;+c;=0 at X for some
j=1,..,n—1. Define 4=x%,—x,. Choose t>0 such that every point no
more than t units from x is in &,. Let x* and £* be 7 units in the negative
J-coordinate direction from X and X, respectively. Since du/dx;= —c; on the
segment from x£* to % and du/dx,= —c, on the segment from X to X,
u(x) —u(¥*)= —c,1—c,4. Since du/dx,> —c, on the segment from x* to
x* and Ou/0x;> —c; on the segment from Xx* to X, u(X)—u(X*)>
—c;t1—c,d. This contradiction proves the result.)

Returning to the problem of applying the maximum principle, since
Lw=4df/ox, + ac, on D (by Theorem 4.6),

62 n—1 aZf af
LW=M75+ 2 & dx, 0x, <8x,,

3
ox, =

+ ac,,) +elny on D.

Since 8f/0x,+ ac,<0 on D while Ly and all the 6%f/éx, dx, are bounded
on D and since 8*f/0x? >0, it is clearly possible to choose ¢>0 and § >0
small enough so that LW >0 on D whenever |£] <. Thus either W >0 on
D or W attains its minimum on D at some point of dD. (The continuity of
W on D comes from Theorem 4.6.) Our goal (as we shall see) is to show
that W>0 on D, so if W=>0 on D, we are done. Thus it suffices to show
that W =0 on éD. We will do this by proving that W >0 on each of the
following subsets of 0D

(a) First consider 3D~ {w=0}. At any x in this set, dw/dx, =0 for
1 <k<n (To see this, consider the line / through x in the x,-coordinate
direction. Restrict w to / and consider the result a function of the single
variable x,. This function has dw/dx, restricted to / as its derivative [by
Theorem 4.6] and attains its minimum value [zero] at the x,-value corre-
sponding to x.) Thus on this set W(x)=en(x)=0.

(b) Next, consider
Ny={x€dD;w(x)>0and dist(x, 3D n {w=0}) <},

where >0 is chosen small enough so N contains no point x with
x,=X%,+R. Thus for xe N, we must have p(x)=r. Since ow/0x,=
0%u/dx2 >0, while w, éw/dx,, ..., w/dx,_, are Lipschitz continuous on D
(by Theorem 4.6) and are 0 on dDn {w=0} (see (a) above), we may
clearly choose f >0 smaller if necessary so that W>0 on Ny.

(c) Finally, consider the remaining set R={xedD;w(x)>0 and
x¢ Ny} At any xe R, 3*u/dx2>0. (To see this, assume for contradiction
that there is an x,€ R with 8°u/dx2=0 there. Since 8%u/6x2>>0 on
Qn {w>0}, 0%/0x? takes an interior minimum on Q ~ {w >0} at x,. But
on 2 {w>0}, by Theorem 4.6 we have L(6%u/0x2) = 8*f/6x? > 0. Thus by
the maximum principle 0*4/0x2=0 on Qn {w>0}, from which we can
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prove that w(x,)=0, which gives a contradiction.) Therefore &%u/6x2>
m >0 on R for some constant m. Thus for large enough M we have W >0
on this portion of the boundary.

Thus W>0 on 0D, so W>0 on D by the maximum principle. For
p<r/2 we have n=0, so on D {p<r/2} we therefore have that

ow o
M2y
k

Vooow
T—=2w>0.
ax, T A Sk PN
Note that the L.H.S. is the directional derivative of w in the direction
(&ys o &1, M). Tt is easy to see that each point x of the region

{xeR"; p(x)<r/2and x — x is a positive multiple of (¢,, .., &, _,, M)

forsome ¢eR”'with |&] <8}

(which coincides with a cone in a neighborhood of ¥) must be in
the coincidence set. (Otherwise xe D, w(x)>0, and going from x in the
direction (&4, ..., £,_,, M) increases w, so we stay in D. This contradicts the
fact that we eventually come to ¥ with w(%)=0.) Since this region is in
the coincidence set, it follows trivially that x is a point of positive Lebesgue
density for the coincidence set. |

THEOREM 4.11. Let the assumptions and notation be the same as in
Theorem 4.5. Assume that (4.8) holds. Then in some neighborhood of any
point x4 € %,,

(1) #, is a C' hypersurface and, in the w>0 region, 0*w/0x,0x;
(for any i,j=1,2, .., n) is continuous up to F,.

(2) %, is a C** hypersurface for every positive a < 1.

(3) Iffe C** with k an integer, k 22, and 0 < u <1, then %, is a C**
hypersurface.

(4) If f is real analytic, then &, is a real analytic hypersurface.

Proof. Assertion (1) comes from applying Thm. 3 of [Caf]. All but one
of Caffarelli’s main hypotheses are stated in 1.2 on p. 157. Let x,€ &%,. Then
x, is a point of positive Lebesgue density for the coincidence set by
Theorem 4.10. Let £ be an open ball centered at x, with Q@c.%,.
Caffarelli’s W is that portion of our £ for which w> 0. His elliptic operator
Ais our 37, _, a;0%/0x,0x;. His v is our w. From Theorem 4.6 we have
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we W2 >2(R) so that we C! (Q). From (4.6) we have w > 0. His f (defined
by A(v)=fon W) is our

" 0 )
G=-73, g,53+aw— f—acc,,

ox,,

i=1

n azw _ .
Y aijm=Gon {xeQ;w(x)>0} ).
i J

Lj=1
In Corollary 4.9 we proved that df/0x, + ac, <0 at x,. Since we C''(£2),
clearly w(x,) =0 and Vw(x,) =0, and clearly by choosing our ball 2 small
enough there is a constant 4, such that G 2 1,>0 on a neighborhood of
Q. Thus we may take G to be the f* of [Caf]. (Note that f*eC® 17 s
guaranteed, since GeC%') The &, W of [Caf] is our %, n8. As
mentioned above, w and Vw are zero on this set. The only remaining
hypothesis that needs to be checked is that x, is a point of positive
Lebesgue density for the coincidence set (see Theorem 2). That is assured
by Theorem 4.10.

Assertions (2), (3), and (4) of our theorem then follow from Theorem 1’
of [KN]. Their u is our w, their Q is our {xeQ; w(x)> 0}, their equation
F(x, u, Du, D*u)=0 is our Lw — 0f/0x,—ac,=0. Our w has zero Cauchy
data on %, since w and Vw are zero there. With our x, € %, as “origin,” the
condition F(0,0,0,0)#0 becomes of/dx,+ac,#0 at x,, which was
proved in Corollary 4.9. Conditions (I) and (II) hold because of assertion
(1) of our theorem, proved above. Thus the conclusions of Theorem 1" hold
in our case. If we assume that feC** with k>2, O<pu<]1, then
F(x, w, Dw, D*w) = Lw — 8f/éx, — ac,, is of class C*~!# as a function of its
arguments, so (with our &k —1 taken as the m of [KN]) the free boundary
I (our #,n Q) is of class C*“ If fis assumed to be real analytic, then Z,
is a real analytic hypersurface. ||

REFERENCES

[Ad] R. A. Apawms, “Sobolev Spaces,” Academic Press, New York, 1975.

[Ag] S. AGMoON, “Lectures on Elliptic Boundary Value Problems,” Van Nostrand, New
York, 1965,

[Alt] H. ALT, The fluid flow through porous media: Regularity of the free surface,
Manuscripta Math. 21 (1977), 255-272.

[Ath] I. ATHANASOPOULOS, A temperature control problem, Internat. J. Math. Math. Sci.
7 (1984), 113-116.

[BC] J. A. BATHER anND H. CHERNOFF, Sequential decisions in the control of a spaceship,
in “Proc. Fifth Berkeley Symp. of Math. Stat. and Prob.,” Vol. 3, pp. 181-207,
Univ. California Press, Berkeley, 1967.

[BL] A. Bensoussan anD J.-L. Lions, “Applications of Variational Inequalities in
Stochastic Control,” North-Holland, New York, 1982.



(Br]
[BSW]

[Bur]
[Caf]
[CMR]

[CR]

[DS]

[EMOT]

[Fr]
[FR]
[GT]
[Kar]
[KN]
[KS]
[Mir]
[MR]
[MT]
(PW]

[8s]

REGULARITY OF THE FREE BOUNDARY 201

H. Brézis, Problémes unilatéraux, J. Math. Pures Appl. 51 (1972), 1-168.

V. E. BEnes, L. A. SHEpp, AND H. S. WITSENHAUSEN, Some solvable stochastic
control problems, Stochastics 4 (1980), 39-83.

B. C. BURCH, A semigroup treatment of the Hamilton—Jacobi equation in several
space variables, J. Differential Equations 23 (1977), 107-124.

L. A. CarrariLLL, The regularity of free boundaries in higher dimensions, Acta
Math. 139 (1977), 155-184.

P.-L. CHow, J.-L. MENALDI, AND M. ROBIN, Additive control of stochastic linear
systems with finite horizon, SIAM J. Control Optim. 23 (1985), 858-899.

L. A. CaFFareLLl AND N. M. RiIvEERE, Smoothness and analyticity of free
boundaries in variational inequalities, Ann. Scuola Norm. Sup. Pisa 3 (1976),
289-310.

N. DunForD AND J. T. SCHWARTZ, “Linear Operators, Part I,” Interscience, New
York, 1966.

A. ERDELYI, W. MaGnus, F. OBERHETTINGER, aND F. Tricomi, “Higher Tran-
scendental Functions,” Vol. I, Bateman Manuscript Project, McGraw-Hill, New
York, 1953.

A. FRIEDMAN, “Variational Principles and Free-Boundary Problems,” Wiley, New
York, 1982.

W. FLEMING AND R. W. RISHEL, “Deterministic and Stochastic Optimal Control,”
Springer-Verlag, New York, 1975.

D. GiLBaRG AND N. S. TrRuUDINGER, “Elliptic Partial Differential Equations of
Second Order,” second ed., Springer-Verlag, New York, 1983.

1. KarATZAS, A class of singular stochastic control problems, Adv. Appl. Prob. 15
(1983), 225-254.

D. KINDERLEHRER AND L. NIRENBERG, Regularity in free boundary problems, Ann.
Scuola Norm. Sup. Pisa CI. Sc. (4) 1V (1977), 373-391.

D. KINDERLEMRER AND G. STAMPACCHIA, “An Introduction to Variational
Inequalities and Their Applications,” Academic Press, New York, 1980.

C. MirRANDA, “Partial Differential Equations of Elliptic Type,” second revised ed.,
Springer-Verlag, New York, 1970.

J.-L. MENALDI AND M. RoBIN, On some cheap control problems for diffusion
processes, Trans. Amer. Math. Soc. 278 (1983), 771-802.

J. L. MenALDI AND M. I. TaksAR, Optimal correction problem of a multidimen-
sional stochastic system, Automatica 25, No. 3 (1989), 223-237.

M. H. ProTTER aAND H. F. WEINBERGER, “Maximum Principles in Differential
Equations,” Springer-Verlag, New York, 1984.

H. M. Soner AND S. E. SHREVE, Regularity of the value function for a two-dimen-
sional singular stochastic control problem, SIAM J. Control Optim. 27 (1989),
876-907.

Printed in Belgium

Ulitgever: Academic Press, Inc.
Verantwoordelijke uitgever voor Belgié:
Hubert Van Maele

Altenastraat 20, B-8310 Sint-Kruis



