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1. Introduction 

Tunnelling has become a key task in the development of 
both the mining industry and road or railway 
communications. Because of its intrinsic complexity and 
the high number of factors involved, this type of projects 
has traditionally been considered work of high and 
undefined risk. 

The diffusion of the New Austrian Tunnelling Method 
(NATM; Refs. l-3) meant a notable impulse for technical 
advancement in this engineering field. However, para- 
doxically, the problem of safety level assessment is even 
now reduced to the calculation of a unique margin of 
safety the definition of which does not fulfill current 
requirements. 

The purpose of the work described in this pape? 
has been the introduction of modern techniques of 
structural reliability in the design model for tunnel 
support structures proposed by the NATM. With this 
objective, the characteristic curves method (interaction 
diagram) has been used to approach the mechanical 
problem. Point 2 of the paper is devoted to briefly 
describing the corresponding formulation. The third 
section includes an introduction to structural reliability 
and a summary of the basic Level II techniques applied 
to develop this work. Point 4 then describes the proposed 
reliability model itself: the limit states definition, random 
variables selection, and methodology employed. Eventu- 
ally, the last section includes some results obtained from 
the application of the model to practical design 
situations. Some guidelines are proposed to calibrate 
partial safety factors to be included in a standard load 
and resistance factors design-type format. 
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2. Mechanical model: Ground-structure interaction 

Usually, to design the structure of a tunnel support, 
preliminar calculations are based on the characteristic 
curves method. The ground characteristic curve re- 
presents graphically the analytical relationship existing 
between the radial interaction pressure (Pi) applied in a 
point of the excavation boundary and the radial 
displacement (U,) experimented by this point (Figure 1). 
Similarly, the support characteristic curve relates the 
radial pressure due to ground thrust (Pi) and the radial 
displacement measured in the corresponding point of 
support structure (Figure 2). 

The equilibrium situation in the problem is de- 
termined by a displacement compatibility condition. 
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Figure 1. General appearance of ground elastoplastic characteris- 
tic curve 
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Figure 2. General appearance of support structure nonlinear 
characteristic curve 
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Figure 3. Ground-support structure interaction diagram 

That is, graphically it corresponds to the point defined 
by the intersection of ground and support characteristic 
curves. Additionally, to obtain this point, it is necessary 
to consider the lag in displacements defined between 
both curves (U,). The lag is due to the delay existing 
since the excavation moment until that when the support 
structure is effective (ground-support interaction dia- 
gram, Figure 3). 

Traditionally, the safety factor has been defined as the 
quotient between the maximum pressure that the 
structure is able to bear (ultimate pressure) and the 
interaction pressure reached at the equilibrium situation. 
Though there are important three-dimensional (3D) 
effects due to the proper drilling process and the ground 
delayed readaptation7*’ the formulation of characteristic 
curves is usually carried out for a plane strain condition. 

Different models have been developed in this line. The 
degree of complexity depends on the magnitude of the 
simplifying hypothesis assumed in each case. 

2.1 Ground characteristic curve formulation 

In this work, the formulation of a ground characteris- 
tic curve has been partially based on the 2D plane strain 
analytical model proposed by Fritz.’ This model can be 
considered a generalization of that proposed by 
Rabcewicz,3 the major NATM diffuser. Fritz considers 
the case of circular excavations when the medium is 
subjected to a load condition defined by axisymmetric 
internal and far-field pressures. Starting from a 
nonassociative elastoplastic model, the idea of time 
dependence in ground response is introduced to finally 
obtain a viscoelastoplastic analytical solution. Time 
dependence is modelled by means of a modified St. 
Venant slider. 

For simplicity, the generalization mentioned earlier 
has not been included in the work presented in this paper, 
and thus soil time-dependent properties are not 
considered. Hence, the analytical model used to develop 
the soil characteristic curve in this work presents the 
following major assumptions: 

Plane strain and axial symmetry. 
Circular shape excavation. 
Homogeneity and isotropy of ground medium 
Far-field pressures are supposed to be uniform. 
The material is assumed to be elastoplastic. Mohr- 
Coulomb yield conditions are considered and dilatant 
plastic deformations are accepted according to a 
nonassociative flow-rule. 
Strain softening is also introduced so that both peak 
and residual soil strengths are taken into account. 

Appendix 1 of this paper presents the basic formulation 
resulting from a soil model with these characteristics. 

2.2 Formulation of the characteristic curve of the liner 

The NATM proposes the use of flexible liners. In those 
structures, several elements are combined in a tailored 
way according to soil characteristics. The aim is to gain 
a suitable stiffness level in order to reach the optimum 
equilibrium situation. Later on, a second concrete ring 
is very often disposed. However, the function of that 
second liner is not strictly structural.” The most 
important elements usually included in the support 
structure are the following: shotcrete, steel reinforcement, 
steel frames, and bolts, either tensioned-anchored bolts 
or untensioned grouted bolts. 

In many models used for practical purposes (e.g., in 
Spain”), the liner is roughly defined as a perfect 
elastoplastic body. Following this approach, support 
response is linear elastic for pressure levels under 
plastification conditions. From this point on, the 
pressure remains constant for growing displacements up 
to that corresponding with the ultimate strain. Support 
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probability of failure, P,. However, when the state of 
knowledge is imperfect (incomplete statistical informa- 
tion or model imperfection) P, is itself uncertain so that 
a strict assessment of structural safety is not feasible. In 
many cases, the available statistical information only 
includes the first two moments (mean value, standard 
deviation, and correlation coefficients) of all the variables 
included in the model. Reliability methods using only 
this information are called Level II or second moment 
reliability methodsI 

stiffness in such a model is computed in a simplified way 
from those furnished by the different elements. 

In this work, a slightly more refined approach has 
been followed. The idea of a circular ring is adopted, but 
to formulate the liner characteristic curve, the standard 
stress-strain diagrams for both concrete and steel have 
been taken into account. Additionally, the contribution 
of bolts has been computed in a similar way to that 
proposed by Hoek and Brown.” Other authors13 have 
proposed including the effect of grouted bolts in the 
formation of the soil characteristic curve instead of in the 
support one. This point is based on the idea that grouted 
bolts do not directly affect support stiffness, but they do 
modify the medium surrounding the excavation, 
producing a confinement effect that induces an increase 
of ground mechanical properties. That approach has not 
been followed in this work. As a result, the liner 
characteristic curve considered in this work is not linear 
although it is composed by a user-defined number of 
linear segments. Appendix 2 summarizes the formulation 
applied to compute that curve. 

3. Level II structural reliability methods 

Until fairly recently, structural design has relied on 
deterministic analysis. However, it is now widely 
recognized that in assessing structural safety, different 
sources of uncertainty are relevant. Therefore, almost 
every design parameters should be regarded as a random 
variable even in the case that the design model itself is 
considered deterministic. As a result, it is recognized also 
that absolute safety is unattainable so that some risk of 
unacceptable structural performance must be tolerated. 
Thus, the object of structural design becomes to ensure, 
at an acceptable level of probability, that structures will 
not become unfit for their intended purpose during their 
design life. 

Structural reliability theory is concerned with the 
methods for assessing the safety and serviceability of 
structures by means of a rational statistical treatment of 
the uncertainties involved in structural engineering. Most 
structures have multiple performance requirements, that 
are commonly expressed by a set of ultimate and 
serviceability limit states. In the mathematical formula- 
tion, the limit states are described in terms of failure 
functions, g(xi), that represent surfaces subjected to 
statistical variation in the space of random variables of 
the problem: 

1 

>O safe set 

g(xi) = 0 limit state surface (1) 
10 safe set 

The probability of failure is given by 

P, = 
s 

ftxJdo (2) 

s(x4) 5 0 

where f(xi) represents the joint probability density 
function of the set of variables xi. 

When the state of knowledge in a reliability problem 
is perfect, a strict measure of structural safety is the 

3.1 Reliability index 

The common unit to quantify structural reliability is 
the reliability index usually denoted by /?. Within second 
moment theory, the first formal definition of such a 
magnitude was introduced by Cornell” as the ratio of 
the mean value to the standard deviation of the limit 
state function g(xi): 

8=: 
(3) 

in the special case when all the variables are normal and 
g(xi) is linear (complete statistical information) then: 

P‘ = 1 - Q,(B) (4) 

where 0 represents the standard normal distribution 
function. 

However, in general g(xi) is nonlinear. Thus, though 
all the variables are inherently normally distributed, g(xi) 
is not. Therefore, it is necessary to linearize the limit state 
function to compute pg and og. This is usually carried 
out by means of first-order Taylor series expansion. 
Approximations based on the linearization of the limit 
state function are denoted as first order methods. 

A problem with Cornell’s definition of p that was soon 
realized’6*‘7 is that it is not invariant with respect to the 
formulation of the limit state function. This problem was 
solved by Hasofer and Lind who proposed expanding 
the Taylor series around a point y: of the limit state 
surface (checking or design point) with minimum 
distance from the origin in a transformed standard space: 

(5) 

fl (first order second moment [FOSM], reliability 
index) is then defined as the mentioned minimum 
distance, and the design point represents the point of 
maximum likelihood. For linear limit state functions 
both definitions of /? are coincident. 

The transformation in equation (5) can be easily 
performed if the variables xi are uncorrelated. If not, an 
intermediate step is required to obtain a set of 
independent variables xi from the initial ones. At Level 
II, the procedure, an orthogonal transformation of 
normal variables, consists basically in an eigenvalue 
analysis. l8 

Additionally, in the case that some variables follow 
other non-normal types of known probability distribu- 
tions, it is possible to incorporate this extra information 
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by transforming them locally to equivalent normal 
variables (normal tail transformation).” This procedure 
is sometimes called the extended FOSM method. More 
recently, many other definitions of the reliability index 
have been proposed. Some of them are intended to 
obtain a consistent definition of fl as a statistical measure 
and refer to general imperfect states of knowledge 
including also model and estimation uncertainties.20v21 
They are beyond the scope of the present work. 

3.2 Point estimate method 

Within Level II, the application of FOSM methods 
requires the evaluation of derivatives. Sometimes this is 
not easy (for instance when the failure functions are not 
explicit or are highly nonlinear expressions) or even not 
a feasible task (e.g., those cases when the solution to the 
mechanical problem is obtained by means of numerical 
methods). Such a problem can be circumvented by the 
use of the point estimate method (PEM) proposed by 
Rosenblueth.22 The PEM is an approximate method that 
allows estimating the first two moments of a function 
y = f(Xi) (the limit state function in this case) of random 
variables of which the first two moments are known 
(Level II information). Once the estimation of the mean 
value and standard deviation of the limit state function 
is accomplished, if the hypothesis of normality is 
adopted, the evaluation of the reliability index can be 
performed through Cornell’s definition. 

For functions of a single random variable, the method 
requires two concentrations (two points for which the 
value of the function is computed) to replace the 
probability density function of the variable. If the 
function depends on two or more variables, a larger 
number of concentrations is necessary. In the case of 
Level II defined variables (inherently normally dis- 
tributed), two concentrations per variable are required. 
Thus, the method is based in the repetitive calculation 
of the value of the limit state function for a set of 2” 
predefined combinations of the n random variables: 

G (It*...*+) 
= GCZ, + 0(x,), X2 AI 4x,), . . . , % f @,)I (6) 

Expressions are provided to approximate the values of 
the first two moments of the limit state function: 

ECGI = P+ +...+ . G++.,.+ + P++...- .G ++...- 

+ ... + p__,..- .G__.,,_ (7) 

E[G2] =p++.,.+.G2++ + +p++,,,-.G2++ 

+ ... + p-_,,,- .G2-- - (8) 

In those expressions, the correlation coefficients between 
the variables pij are taken into account within the 
weighting parameters p: 

P**...* =$ 
[ 

l +I l-tpij) 1 (9) 
i.j 

where the sign applied to pij is positive when in the 
specific iteration both variables ij are either incremented 
or decremented in relation to their mean values and 

negative if one variable is incremented and the other is 
decremented. 

The idea behind the method this way summarized23 
is that the weighting parameters p adjust the information 
concerning the independent variables on the basis of the 
correlation between them. Then the information about 
the distribution of those variables is transferred through 
the functional relationship y = f(xi) (Figure 4). Finally 
the first two moments of the joint probability 
distribution function are generated using equations (7) 
and (8). 

3.3 Response surface method 

As mentioned in the previous point, in practice it is 
seldom feasible to define an analytical description of a 
mechanical system. Therefore, the analysis of the system 
can only be done by means of numerical algorithms (i.e., 
FEM or BEM analysis). Then the problem is to describe 
the randomness of a system’s response as a result of the 
randomness of the design variables. Two basic aspects 
are of interest24: to measure the overall uncertainty of 
the output variable, to which the most direct approach 
are the Monte Carlo simulation techniques; and to 
measure the influence of each variable in the global 
response of the system, which constitutes the basis of the 
stochastic finite element techniques and among them the 
response surface method (RSM).24-27 The RSM uses a 
polynomial expansion (the response surface) to describe 
the dependency of the output variable on the 
independent variables: 

_Y = F(x, Sj) + E (10) 
where F is a first- or second-order polynomial 
expression, hj is a set of unknown parameters to be 
calculated, and E is a random term contributed by the 

Figure 4. PEM: schematic representation of transfer of informa- 
tion for functions of two random variables (after Harr23) 
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4.1 Limit states considered in the model 

Among the different limit states that have been defined 
for tunnel design, 34 three basic ones have been selected to 
accomplish this work. 

neglected higher terms (“lack of fit”) and by intrinsic 
randomness (“pure error”). 

In order to determine the value of the elements in 6., 
an appropriate experimental plan must be defined.2s*2’ 
Each numerical experiment consists of the calculation of 
system’s response for a predefined specific value of the 
design variables. The number of experiments to be 
performed should be high enough to allow the evaluation 
of the elements in bj by means, for instance, of a least 
squares fit. Finally the variance of the error term E and 
the influence of each design variable are computed 
through a multiway analysis of variance (ANOVA) of the 
experimental data. 30*31 This completes the definition of 
the model, which can be validated through statistical 
testing (F tests, analysis of residues, etc). 

3.4 Design code calibration 

FOSM reliability methods have been intensively 
applied in the development of modern structural design 
codes.32*33 In such codes, partial factors for load and 
resistance variables are included in the so-called load and 
resistance factors design formats (LRFD). Those factors 
are computed as a result of a target reliability index 
which is set in accordance to accepted practice. Thus, /I 
is used as a relative measure of safety for comparison. 

The starting point is an LRFD format: 

+R 2 k YiSi (11) 
i=l 

where yi represents the partial factor applied to load 
variable Si, and 4 stands for the minoration factor 
applied to the generic resistance of the structural system. 
Then it is possible to develop expressions that relate the 
value of yi and 4 with a prefixed target value of /I: 

(12) 

where Xi* is the checking point value of variable i, 
pi and oi its mean value and standard deviation, and 
finally, @ represents the sensitivity coefficient of variable 
i evaluated at the checking point and defined as 

($4 =ag 
I 

aZi z* 

Z* = checking point (13) 

xi - Pi zi = ~ 
a i 

4. Proposed structural reliability model 

This section presents the master lines of the reliability 
scheme proposed to study the geomechanical problem 
described in point 2. 

1. Ultimate limit state of soil bearing capacity. Since the 
soil surrounding the excavation plays an important 
role in tunnel stability, this limit condition is intended 
to evaluate the potential risk of collapse due to ground 
disgregation. This state is analyzed at a complete 
ground-support section level. The range of plastified 
material surrounding tunnel contour (plastification 
radius) is computed at an equilibrium situation. 
Hence, the ground is considered at ultimate condition 
when the quotient, u, between that radius, p, and 
excavation radius, R, takes a limit value, c(*, usually near 
2, empirically defined for each soil type. 

When the equilibrium is obtained within elastic 
range, the solicitation level is quantified by the value 
of the over-stress ratio (OSR) factor (0 I OSR I 1) 
computed at excavation contour. As it is known, the 
OSR is defined as the rate between an elastic stress 
state and that homothetic one corresponding to the 
plastic condition. For 2D cases, assuming Mohr-Cou- 
lomb criteria, an analytical expression for OSR can 
be obtained in the form 

OSR = 
PO - Pi 

PO sin cp + c cos cp 
(14) 

where PO and Pi stand for far-field and interaction 
pressures. and c and cp are ground cohesion and 
internal friction angle. As a result, a simplified limit 
state function and failure criteria can be established 
as follows: 

FF, = u* - LX I 0 (15) 

CI, called the plasticity factor, is defined as the quotient 
p/R except in the case of ground elastic equilibrium 
when ~1 is computed as the OSR value at excavation 
contour. 

2. Ultimate limit state of support bearing capacity. This 
ultimate limit state is studied at a structural element 
section level. The limit condition arises when the 
strain levels reach an ultimate value E* corresponding 
to support structure rupture. Due to the structural 
model employed, E* coincides with the ultimate strain 
of concrete subjected to simple compression. Accord- 
ing to concrete codes, E * = 0.0020 can be considered 
a standard value. In each case, it is necessary to 
determine the ground-support equilibrium point as 
the intersection of both characteristic curves. Once 
that point is known, the value of this second limit 
state function is obtained as 

where U, is the radial displacement of the structure, 
R is its radius, U, is the radial displacement of the 
excavated soil boundary at equilibrium condition, and 
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U, stands for previous ground displacement (Figure 

3). 

3. Serviceability limit state of excessive structural 
displacement. Since the support is modelled as a ring, 
it is supposed to work subjected to simple compression 
only. As a result, the stiffness of such a structural model 
is very high. Nevertheless, it is possible to think that the 
purpose of a specific project could impose very restrictive 
conditions on allowable structural strain levels. This 
limit state is intended to consider such a situation. Since 
safety is not necessarily compromised, it is considered a 
serviceability limit state. This limit condition affects 
structural strain so that when the excavation is 
self-stabilized it is not considered. 

As in the previous limit states, the first step consists 
of the determination of the ground-support equilib- 
rium point. Once this point is known, the value of the 
limit state function is computed directly as the 
difference with the fixed limit value 

FF, = U* - U, (17) 

As is usual, in all cases positive values of a limit state 
function reflect safe situation of the system in relation 
to the corresponding limit state, while negative values 
correspond to conditions of limit state violation. 

4.2 Basic random variables 

For the purpose of quantifying uncertainties, in this 
reliability scheme the following magnitudes have been 
considered as basic random variables: 

In relation to the soil: 

Young’s modulus, E, 
Poisson’s modulus, v, 
Internal friction angle, 4, 
Cohesion, C, 
Excavation depth, H 
Density, y, _ ^ 

T’o define support structure: 
Ground displacement previous to support actuation, 

u0 
Shotcrete average resistance, F, 
Shotcrete layer thickness, t 
Tunnel radius, R 
Geometric density of steel reinforcement, o, 
Steel equivalent section aported by frames (section + 
distance), o, 
Bolt length, L, 
Bolt geometric density, D, 
Bolt diameter, ai, 

Not always will all the variables included in the foregoing 
set be considered random ones. Actually, it is possible to 
neglect the variability of one or more of those variables 
through the assignation of null variation coefficients. 

Apart from the basic random variables, the model 
includes additional quantities the variability of which 
have been considered neglectable in comparison with 

those of the basic variables. Because of this, for the 
analysis their value has been set in a deterministic way. 
Among these parameters it is possible to mention the 
Young’s modulus of steel; the yield stress for steel in 
reinforcement, frames, and bolts; the ultimate strain of 
concrete under simple compression, etc. 

4.3 Reliability methods applied in the analysis 

The soil-structure interaction problem studied in this 
work presents several difficulties that reduce the 
applicability of FOSM techniques used to compute the 
reliability index: 

The intrinsic complexity of the mechanical model and 
its marked nonlinear character; 
The high number of variables involved in the problem 
and the high uncertainty and variability ranges of 
some of them; and 
The fact that it is not possible to obtain, from the basic 
variables, explicit analytical formulations for the three 
selected limit state functions. Therefore, it is necessary 
to make use of either implicit function or numerical 
derivation procedures to support FOSM techniques. 

Anyway, a complete FOSM scheme has been developed. 
However, the implementation in a computer program 
has revealed the existence of numerical problems that 
affect the stability of the algorithm. 

Alternatively, to develop a procedure with a wide 
applicability range, both the PEM and the RSM have 
been used. In the first case, the method allows obtaining 
an estimation of the mean value and the standard 
deviation of the random variables representing the value 
of the three limit state functions. Knowing only those 
two parameters of each limit state function, the principle 
of maximum entropy suggests the use of the normal 
distribution. Hence, the corresponding reliability indexes 
can be evaluated by application of Cornell’s definition 
(3), and the respective nominal failure probabilities are 
computed as: 

pL = @C-Pi1 (18) 
where Q represents the distribution function of an 
standard normal variable (p = 0,~ = 1). Such a PEM- 
based procedure has been implemented in a personal 
computer program. 

Additionally, a simplified RSM procedure has been 
developed to obtain an estimation of the value of 
sensitivity factors corresponding to each basic variable 
for each limit state function. In this case, use has been 
made of the population of values of the limit state 
functions generated by PEM application (2” values of 
each function, n = the number of random variables). 
From these populations, linear expressions for the 
corresponding failure surfaces in the transformed space 
(5) are interpolated by means of a minimum squares 
procedure: 

w = a, + k a,X, (19) 
i= I 
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Once the failure surfaces are approximated, it is possible 
to compute the value of the sensitivity factors as well, and 
the position of the design point by application of the 
Hasofer-Lind definition of reliability index: 

@-L=Z 

\i 

(20) 

i$l a: 

% 

a' \i 

(21) 

p' 

In practice, the values of fi calculated in that way have 
shown a good correlation with those obtained through 
the application of PEM. 

Finally, as mentioned in point 3.3, from the values 
computed for the sensitivity factors it is possible to 
calibrate partial safety factors to be included in a 
LRFD-type design format. Since those values, in this 
case, are only an estimation, the calibration procedure 
should be applied with some precautions, also taking 
into account the results obtained from parametric 
studies. 

5. Results 

This point presents some results that have been obtained 
from the application of the proposed reliability model to 
different real design situations. Initially, two tunnel 
sections are analyzed to determine reliability indexes. 
The following conclusions relative to parametric studies 
and partial safety factor calibration are presented. The 
data to develop the analysis has been obtained from El 
PadrGn tunnels recently built in the North of Spain.35 

5.1 Examples 

Two practical situations are presented herein. In both 
cases the same data have been considered to set up limit 
state critical conditions: 

Limit state of soil bearing capacity; the critical 
condition is considered fulfilled when the plasticity 
factor a takes a value of 2 (tx* = 2). 
Limit state of support bearing capacity; the critical 
condition is set for a maximum strain E* = 0.0020. 
Limit state of excessive structural displacement: 
U* = 3 cm is considered the maximum allowable 
radial displacement of the structure. 

Example 1 

It reproduces a common practical situation. Figure 5 
presents the problem and includes the interaction 
diagram where the characteristic curves are plotted for 

I DESIGN VARIABLE I Mean&due I Var. Coef. I Stand Dev. 1 
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EXAMPLE 1: AVERAGE VALUE 

PRESSURE (xE6 Pa) 
51 

0 I I 

0 0.01 0.02 0.03 0.04 
DISPL4CEYENT (m) 

- SOIL - LINING 

Figure 5. Results Example 1, basic data (S.I. units), reliability 
results, and mean values interaction diagram 

the mean values of the variables. If a deterministic safety 
factor is evaluated for the same mean value condition, a 
value near to 1.5 is obtained. Nevertheless, the results 
from reliability analysis are much more conservative and 
bring values around 1.3 for the first and second limit 
states reliability indexes (nominal failure probabilities 
near 10%). 

Example 2 

In this case (Figure 6) a special situation has been 
selected. It corresponds to a self-stabilized excavation (no 
support structure is strictly needed if the mean values of 
the variables are considered). When the reliability 
analysis is carried out, the effects of random variables 
scattering is manifested: 

l For the first limit state, the reliability index only 
reaches a value of 0.82 (20% nominal failure 
probability). 
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l For the second limit state, even though according to 
the mean values the structure would not work, it 
becomes clear that it is not the same for diverse 
situations derived from the random character of the 

Ilh 

. friargk 3soE+ol 1 17% 1 53A 
- ’ 

I + 
1%.02 I I 6 

’ LIMIT STATE Mean&f. Stand Dev. Rel. Index 1 Prob. failure 
1 Grwnd exhaustan 2,63E-01 3.w01 0.63 20,4Xmz 
2sqJpLxtexhalkn 1,5sE-03 6,2i’E-04 2.53 * 

3 Eacess. swd. strain 3.15E-M 7.7X-03 4.66 %E 

_ -- 
E-M 1 I 1.w.m I 

EXAMPLE 2: AVERAGE VALUE 

PRESSURE (xE6 Pa) 

r 

L 

1 

0 0.007 0.015 0.022 0.03 

DISPLACEMENT (m) 

- SOIL - LINING 

Figure 6. Results Example 2, basic data (S.I. units), reliability 
results, and mean values interaction diagram 

basic variables. Hence, the reliability index results 2.5 

(0.6% nominal failure probability). 

In both cases the set of basic random variables has been 
supposedly correlated. Thus, it has been necessary to 
make an estimate of the values included in the correlation 
matrix considered in the analysis. That matrix is 
presented in Table 1. 

5.2 Parametric studies and partial safety factors 
calibration 

Some parametric studies have been conducted to 
analyse the relative influence of the different random 
variables in the general response of the reliability model. 
Those studies are reported in Refs. 4 and 6. As a result, 
it is possible to classify the variables into resistance, when 
a positive increase of the variable induces a positive 
increase of the reliability index, or load when the effect 
is the opposite. Moreover, the influence of one variable 
scattering can be measured. Table 2 includes some results 
in this line: it shows how the results included in Example 
1 are modified, in terms of increments of the reliability 
indexes with respect to those reported in point 5.1, when 
the coefficient of variation of different variables is 
modified between l&80%. 

The information obtained from parametric studies is 
also applied to support the calibration of partial safety 
factors, to be included in a proposal of a design format. 
The basic values of these factors are obtained from the 
calculation procedure described in point 4.3. The final 
results of the process involved are curves like those 
presented in Figures 6 and 7. They represent, for an 
objective reliability index, the value of the partial safety 
factor to be applied to a determined variable as a 
function of its coefficient of variation. Figure 8 presents 
for the first and second limit states the curves 
corresponding to the variables soil Young’s modulus and 
soil density for an objective reliability index /? = 3. 
Finally, Table 3 summarizes the values adopted for the 
partial safety factor assigned to each variable for the 
same objective reliability index. 

Table 1. Correlation matrix considered in the analysis of examples and parametric studies 

Et Yt cpt C, H Yt (JO F, t R 0s WC Lb Db @b 

Et 1 
Yt 0 1 
‘Pt 0 0 1 
c, 0.3 0 0 1 
H 0.7 0 0.3 0.3 1 
Yt 0.7 0 0 0.3 0.5 1 
fJ, -0.3 0 0 0.3 0 0 1 
F, 0 0 0 0 0 0 0.2 
; 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
0, 0 0 0 0 0 0 0 
WC 0 0 0 0 0 0 0 
2 0.2 0 0 0 0.2 0.2 0 

t 0.2 0 0 0 0.2 0.2 0 
@b 0.2 0 0 0 0.2 0.2 0 

1 
-0.02 1 

0 0 0.3 1 
0 0.3 0 1 
0 0 0.3 0 1 
0.2 0.2 0.2 0 0.3 1 
0.2 0.2 0.2 0 0.3 0 1 

0.2 0.2 0.2 0 0.3 0 0 1 
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Table 2. Parametric studies: increment of B measured for sample 1 when the variation coefficient for different variables changes from l&80% 

Variable 

Limit 

B 
V.C. = 10% 

State 1 
AS 

V.C. = 80% 

Limit State 2 

P A/3 
V.C. = 10% V.C. = 80% 

Limit 
B 

V.C. = 10% 

State 3 
AB 

V.C. = 80% 

1 : Et 

3: Yt 
4: Ii 
5: c, 
6: or 
7: u, 
8: F, 
9: I 

10: R 

0.2684E + 01 
0.2406E + 01 
0.2435E + 01 
0.2438E + 01 
0.2990E + 01 
0.2839E + 01 
0.2441 E + 01 
0.2465E + 01 
0.2406E + 01 

-0.1093E + 01 
-0.1522E + 01 
-0.1552E + 01 
-0.1400E + 01 
-0.3366E + 01 
-0.1028E + 01 
-0.721 OE + 00 
-0.9570E + 00 
-0.1946E + 01 

0.4004E + 01 
0.3064E + 01 
0.341 OE + 01 
0.3433E + 01 
0.3973E + 01 
0.3921 E + 01 
0.3624E + 01 
0.4796E + 01 
0.3194E + 01 

-0.3556E + 01 0.1380E + 02 
-0.2722E + 01 0.1083E + 02 
-0.3050E + 01 0.1197E + 02 
-0.9500E - 01 0.1205E + 02 
-0.4076E + 01 0.1378E i- 02 
-0.1847E + 01 0.1348E + 02 
-0.3455E + 01 0.1265E + 02 
-0.4836E + 01 0.1630E + 02 
-0.2452E + 01 0.1055E + 02 

-0.1085E + 02 
-0.8956E + 01 
-0.1005E + 02 
-0.3200E + 00 
-0.1263E + 02 
-0.5439E + 01 
-0.1064E + 02 
-0.1482E + 02 
-0.9067E + 01 

SOIL YOUNG MODULUS 
beta = 3.0 

Partial safety factor 
2, 

” 

0 10 20 30 40 50 

Coefficient of variation (X) 

- soil fail alfa=.J - struct. fail a1fa=.3 

Figure 7. Design for ground elastic modulus. Upper line: Limit 
State 1. Lower line: Limit States 2 and 3. Abscisas: coefficient of 
variation of the variable (%). Ordinates: partial safety factor for 
p = 3.0 

SOIL SPECIFIC WEIGHT 
beta = 3.0 

1.225 - 

1.15 - 

0 10 20 30 40 50 

Coefficient of variation (X) 

- aoil fail alla=.02 - struct. fail alla=.2 

Figure 8. Design curve for ground density. Upper line: Limit State 
1. Lower line: Limit States 2 and 3. Abscisas: coefficient of variation 
of the variable (%). Ordinates: partial safety factor for j3 = 3.0 

Table 3. Partial safety factors obtained for an objective /I = 3 

Partial safety factor 

Nominal variation /?=3 

coefficient 
Random variable (%) Limit State 1 Limit States 2-3 

Ground Young’s modulus 30 1.45 0.73 
Ground Poisson’s modulus 10 0.985 0.985 
Ground density 5 1.003 1.03 
Excavation depth 10 1.03 1.12 
Ground cohesion 40 0.82 0.64 
Ground internal friction angle 17 0.643 0.745 
Previous ground displacement 40 1.48 0.64 
Shotcrete average resistance 15 0.955 0.91 
Shotcrete layer thickness 25 0.8875 0.6625 
Excavation radius 5 0.9925 1.0225 
Geometric density: Steel reinforcement 10 0.985 0.985 
Geometric density: Steel frames 20 0.97 0.97 
Bolts length 10 0.985 0.985 
Bolts geometric density 30 0.955 0.955 
Bolts diameter 5 0.9925 0.9925 
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6. Conclusions 

The aim of this work was the introduction of classical 
structural reliability methods in the design of tunnel 
support structures. The characteristic curves or interac- 
tion diagram method was adopted for the mechanical 
approach to the problem, so that it was necessary to 
formulate the corresponding behavior laws for both the 
soil and the liner. A set of basic random variables was 
selected to describe the problem in terms of three basic 
limit states. The application of classical Level II 
reliability methods made feasible the evaluation of the 
corresponding reliability indexes. In this sense, the final 
basic technique adopted was a simplified procedure of 
the RMS type. 

Of course, it must be assumed that those safety indexes 
can make no claim of representing an absolute measure 
of the real failure probability but, still, they do provide 
a means of comparing the reliability of different design 
situations. The proposed analytical model has been 
implemented in a computer program that has been used 
in the study of several practical cases. Some parametric 
studies have been conducted also. As a final result, 
following current tendencies, a practical proposal has 
been presented for the calibration of standard Level I 
partial safety factors. 
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Appendix: Characteristic curves formulation 

A.1 Soil elastoplastic characteristic curve formulation 

A. 1.1 Soil plastic characteristics evaluation (valid for 
peak, residual, and nonassociative values) 

1 + sen cp 
m=p- 

1 - sen cp 

2c cos cp 
ad = 

1 - sen cp 

A.1.2 Radial stress corresponding to plastification 
radius: 

2P, - a: 
ap = 

1 + mp 

where P, is the value of far field pressure. 

A.1.3 Plastification radius: 

Pi stands for the ground-structure interaction pressure. 

A.1.4 For points within the elastic zone (r 2 p): 

P, - a p2 u=-_2-. E 

2G r’ 
G=- 

2(1 + v) 

A.1.5 For points within the plastic zone (r <: p): 

0 
p 

2 

a, = P, - (PO - ap) 
r 

0 
p 

2 

a0 = P, + (PO - ap) 

u1 = q (R + lb) 
L’( > 

K, & 
mC+l 

+ &&ymR + Kj 

K, = 
af: + (m” - l)a, 

mR - 1 
(1 - vt) 

1 + mRmG 

mr -I- mG 
- v, 1 

K, = (1 - VA mR + ’ [af: + (mR - l)a,] 
mG + mR 

1 
+ [~PIJ - (mR + l)a, - a:] ___ 

mG + 1 

K, = P, - a, - K, - K, 

a, = 
mR- l 6 

mR - 1 

a0 = mR 
af:+Pi(mR-1) r mR-1 C-1 4 -___ 

mR-1 R mR -1 
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Superscripts P, R, and G denote, respectively, peak, 
residual, and nonassociative values of plastic soil 
properties. 

A.2 Linear elastoplastic characteristic curve 

A.2.1 Concrete stress-strain relationship (Eurocode 2): 

If E, < 0.0020: 

1 

ac =m 
l/3 

1.1 x 9.5 

X 

1 + 1.1 x 9.5 [ $ + 8 1 
If 0.0020 I E, I 0.0035: 

ac =fc 
where 

f, = mean value of concrete resistance 

4 = concrete fluency coefficient 

pL1 = concrete fatigue coefficient 

A.2.2 Steel stress-strain relationship: 

l For -0.0035 < es < -&sY: as = asy 
l For - &sY < Ed < &: as = Essv 
l For csY < Ed < 0.01: as = asy 

where subindex Y denotes yield stress and strain values 
of the steel considered either on frames or on concrete 
reinforcements and bolts. 

A.2.3 All materials within elastic range (0 I E I 0.0012, 
n, linearized segments): 

PR2 
i= 1, u=-- 

E,‘t 

1 < i < n,, 
u_PR2 F1R2 I ui-l 

Eft Eft 

where (u’- l , Pi- ‘) define the final point of segment 
i - 1 and the equivalent value of the stiffness Ef is 
obtained as: 

Ef=E;+E,(W,+W,) 

EL = 
a(Ei) - a(& ‘) 

0.0012 
(nl - 1) 

the values a@) are computed by application of A.2.1. 
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A.2.4 Plastified steel in frames (0.0012 < E < 0.0020, 
n2 linearized segments): 

PR2 P”‘R2 
i=n,+l:u=- “+lt + 24”’ - - 

Es E:’ t 

PR2 pi- lR2 

n, I i 5 n, + n,: u = ~ 
Eft 

+ ui-l - E’t 
s 

Vi, n, c i < n, + n2: Ei = EL + EswS 

A.2.5 Bolts contribution 

Working traction load of the bolts: 

I-I l-I 2 (u--AE 
N, = T &Es&,, = T Qb 1 s 

b 

where (U - ul) stands for the relative radial 
displacement of both bolt heads. Then, for all the bolts 
in the section under consideration, E: represents the 
yield strain corresponding to the steel in bolts: 

Conservatively, the radial displacement of that end 
of the bolt anchored to rock mass is computed 
following A. 1: 

l If(R+f,>p): 

(1 + v,)[P&P - 1) - f$] e2 
u1 = 

E,(l + m”) CR + 41 
l If(R+I,<p): 

u1 

The resulting nonlinear P - u relationship must 
be composed with those of A.2.3 and A.2.4 to finally 
obtain the general support structure characteristic 
curve formulation. 
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