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Abstract

We construct conjugate operators for the real part of a completely non-unitary isometry and
we give applications to the spectral and scattering theory of a class of operators on (complete)
Fock spaces, natural generalizations of the Schrodinger operators on trees. We cotisider
algebras generated by such Hamiltonians with certain types of anisotropy at infinity, we compute
their quotient with respect to the ideal of compact operators, and give formulas for the essential
spectrum of these Hamiltonians.
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1. Introduction

The Laplace operator on a graphacts on functiong:I'— C according to the relation

AHE =D (f) = f@)), (1.1)

y<x
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wherey <> x means thak andy are connected by an edge. The spectral analysis and
the scattering theory of the operators 6H(I") associated to expressions of the form

L = A+ V, whereV is a real function onl, is an interesting question which does
not seem to have been much studied (we have in mind here only situations involving
non-trivial essential spectrum).

Our interest on these questions has been aroused by the work of Allard and Froese
[AllLAIF] devoted to the case whed™ is a binary tree: their main results are the
construction of a conjugate operator forunder suitable conditions on the potential
and the proof of the Mourre estimate. As it is well known, this allows one to deduce
various non-trivial spectral properties bf for example the absence of the singularly
continuous spectrum.

The starting point of this paper is the observation thal'ifs a tree then¢2(I")
can be naturally viewed as a Fock sphcever a finite-dimensional Hilbert space and
that the operatot. has a very simple interpretation in this framework. This suggests
the consideration of a general class of operators, abstractly defined only in terms of
the Fock space structure. Our purpose then is twofold: first, to construct conjugate
operators for this class of operators, hence to point out some of their basic spectral
properties, and second to reconsider the kind of anisotropy studied in [Gol] in the
present framework.

It seems interesting to emphasize the non-technical character of our approach: once
the correct objects are isolated (the general framework, the notion of number operator
associated to an isometry, th&*-algebras of anisotropic potentials), the proofs are
very easy, of a purely algebraic nature, the arguments needed to justify some formally
obvious computations being very simple.

We recall the definition of a-fold tree with origine, wherev is a positive integer
and v = 2 corresponds to a binary tree (see [Gol]). lletbe a set consisting of
elements and let

r=|[Ja", (1.2)

n>0

whereA” is thenth Cartesian power oA. If n = 0 thenA° consists of a single element
that we denotee. An elementx = (ay, ao, ..., a,) € A" is written x = a1as . ..a, and
if y=bibs...b, € A" thenxy = ayay...a,b1bs...b, € A" with the convention
xe = ex = x. This providesI” with a monoid structure. The graph structure bris
defined as followsx <> y if and only if there isa € A such thaty = xa or x = ya.
We embedI” in £2(I") by identifying x € T with the characteristic function of the
set{x}. ThusT" becomes the canonical orthonormal basig4f"). In particular, linear
combinations of elements d&f are well-defined elements 6f(I), for example}_,. , a
belongs to¢?(I') and has norm equal tg/v.
Due to the monoid structure df, each element of the linear subspace generated
by I in ¢2(I") defines two bounded operatots and p, on £2(I"), namely the operators

1 Note that we use the notion of Fock space in a slightly unusual sense, since no symmetrization or
anti-symmetrization is involved in its definition. Maybe we should say “Boltzmann-Fock space”.
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of left and right multiplication byv. It is then easy to see that if = )_,_, a then
the adjoint operatop? acts as follows: ifx € I" then p¥x = x’, wherex’ =0 if x = ¢

and x’ is the unique element il such thatx = x’a for somea € A otherwise. Thus
the Laplace operator defined b$.1) can be expressed as follows

A=p,+pj+e—(+1).

In the rest of this paper we shall not include Mnthe termse — (v + 1) becausee
is a function onI” with support equal tde}, hence can be considered as part of the
potential, andv 4+ 1 is a number, so has a trivial contribution to the spectrum. It will
also be convenient to renormalize by replacingv by a vector of norm%, hence by
v/ ifv=3,4a.

We shall explain now how to pass from trees to Fock spaces. We use the following
equality (or, rather, canonical isomorphism):Af B are sets, then

0%(A x B) = £%(A) ® (%(B).

Thus €2(A") = ¢2(A)®" if n>1 and clearly¢?(A% = C. Then, since the union in
(1.2) is disjoint, we have

52(1—*) — éEZ(An) — éEZ(A)@m,
n=0

n=0

which is the Fock space constructed over the “one particle” Hilbert sphee??(A).
Thus we are naturally led to the following abstract framework. Hebe a complex
Hilbert space and let# be the Fock space associated to it

o
A =P H®". (1.3)
n=0

Note thatH could be infinite dimensional, but this is not an important point here
and in the main applications we assume it finite dimensional. We choose an arbitrary
vectoru € H with |lu| = 1 and consider the operatéf = p, : # — # defined by

Uf =feuif fe H®'. Itis clear thatU is an isometry on# and the self-adjoint
operator of interest for us is

1
A=RelU = 5(U +U"), (1.4)

our purpose being to study perturbatiohs= A + V where the conditions oW are
suggested by the Fock space structurexof In the second part of the paper we shall
replaceA by an arbitrary self-adjoint operator in th&*-algebra generated by.
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Translating the problem into a Fock space language does not solve it. The main point
of the first part of our paper is that we treat a more general problem. The question is:
given an arbitrary isometry on a Hilbert spaegé and definingA by (1.4), can one
construct a conjugate operator for it? We also would like that this conjugate operator be
relatively explicit and simple, because we should be able to use it also for perturbations
L of A.

If U is unitary, there is no much hope to have an elegant solution to this problem.
Indeed, for most unitaryJ the spectrum ofA will be purely singular. On the other
hand, we show that in the opposite case of completely non uniarhere is a very
simple prescription for the construction of a “canonical” conjugate operator. Sections 2
and 3 are devoted to this question in all generality and in Section 4 we give applications
in the Fock space framework.

The construction is easy and elementary. Uebe an isometry on a Hilbert space
. We callnumber operator associated to & self-adjoint operatoN on # such that
UNU* = N — 1. The simplest examples of such operators are described in Examples
2.5 and 2.6. It is trivial then to check that, $fis the imaginary part otJ, the operator
A:=(SN+NS)/2, satisfiedA,iA] = 1—A?, hence we have a (strict) Mourre estimate
on [—a, a] for eacha €]0, 1].

The intuition behind this construction should be immediate for people using the
positive commutator method: in Examples 2.5 and 2.6 the opetaisrthe Laplacian
on Z or N respectively ands is the operator of derivation, the analog Bf= —i% on
R, so it is natural to look after something similar to the position oper@and then
to consider the analog afPQ + Q P)/2. Note that we got such a simple prescription
because we dithot make a Fourier transform in order to realiAeas a multiplication
operator, as it is usually done when studying discrete Laplacians (e.g. in [AIF]). Note
also that the relatio NU* = N —1 is a discrete version of the canonical commutation
relations, cf. (2) of Lemma 2.4.

In the unitary case the existence Mfis a very restrictive condition, see Example
2.5. The nice thing is that in the completely non-unitary chisexists and is uniquely
defined. This is an obvious fact: the formal solution of the equaNos 1+ UNU*
obtained by iteratiolV = 1+UU*+U?U*2+- - - exists as a densely defined self-adjoint
operator if and only ifU** — 0 strongly ons#, which means that) is completely
non-unitary. Finally, observe that the operatgrs on the Fock space are completely
non-unitary, so we can apply them this construction.

Our notationN should not be confused with that used in [AIF]: ddiis proportional
to their R— N +1, in our notationR being the particle number operatdr(see below).

We could have used the notati@hfor our N, in view of the intuition mentioned above.
We have preferred not to do so, because the number operator associdleih tihe
tree case has no geometric interpretation, as we explain below.

There is no essential difference between the tree model and the Fock space model,
besides the fact that we tend to emphasize the geometric aspects in the first represen-
tation and the algebraic aspects in the second one. In fakt,isfa finite-dimensional
Hilbert space equipped with an orthonormal bagisc H then the treel’ associated
to A can be identified with the orthonormal basis .@f canonically associated t4,
namely the set of vectors of the form ® az... ® a, with a; € A. In other terms,
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giving a tree is equivalent with giving a Fock space over a finite-dimensional Hilbert
space equipped with a certain orthonormal basis. However, this gives more structure
than usual on a Fock space: the notions of positivity and locality inherent to the space
¢%(I') are missing in the pure Fock space situation, there is no analog of the spaces
¢P(IN), etc. But our results show that this structure specific to the tree is irrelevant for
the spectral and scattering propertiesLof

We stress, however, that an important operator in the Fock space setting has a simple
geometric interpretation in any tree version. More preciselyNlbe theparticle number
operator defined ons# by the conditionN f = nf if f belongs toH®". Clearly, if #
is represented a&*(I"), thenN becomes the operator of multiplication by the function
d, whered(x) = d(x, e) is the distance from the point to the origine (see[Gol]).

On the other hand, the number operabbrassociated to an isometry of the form
U =p, is quite different fromN, it has not a simple geometrical meaning and is not
a local operator in the tree case, unless we are in rather trivial situations like the case
v=1 (see Example 2.6). For this reason we make an effort in Section 4 to eliminate the
conditions from Section 3 involving the operatdrand to replace them by conditions
involving N. This gives us statements like that of the Theorem 1.1 below, a particular
case of our main result concerning the spectral and scattering theory of the opkrators

We first have to introduce some notations. ligtand 1>, be the orthogonal projec-
tions of # onto the subspaced®" and @, -, H®*, respectively. For reas let #
be the Hilbert space defined by the norm

LAIZ =120 £1% + ) n® 11 f11%.

n=>1

If T is an operator on a finite-dimensional spdeghen (T) is its normalized trace
(T) =Tr(T)/dim E. We denote byes{L) and op(L) the essential spectrum and the
set of eigenvalues df. As a consequence of Theoreft6, we have:

Theorem 1.1. Assume that H is finite dimensionehoosea: € H with |ju|| = 1,and let us
setA = (p,+pj;)/2. Let V be a self-adjoint operator of the forin=}_ - 4 V,1,, with
Vi € B(H®"), lim, .« | VIl = 0, and such thaf|V, — (Vi) | + | Va1 — Vo @ L[| < 6(n)
where ¢ is a decreasing function such that, é(n) < co. Let W be a bounded self-
adjoint operator satisfying) _, [|[W1s,| <oco. We setLo=A+V andL = Lo+ W.
Then

(1) gesdL) = [-1, +1];

(2) the eigenvalues of L distinct fros1 are of finite multiplicity and can accumulate
only toward+1;

@) if s > 1/2 and 4 ¢ k(L) := op(L) U {1}, thenlim_o(L — 4 —ip)~1 exists in
norm in B(# (5), # (—s)), locally uniformly inZ € R\ x(L);

(4) the wave operators for the paiiL, Lg) exist and are complete.

These results show a complete analogy with the standard two-body problem on
an Euclidean space, the particle number operaigplaying the role of the position
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operator. Note thaV’, W are the analogs of the long- and short-range components of
the potential. See Propositich4 for a result of a slightly different nature, covering
those from [AIF]. Our most general results in the Fock space setting are contained in
Theorem 4.6.

The second part of the paper (Section 5) is devoted to a problem of a completely
different nature. Our purpose is to compute the essential spectrum of a general class of
operators on a Fock space in terms of their “localizations at infinity”, as it was done
in [Gel] for the case wher™ is an abelian locally compact group.

The basic idea of [Gel] is very general and we shall use it here too: the first step
is to isolate the class of operators we want to study by considering_thalgebra
% generated by some elementary Hamiltonians and the second one is to compute the
quotient of% with respect to the ided#o = ¢ NK(#) of compact operators belonging
to €. Then, if L € ¥ the projectionL of L in the quotient% /%y is the localization
of L at infinity we need (or the set of such localizations, depending on the way the
guotient is represented). The interestIofcomes from the relatiolesd L) = a(L) In
all the situations studied in [Gel] these localizations at infinity correspond effectively
with what we would intuitively expect.

We stress that both steps of this approach are non-trivial in general. The algebra
must be chosen with care, if it is too small or too large then the quotient will either
be too complicated to provide interesting information, or the information we get will
be less precise than expected. Moreover, there does not seem to be many techniques
for the effective computation of the quotient. One of the main observations in [Gel]
is that in many situations of interest in quantum mechanics the configuration space of
the system is an abelian locally compact group and then the algebras of interest can
be constructed as crossed products; in such a case there is a systematic procedure for
computing the quotient.

The techniques from [Gel] cannot be used in the situations of interest here, because
the monoid structure of the tree is not rich enough and in the Fock space version
the situation is even worse. However, a natugdl-algebra of anisotropic operators
associated to the hyperbolic compactification of a tree has been pointed out in [Gol].
This algebra contains the compact operatorg4i’) and an embedding of the quotient
algebra into a tensor product, which allows the computation of the essential spectrum,
has also been described in [Gol]. In Section 5 and in the Appendix we shall improve
these results in two directions: we consider more general types of anisotropy and we
develop new abstract techniques for the computation of the quotient algebra. To clarify
this, we give an example below.

We place ourselves in the Fock space setting Wtlinite dimensional and we fix
a vectoru € H and the isometryJ associated to it. We are interested in self-adjoint
operators of the fornl. = D+ V whereD is a “continuous function” ofJ and U*, i.e.
it belongs to theC*-algebraZ generated by, andV is of the form)_ Vv, 1, whereV,
are bounded operators dd#®" and are asymptotically constant in some sense (when
n — 00). In order to get more precise results, we make more specific assumptions on
the operatorsV,,.

Let A C B(H) be aC*-algebra withly € A. Let .7\, be the set of operatoid as
above such thav, e A®", sup||V,|| < oo and ||V, — V,_1 ® 1| — 0 asn — oo. If
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v =1, i.e. in the setting of Exampl®.6, o7\, is the algebra of bounded sequences of
vanishing oscillation at infinity. We mention that tid&-algebra of bounded continuous
functions with vanishing oscillation at infinity on a group has first been considered in
the context of [Gel] in [Man] (cf. also references therein).

Observe that the algebra&®” are embedded in the infinite tensor prodGétalgebra
A®>_ Thus we may also introduce th@&*-subalgebras/., of .7y, consisting of the
operatorsV such thatV,, := lim V, exists in norm inA®>®. Note that the subset/q
of operatorsV such that limy, = 0 is an ideal of</\,.

The algebras of Hamiltonians of interest for us can now be defined ag"the
algebras®,, and ¥~ generated by the operators of the foin= D + V where
D is a polynomial inU,U* andV € </, Or V € o/, respectively. Let us denote
%o = Gvo N K (). Below we assuméi of dimension at least 2, see Proposition A.5
for the one-dimensional case.

Theorem 1.2. There are canonical isomorphisms
Gvo/C0 = (Ao H0) @ D, Coo)bo~ AP® @ . (1.5)

For applications in the computation of the essential spectrum, see Propo&iticns
and 5.16. For example, iD € & and V € &/, are self-adjoint operators antl =
D+ V, then

desdL) = a(D) + 0(Veo). (1.6)

The localization ofL at infinity in this case i =1® D + Voo ® 1.

To cover perturbations of the Laplacian on a tree by functidhsgt suffices to
consider an abelian algebrd, see Examples.13. In this case, ifA is the spectrum
of A, then A®® = C(A®) where A* = AN is a compact topological space with the
product topology, and then we can speak of the set of localizations at infinity of
Indeed, we have then

AP ® 9 ~ C(A®, 2),

henceL is a continuous ma[i 1 A® — 2 and we can say tha’f(x) is the localization
of L at the pointx € A% on the boundary at infinity of the tree (or in the direction
X). More explicitly, if L = D 4+ V as above, therf(x) =D + Vg (x).

Plan of the paper The notion of number operator associated to an isometry is
introduced and studied in Secti@ The spectral theory of the operatdrss studied via
the Mourre estimate in Section 3: after some technicalities in the first two subsections,
our main abstract results concerning these matters can be found in Section 3.3 and
the applications in the Fock space setting in Section 4.2. Section 5 is devoted to
the study of severalC*-algebras generated by more general classes of anisotropic
Hamiltonians on a Fock space. Sections 5.1 and 5.2 contain some preparatory material
which is used in Section 5.3 in order to prove our main result in this direction, Theorem
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5.10. The Appendix, concerned with the representability of sathalgebras as tensor
products, is devoted to an important ingredient of this proof. The easel, which
is simpler but not covered by the techniques of Section 5, is treated at the end of
the Appendix.

Notations B(#), k() are the spaces of bounded or compact operators on a Hilbert
spacex’. If S, T are operators such tha&t— 7 € KC(#), we write S~ T. If S,T
are quadratic forms with the same domain ahd T is continuous for the topology
of #, we write S ~ T. D(T) is the domain of the operatdr. We denote by 1 the
identity of a unital algebra, but for the clarity of the argument we sometimes adopt a
special notation, e.g. the identity operator efi could be denoted ,. A morphism
between twoC*-algebras is ax-homomorphism and aideal of a C*-algebra is a
closed bilateral ideal.

2. Number operator associated to an isometry
2.1. Definition and first examples

Let U be an isometry on a Hilbert spac#’. Thus U*U = 1 and UU* is the
(orthogonal) projection onto the closed subspacelfag U #, hencePy := [U*, U] =
1— UU* is the projection ontaran U)+ = ker U*.

Definition 2.1. A number operator associated to 19 a self-adjoint operatoN satis-
fying UNU* = N — 1.

In fact, N is a humber operator for U if and only #*D(N) c D(N) andUNU* =
N —1 holds onD(N). Indeed, this mean —1 c UNU* and N — 1 is a self-adjoint
operator, so it cannot have a strict symmetric extension.

In this section we discuss several aspects of this definition. If the opelhtisr
unitary (situation of no interest in this paper), thed NU* is a well-defined self-
adjoint operator for eaclt € Z and the equalityUNU* = N — 1 is equivalent to
UKNU% = N —k for all k € Z. In particular, a number operator associated to a
unitary operator cannot be semibounded. ExanZoteallows one to easily understand
the structure of a unitary operator which has an associated number operator.

Note that if U is unitary, thenN does not exist in general and if it exists, then it is
not unique, sinceV + 1 is also a number operator for each réalOn the other hand,
we will see in the Section 2.2 th&it exists, is positive and is uniquely definedUfis
a completely non-unitary isometry.

In order to express Definition 2.1 in other, sometimes more convenient, forms, we
recall some elementary facts. Af, B are linear operators o’ then the domain oAB
is the set of f € D(B) such thatBf € D(A). It is then clear that ifA is closed and
B is bounded, thei\B is closed, but in generdA is not. However, ifB is isometric,
thenBA is closed. Thus, ilN is self-adjoint andJ is isometric, thelU NU* is a closed
symmetric operator.
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Lemma 2.2. Let N be a number operator associated to U. THefiV) is stable under
U and U* and we haveNU = U(N +1) and NU* = U*(N — 1). Moreover ranPy C
ker(N — 1) and NPy = PgN = Po.

Proof. From UNU* = N — 1 andU*U = 1 we getU*D(N) Cc D(N) and NU* =
U*(N — 1) on the domain onN. Moreover, sinceU*Py = 0, we have Po.# C
DWUNU*) =D(N) and (N — 1)Py = 0, so N Pp = Py, which clearly impliesPoN =
Po. If f,g € D(N) then

(N-1fUg)=({U"(N-1fg) =(NU"f g)=(f UNg)

henceUg € D(N*) = D(N) and UNg = (N — 1)Ug. Thus UD(N) c D(N) and
NU = U(N + 1) on the domain orD(N). If f € # andUf € D(N) then f =
U*Uf € D(N), so we haveNU = U(N +1) as operators. Iff € # andU* f € D(N)
thenUU* f € D(N) and Pof € D(N), so f = UU*f + Pof belongs toD(N), hence
NU* = U*(N — 1) as operators. [J

Note that the relatioWU = U (N +1) can also be writtefiN, U] = U. Reciprocally,
we have:

Lemma 2.3. If a self-adjoint operator N satisfiegV, U] = U in the sense of forms
on D(N) and PgN = Py on D(N), then N is a number operator associated to U

Proof. The first hypothesis means§Vf, Ug) — (U*f, Ng) = (f,Ug) for all f,g in
D(N). But this clearly impliesU*f € D(N) and NU*f = U*(N — 1)f for all
f € D(N). Then we get

UNU*f=UU*(N-Df=(N-1f-P(N-Df=(N-1f
for all suchf, soN is a number operator by the comment after Definittbh. O

Observe that by induction we géwv, U"] = nU", hence|[N,U"]|| =n if U # 0.
In particular,N is not a bounded operator.

Lemma 2.4.If N is a self-adjoint operatqrthen the condition[N, U] = U in the
sense of forms o®(N) is equivalent to each of the following ones

(1) UD(N) - D(N) and [N, U] = U as operators orfD(N);
(2) e'NUe N = ¢y for all t € R;
(3) @(N)U = U¢p(N + 1) for all ¢ : R — C bounded and Borel

Proof. The implications (3)= (2) and (1)= (0) are immediate, condition (0) being
that[N, U] = U in the sense of forms o®(N). If (0) holds, then for allf, g € D(N)
one has(Nf,Ug) — (f,UNg) = (f, Ug). This gives usUg € D(N*) = D(N), hence
we get (1). If (2) is satisfied the@e ™'V f, Ue=""Ng) = ¢! (f, Ug) for all f, g € D(N),
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so by taking the derivatives at= 0, we get (0). If (1) holds then by usinyU =
U(N +1) we get(N +2)" U = U@+ N —z)~1 for all z € C\ R, hence by standard
approximation procedures we obtain (3).J

It is easy to check that the mag defined byS — USU* is a morphism of
B(A) onto B(U #). We identify B(U ") with the C*-subalgebra of3(.#’) consisting
of the operatorsT such that7 Py = PoT = O; note thatPol is the identity of the
algebraB(U #’) and that the linear positive map +— U*TU is a right-inverse fork.
Clearly

Up(N)U* = (N — 1)P0l for all bounded Borel functionsg : R — C. (2.1)

By standard approximation procedures we now see that each of the following conditions
is necessary and sufficient in order thdtbe a number operator associatedUo (i)
Ue'™NU* = 71N p- for all t € R; (i) UNN —2)7U* = (N —1—2)~1pg for
somez € C\ R.

We now give the simplest examples of number operators.

Example 2.5.Let # = ¢2(Z) and (Uf)(x) = f(x — 1). If {e,} is the canonical
orthonormal basis of# then Ue, = e,41. It suffices to defineN by the condition
Ne, = ne,. Any other number operator is of the fori + A for some reall. It is

an easy exercise to show that(if/, N) is an abstract irreducible couple consisting of
a unitary operatot) and a self-adjoint operatdd such that[N, U] = U in the sense
of forms on D(N), then there is a unique redl such that this couple is unitarily
equivalent to the coupléU, N + 1) constructed above.

Example 2.6. Let # = ¢2(N) and U as above. Thetw*¢, = e,_1 with e_1 = 0, so

Po = |eo){eo]. We obtain a humber operator by defining, = (n+1)e, and it is easy

to see that this is the only possibility. We shall prove this in a more general context
below.

2.2. Completely non-unitary isometries

An isometry U is called completely non-unitanif s—lim;_., U** = 0. This is
equivalent to the fact that the only closed subspaesuch thatU.7" = %" is 4 =
{0}. We introduce below several objects naturally associated to such an isometry, see
[Bea].

Consider the decreasing sequenge = U%# > U'# > U%?# > ... of closed
subspaces of#. SinceU* is an isometric operator with rangé‘ #, the operatoP* :=
U*U*k is the orthogonal projection o onto U* # and we have & PO> P1> P2 .
and s—lim_o P¥ =0, becausd| P* f|| = |U*" f|| — 0.

Recall thatPg = 1— UU* = 1 — Pl is the projection onto ket/*. More generally,
let #; be the closed subspace

Hy = ker U Lo ker U™ = ranUF ©ran U = U*(ker U™)
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and let P, be the projection onto it, so
Py = PF — pHtl = ykyt — yRtlyeit = gk put

Notice that P,,1 = U PLU*, henceU P, = P,+1U, and

oo
PPy =0if k#m and » P=1 (2.2)
k=0

We have dimy#’, = dim.#y # 0 for all k € N. Indeed, it suffices to show that
Up :=Uly, : #r — Hr+1 is a bijective isometry with inverse equal 0",

In fact, from U P, = Pi1U we getU #'; C #'j+1 SO Uy is isometric from#; to
Hr+1. TO prove surjectivity, note that/* Py 1 = P.U*, henceU* # ;.1 C #; and
UU*Pyy1 = UPLU* = Pry1. Thus Uy @ #, — A'ry1 IS bijective and its inverse is
U*| 11

Proposition 2.7. If U is a completely non-unitary isometry then there is a unique
number operator associated tq &nd we have

o0 o0
N=Ny= Z Pk = Z(k + 1P, (2.3)
k=0 k=0

the sums being interpreted in form sense. Thus each 1, with k¥ € N, is an
eigenvalue ofNy of multiplicity equal todimker U* and s is the corresponding
eigenspace

Proof. Since P, = P¥ — P¥*1 the two sums from2.3) are equal and define a self-
adjoint operatorNy with N 4+ 1 as spectrum and?’; as eigenspace of the eigen-
value k + 1. SinceU P, = Px+1U, condition (3) of Lemma 2.4 is clearly verified,
hence Ny is a number operator fo by Lemma 2.3. Of course, one can also check
directly that the conditions of the Definition 2.1 are satisfied. It remains to show
unigueness.

It is clear that an operatdd is a number operator if and only if it is of the form
N = M + 1 whereM is a self-adjoint operator such thM = UU* + UMU*. With
a notation introduced above, this can be writteh= UU* + % (M) hence we get a
unique formal solution by iterationM = Zk>0%"(UU*) = Y ¢>1 P* which gives
(2.3). In order to make this rigorous, we argue as follows.

Recall that, by Lemma 2.3) and U* leave invariant the domain d¥l. Hence by
iteration we have orD(M):

M=PrUMU* = P+ UPW* + U?MU** = P+ P24+ ...+ P" - U"MU*"
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for all n € N. It is clear thatP"D(M) c D(M) for all m and (1 — P"HU" =
U*(1— P") =0, hence

MA-PYy=@1-P M= > Pa-pry= > kPt
1<k<n-1 1<k<n-1

Then M P, = PkM = kP, for all k € N, henceM =}, kP,. [

3. The Mourre estimate
3.1. The free case

Our purpose in this section is to construct a conjugate opefatnd to establish a
Mourre estimate for the “free” operator

A:=ReU) = 3(U + U*), (3.1)

whereU is an isometry which admits a number operatbon a Hilbert space#. The
operatorA will be constructed in terms ol and of the imaginary part of:

S:=ImU) = 3(U - U*). (3.2)
More precisely, we defind as the closure of the operator
Ao = 3(SN +NS), D(Ag) = D(N). (3.3)

We shall prove below thatly is essentially self-adjoint and we shall determine the
domain ofA. ThatAg is not self-adjoint is clear in the situations considered in Examples
2.5 and 2.6. Note that in these exampless an analog of the derivation operator.
Before, we make some comments concerning the operators introduced above.

We haveU = A+ iS and ||A|| = ||S|| = 1. In fact, by using [Mur, Theorem
3.5.17] in caseU is not unitary and (2) of Lemma 2.4 i is unitary, we see that
a(A) = a(S) = [—1,1]. By Lemma 2.3 the polynomials i/, U* (hence inA, S)
leave invariant the domain dfl. If not otherwise mentioned, the computations which
follow are done onD(N) and the equalities are understood to hold BW). The
main relations

NU=UN+1 and NU*=U*(N -1) (3.4)
will be frequently used without comment. In particular, this gives us

[N,S]=—iA and [N,A]=iS. (3.5)
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These relations imply thaA and S are of classC*°(N) (we use the terminology of
[ABG]). We also have

[U,Al=—Py/2, [U* Al= Py/2, [S,A]l=iPo/2. (3.6)
A simple computation gives then
A2+ 8% =1—Ppy/2. (3.7)

It follows that we have on the domain of:

i i 1 1 . 1

Remark. If we denotea = iU*(N — 1/2) then on the domain oN we have A =
(a + a*)/2. Note thata looks like a bosonic annihilation operator (the normalization
with respect toN being, however, different) and that

aa* = (N +1/2)?, a*a = (N —1/2)?P3", [a,a*] =2N + Po/4, [N,a] = a.

Lemma 3.1. A is self-adjoint withD(A) = D(NS) ={f € # | Sf € D(N)}.

Proof. Note thatNS is closed on the specified domain and tHa(N) C D(NS),
becauseSD(N) Cc D(N). Let us show thatD(N) is dense iInD(NS) (i.e. NS is
the closure of NS|D(N)). Let f € D(NS), then f, = (L +ieN)"1f € D(N) and
I f: — Il = 0 whene — 0. Then, sinceS € C1(N):

NSf.=NSA+ieN)"1f
=N@A+ieN) ieN, S]A+ieN)"1f + N1+ ieN)"iSf
=eNA+ieN)*AQ+ieN)1f + A +ieN)"INSTS.
The last term converges fdSfas ¢ tends to 0. So it suffices to observe thaf (1 +
ieN)~t — 0 strongly ass — 0.
Let Ag = SN —iA/2, D(Ag) = D(N). It is trivial to prove thatAf = NS +iA/2,

D(Ap) = D(NS). By what we proved and the fact tha§|py) = Ao, we see thatdj
is the closure ofdg. So Ag is essentially self-adjoint. O

The next proposition clearly implies the Mourre estimate Aoputside+1.

Proposition 3.2. A € C®(A) and [A,iA] = 1— A? = §2 + Py/2.
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Proof. On D(N) we have
[A,iA]=[A,iNS]=[A,iN]S + N[A,iS]
=S+ NPy/2= 5>+ Py/2=1— A2,
which impliesA € C*°(A) by an obvious induction argument[]

We mention two other useful commutation relations:
[iA, S]=Re(SA) and [iA, N] = —Re(NA). (3.9
Indeed
[iA,S]=[iSN + A, S] = iSIN, S+ 1[A, S1 = SA + 3[A, §]
and
[iA,N]=[iSN + 3A,N] = [iS, NIN + 3[A, N] = —AN + 3[A, N].

3.2. Commutator bounds

The following abbreviations will be convenient. Fat € B(#) we setT = T =
[iN, T], interpreted as a form o®(N), and T’ = [S,T], To = [A, T], which are
bounded operators osf. Iterated operations liké = 7, T or T’ = T are obviously
defined. Note that

T'—T" =[S,[iN,T]] = [iN,[S, Tl = [T.[iN, S]]l = —Tx (3.10)

because of the Jacobi identifX, [Y, Z]] + [Y, [Z, X]] + [Z,[X, Y]] = 0 and B.5).

If T is a bounded operator then boMT and TN are well-defined quadratic forms
with domain D(N). We write ||[NT|| = oo, for example, ifNT is not continuous for
the topology of »#. If NT is continuous, thelW D(N) c D(N) and the operatoNT
with domain D(N) extends to a unique bounded operator #h which will also be
denotedNT and whose adjoint is the continuous extensiorr'étV to 7. If T* = £T
then the continuity ofNT is equivalent to that offN. Such arguments will be used
without comment below.

Proposition 3.3. For eachV € B(s#) we have in the sense of forms oR(N),

[iA,VI=VS+iNV' —3Vs. (3.11)
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In particular
A, VIISIVI+ NV + SV (3.12)
Moreover for the form[i A, [i A, V]] with domainD(N?2), we have

1 : .
Z” GAGA, VI < IVIHIVIE+HIVIE IV

HINV' ||+ INVAl + INV'|| + N2V (3.13)

Proof. Relation @.11) follows immediately fromA = iNS — %A. For the second
commutator, note thatD(N?2) c D(N), hence in the sense of forms dA(N2) we
have

LA, [iA, VII=[iA, VSI+[iA,iNV'] = 3[iA, VAl
=[iA, VIS + V[iA, S|+ [iA,iN]V' +iN[iA, V'] — 3[iA, Val.

By (3.9) we have||V[iA, S]|<||V| and then (3.5) gives
[iA,iN]V = —iReNA)V' = —%(NAV’ + ANV
i / . / l / ] /
:—Q[N, AV —iANV' = ESV —iANV’.
Thus, we have
A, TiA, VII = [iA, VIS = iN[iA, V'T+ 3LA, VAIIIVIE+ IV /2+ INV].

We now apply 8.11) three times with/ replaced successively by, V' and V,. First,
we get

A, VIS = IVS?+iNV'S — VAS/2I<IIVI + INV'[ + V.
Then, by using also3(10) and the notatioV, = (V/)A, we get
N[iA, V1= NV"S+iN?V" = NV{/2=N(V' +Vpy)S+iN?V" — NV,/2.
Now (3.5) gives

NVy=NAV' = NV'A=[N,AlV' +[A, NV =iSV' +[A,NV']
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hence
INTEA, VIISINV' [+ INVAI + IN?V" | 4+ V724 INV'].
Then
(A, VAl = (VA) +iN(Vp) — (1/2)Vpa.
The first two terms on the right-hand side are estimated as follows
(Vo) =[iN.[A, V]I = —[A, [V,iN]] = [V.[iN, Al = [A, VI + [V, ]
and
N(Vp)' =NIS, [A, V] = =N[A, [V, S]] = N[V, [S,A]ll = N[A, V']
—%N[V, Pyl =[N,AlV' + ANV’ — NV'A — éN[V, Po]
=iSV' +[ANV'] - éN[V, Pol.
Since N Pp = Py we have
N[V, Pl = NVPy— NPV =[N, VIPo+ VNPy— NPV = —iV +[V, Pl.

hence we get

A, VAIISBIVI 4 G/2NVI+ IV + NV

Adding all these estimates we get a more precise form of inequa&lifya).

The following result simplifies later computations. The notatin~ ¥ means that
X,Y are quadratic forms on the domain Nfor N2 and X — Y extends to a bounded
operator.From now on we suppose¢ o(N). In fact, in the case of interest for us we
have N >1.

Lemma 3.4. Let V be a bounded self-adjoint operator. [/, VIN is bounded then
[U*, VIN is boundedso [NV’ [+INVAll < oc. If [U, VIN is compac,tthen[U* VIN
is compactso NV’ is compact. IfV and [U, VIN are boundedthen |[NV’| < oo. If
(U, [U, V]IN? is boundedthen |[N2V"| < oo.

Proof. We have

N = UU*N + PoN = U(N + 1)U* + Py (3.14)
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hence
[U*, VIN = U*[V,UI(N + HU* + [U*, V] Py, (3.15)
which proves the first two assertions. The assertion involihgs a particular case,

becauseV is self-adjoint if it is bounded.
For the rest of the proof we need the following relation:

N = Py+2P1 + U%(N 4+ 2)U*2. (3.16)
This follows easily directly from the definition dfl:

N=14+UNU* =14+ UL+ UNU*U* =1+ UU* + USNU*?
= (L= UU*) +2UU* — U%U*?) + U3(N +2)U*2.

Since P,U% = U*2P, =0 for k =0, 1, we get from 8.17)
N2 = Py+ 4P + UA(N +2)%U*2. (3.17)
We clearly have
—4N?V" = N2[U*, [U*, VI] + N?[U, [U, V1] = N*(IU*, [U, V]] + [U, [U*, V]).
We shall prove that the three terms from the right-hand side are bounded. Since

N2[U*,[U*, V]] = ([U, [U, VIIN%*, this is trivial for the first one. The second term
is the adjoint of(U*, [U*, V]]N? and due to 3.17) we have

[U*, [U*, V]IN? = (U*2V — 2U*VU* + VU*?)N?
~ (U*2V = 2U*VU* + VU*?U?(N + 2)2U*?
= U™[U, [U, V]I(N + 2)2U*?,

hence we have the required boundedness. Finally, the third term is the adjoint of
(U, [U*, V11 + [U*, [U, V]I])N? and by a simple computation this is equal to

2V —UVU* —U*VU 4+ VUU*)N? ~ —2U*[U, [U, VII(N + 1)°U*,
where we usedV? = UU*N? + PgN%2 = U(N + 1)2U* + Py. O
If the right-hand side of relation3(12) or (3.13) is finite, then the operaturis

of classC1(A) or C2(A), respectively. We shall now point out criteria which are less
general than (3.12), (3.13) but are easier to check.
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Proposition 3.5. Let A € B() be a self-adjoint operator such thA, N] = 0 and
[U, AIN € B(#). Let V be a bounded self-adjoint operator.

(1) If (Vv —A)N is boundedthenV e C1(A).
(2) If [U,[U, A]IN? and (V — A)N? are boundedthen V € C2(A).
3) If [U,AIN, [A, V] and (V — A)N are compactthen[iA, V] is compact

Proof. We have—iV =[N, V] =[N,V — Al = N(V — A) — (V — A)N so this is a
bounded (or even compact) operator under the conditions of the proposition. Then by
using @.5) we get
NV =NI[S,A]+ N[S,V —Al=N[S,A]+ NS(V —A) =NV — A)S
=NI[S, Al —iA(V = A)+[S,N(V = A)]
henceNV’ is bounded (or compact). Now in order to get (1) and (3) it suffices to use
(3.11) and (3.12) and Lemma 3.4 withreplaced byA.

Now we prove (2). We have/ e C1(A) by what we have shown above. The
assumption||(V — A)N?|| < oo implies ||[N%(V — A)|| < oo and then by interpolation
IN(V = A)N|| < oo. Thus

—V=[N,[N,V]]=[N,[N,V —All
=N2(V —A) —2N(V — AN + (V — A)N?

is bounded. Moreover,
—iNV'=N[S,[N, V]l = N[S,[N,V —All = NSN(V — A)
—NS(V —A)N — N3(V = A)S+ N(V — A)NS,

is bounded by (3.5). Lemma 3.4 shows tliat*, A]N is a bounded operator. Hence,
by using again (3.5),

NViy=NI[A, V — Al + N[A, A] ~ N[A, V — A]
=NA(V —A) =NV —A) ~ ANV —A) +iS(V — A).

So NV, is bounded. At lastN?V” = N2?[S,[S, V1] ~ N?[S,[S,V — A]] by Lemma
3.4 applied toA, and this is a bounded operatoi]

3.3. Spectral and scattering theory
We shall now study the spectral theory of abstract self-adjoint operators of the form

L = A+ V with the help of the theory of conjugate operators initiated in [Mou]. We
first give conditions which ensure that a Mourre estimate holds. Recalllthiat an



V. Georgescu, S. Golénia/Journal of Functional Analysis 227 (2005) 389-429 407

arbitrary isometry on a Hilbert spac# which admits a number operatdr such that
0 ¢ o(N) and A = ReU. In this subsection the operatdtis assumed to be at least
self-adjoint and compact. We recall the notatiohz 0 if S € K(#).

Definition 3.6. We say that the self-adjoint operatohasnormal spectrunif gesdL) =
[—1, +1] and the eigenvalues af different from+1 are of finite multiplicity and can
accumulate only toward:1. Let op(L) be the set of eigenvalues af then k(L) =
{—1,+1} Uap(L) is the set ofcritical valuesof L.

Theorem 3.7.Let V be a compact self-adjoint operator o#f such that[~N, V] and

[U, VIN are compact operators. Then L has normal spectrum and if J is a compact
subset of] — 1, +1[, then there are a real number > 0 and a compact operator K
such thatE(J)[L,iAlE(J)>aE(J) + K, where E is the spectral measure of L

Proof. We haveosesd L) = gesdA) = [—1, +1] because/ is compact. This also implies
that (L) — ¢(A) is compact ife is a continuous function. Fron8(11) and Lemma
3.4 it follows that[V,iA] is a compact operator, 98 is of classC1(A) in the sense
of [ABG]. Then, if suppp is a compact subset df— 1, +1[ we have

P(L)*[L.iAlo(L) ~ ¢(A)*[A, i Alp(A) >alp(A)[? ~ alo(L)|?

becausdA,iA] = 1 — A%>a on @(A). This clearly implies the Mourre estimate,
which in turn implies the the assertions concerning the eigenvaluefiVieeg or [ABG,
Corollary 7.2.11]. O

The next result summarizes the consequences of the Mourre theorem [Mou], with
an improvement concerning the regularity of the boundary values of the resolvent, cf.
[GGM] and references there. #fis a positive real number we denote ¢ the domain
of |N|* equipped with the graph topology and we $ét; := (VN;)*, where the adjoint
spaces are defined such as to haVec # c N_. If Jis a real set the is the
set of complex numbers of the fori+ iy with A € J and u > 0.

Theorem 3.8. Let V be a compact self-adjoint operator o#f such that[N, V] and

[U, VIN are compact operators. Assume also that, [N, V]], [U,[N,V]]N and

[U, [U, V]IN? are bounded operators. Then L has no singularly continuous spectrum.
Moreover if J is a compact real set such that N k(L) = ¢, then for each real

s €]1/2, 3/2[ there is a constant C such that for ajl, zo € J+

1L~z = (L — z2) Hpov, Ny <Clz1 — 22l Y2 (3.18)

We have used the obvious fact the} c D(|A|*) for all reals > O (for our purposes,
it suffices to check this fos = 2). The theorem can be improved by usifABG,
Theorem 7.4.1], in the sense that one can eliminate the conditions on the second-order
commutators, replacing them with the optimal Besov type conditios #>1(A), but
we shall consider this question only in particular cases below.
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With the terminology of[ABG], the role of the conditions on the second-order
commutators imposed in Theorem 3.8 is to ensure thétencel) is of classC2(A).
We shall now consider more general operators, which admit short- and long-range type
components which are less regular. We also make a statement concerning scattering
theory under short-range perturbations.

Definition 3.9. Let W be a bounded self-adjoint operator. We say et short range
with respect to N or N-short range if

/1 [WXo(INI/r)lldr < oo, (3.19)

where %o is the characteristic function of the intervel, 2] in R. We say thatW is
long range with respect to Nor N-long range if [N, W] and [U, W]N are bounded
operators and

o d
/1 (ILN, WIZAN /)| + (ITU, WINZ(N/7)1D Tr < 0, (3.20)

where X is the characteristic function of the internvid, oo[ in R.

Condition @.19) is obviously satisfied if there is> 0 such that
[WINFE] < oo (3.21)
Similarly, (3.20) is a consequence of
ILN. WIIN ]| + [[U, WIN[*]| < oo. (3.22)

Lemma 3.10. If W is compact and N-short rangéhen WN is a compact operator. If
W is N-long rangethen ffo I[U*, WINX(|IN|/r)|ldr/r < oo.

Proof. Let ¢ be a smooth function o such thatp(x) =0 if x <1 andep(x) =1

if x> 2 and letd(x) = xo(x). Then [;° 0(x)dx/x = 1 hence[;° O(N|/r)dr/r = 1

in the strong topology. 101(x) = x0(x) then we getfooo WOo(|N|/r)dr = W|N| on

the domain ofN, which clearly proves the first part of the lemma. The second part
follows from (3.15) and (3) of Lemma 2.4.0

Theorem 3.11.Let V be a compact self-adjoint operator such tha&lt V] and[U, VIN

are compact. Assume that we can decompése V, + V; + V,, where V; is compact
and N-short rangeV, is N-long range and V,, is such that

[N.[N.Vall. [U.[N.VuIIN and [U.[U.Vn]IN?
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are bounded operators. Theh = A + V has normal spectrum and no singularly
continuous spectrum. Moreoveim,_,o(L — 4 — iw~1 exists in norm iNB(WN;, N_)

if s >1/2 and 4 ¢ x(L), and the convergence is locally uniform imoutsider(L).

Let Lo = A+ Ve +V, and letIlp, IT be the projections onto the subspaces orthogonal
to the set of eigenvectors @fy, L respectively. Then the wave operators

Q4 :=s— lim ¢/'Leitlory,
t—+o00

exist and are completa.e. Q.. # = I1.#.

Proof. From the Lemm&3.10 it follows easily tha{N, V] and [U, V,]N are compact
operators, hence the potentidlsand V; + V,, satisfy the hypotheses of Theorem 3.7,

so the Mourre estimate holds fdr and Lo on each compact subset ot 1, +1[.

From [ABG, Theorem 7.5.8] it follows that the operatty is of class%*1(A). By

using (3.11), the second part of Lemma 3.10 and [ABG, Proposition 7.5.7] we see
that[i A, V,] is of classé®1(A), henceV, is of class#’(A). Finally, V,, is of class
C2(A) by Proposition 3.3 and Lemma 3.4. Thug andL are of classg>1(A). Then

an application of [ABG, Theorem 7.4.1] gives the spectral propertiet aind the
existence of the boundary values of the resolvent. Finally, the existence and complete-
ness of the wave operators is a consequence of [ABG, Proposition 7.5.6] and [GeM,
Theorem 2.14]. O

4. A Fock space model

4.1. The Fock space

Let H be a complex Hilbert space and lef = @, , H®" be the (complete) Fock
space associated to it. We make the conventiiff® = C and H®" = {0} if n <0. We
fix u e H with |lu]|=1. Let U =p, be the right multiplication byu. More precisely

puh1®®hn=hl®®hn®lfh

h1®:-- @hpa(u, hy) if nz=1,

* _
puh1®"'®h”—{o if n=0.

Clearly pj:p, =1, soU is an isometric operator. Thekh= (U +U*)/2 acts as follows

1
Ahl@"‘®hn:§h1®"'®hn—l®(hn®M+<Mahn>)

if n>1 andAh = Jhu if h € C = H®°. We have
UH®H C H®Vl+1’ U*H®n C H®"_1. (41)

In particular U*" H®™ = 0 if n > m, hence we have s—lim,,, U*" = 0.
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Thus U is a completely non-unitary isometry, hence there is a unique number ope-

rator Ny = N associated to it. We shall keep the notatiabs = pfp** and P, =

ook, pu]p;k introduced in the general setting of Sectiar?.

Let us denote by, = |u)(u| the orthogonal projection il onto the subspac€u.
Then it is easy to check that

0 if 0<n <k,

1n_k®p§’k if n>k. (4.2)

PX|H®" ={

Here 1, is the identity operator inH®" and the tensor product refers to the natural
factorizationH®" = H®" k@ H®* In particular, we getP* H®" ¢ H®" or [P¥,1,] =
0 for all k,n € N and similarly for theP;.
Lemma 4.1. N leaves stable eac®”. We have
n
Ny := N|H®" = "(k + 1) P |[H®" (4.3)
k=0

ando(N,) =1{1,2,...,n+ 1}, hencel<N,<n+1and |N,|| =n + 1.
Proof. The first assertion is clear because each spectral projeBtiai N leavesH %"

invariant. We obtain4.3) from P, = P¥ — P¥*1 and relations (2.3) and (4.2). To see
that eachk + 1 is effectively an eigenvalue, one may check that

N,1w®v®u®k=(k+1)w®v®u®k

if k<n, we H* *1andv e H with v L u, and N,,u®" = (n + Hu®". O

The following more explicit representations of, can be proved without difficulty.
Let p,- be the projection irH onto the subspack orthogonal tou. Then

Nn:]-n+1nfl®pu+1n72®p,;®2+"'+[7,(4Xm
= n71®PlJ[+21n72®p:_®pu+31n73®[71j_®]7§)2+"'
+(n +1)p2".

The last representation corresponds to the following orthogonal decomposition:
H®n — @ZZO(H®I’I—]€—1 ® K ® I/l®k),

where the term corresponding to=n must be interpreted aSu®".
The number operatoN associated tdJ should not be confused with thearticle
number operatorN acting on the Fock space according to the rig = nf if
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f € H®", In fact, while N counts the total number of particle§,— 1 counts (in some

sense, i.e. after a symmetrization) the number of particles in the stdteom @.3)
we get a simple estimate & in terms ofN:

N<N+1 (4.4)

It is clear that an operatoV € B(#) commutes withN if and only if it is of the
form

V=> V1, with V,eBH®) and sufV,| < oc. (4.5)
n

n=0
Note that we use the same notatitn for the identity operator ind®" and for the

orthogonal projection of# onto H®". For each operatd¥ of this form we setV_; =0
and then we define

S(V) = (Va1 ® 1y — Vi)l,, (4.6)

n>0
which is again a bounded operator which commutes WthAVe have
(U, V] =d(V)U. 4.7)
Indeed, if f € H®" then
UVf=UVuf=WVa)Qu=(V, @1u)(f ®u) = (V, ® 1)U}

On the other hand, sinc&f € H®"t! we haveVUf = V,.1Uf and 6(V)Uf =
(V, ® 1y — V,41)Uf, which proves relation4(.7).

Lemma 4.2. If V is a bounded self-adjoint operator which commutes Witithen the
quadratic formsV and V are essentially self-adjoint operators. With the notations from
(4.5), the closures of these operators are given by the direct sums

V= [iNy, Vally = Y Vil (4.8)
n=>0 n=0
V= [iNaliNy. VullL = Y Vi, (4.9)
n=0 n=0

The proof is easy and will not be given. In particulaf: is bounded if and only if
sup, I[N, Va1l < oo and V is bounded if and only isup, |[N,[ Ny, Va1l < oo.
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4.2. The Hamiltonian

In this subsectiorwe assume that H is finite dimensioraald we apply the general
theory of Sectior3 to the Hamiltonian of the fornl. = A+ V whereV is a compact
self-adjoint operator oo’ such that{V, N] = 0, soV preserves the number of particles
(butV does not commute with iN the cases of interest for us). Equivalently, this means
that V has the form

V=> Vi, with V,eBH®") and lim ||V,]=0. (4.10)
n—0oo

n=0

We shall also consider perturbations of suchLaby potentials which do not commute
with N but satisfy stronger decay conditions.

The following results are straightforward consequences of the theorems proved in
Section3.3, of the remarks at the end of Section 4.1, and of relation (4.7). For ex-
ample, in order to check the compactnesq©@f V]N, we argue as follows: we have
[U, VIN = 8(V)UN = 3(V)(N — 1)U and (N + 1)~1N is bounded, hence the com-
pactness ob(V)N suffices. Note also the relations

[U,[U, V]l = [U, §(V)U] = [U, S(V)JU = 8*(V)U?, (4.11)
FV) =Y (Va2 ®lyse — 2V, 1® 1y + V)1, (4.12)
n>0

Proposition 4.3. Assume that H is finite dimensional and let V be a self-adjoint ope-
rator of form (4.10) and such that||V, || + n||Vu—1 ® 15 — V,| — 0 whenn — oo.

Then the spectrum of L is normal and the Mourre estimate holds on each compact
subset of] — 1, +1].

Proposition 4.4. Assume that H is finite dimensional and let V be a self-adjoint ope-
rator of form (4.10) and such that

D) 1Vall + 7l Va-1 ® 1 — Vull > O whenn — oo,
@) 1Vall + 2l Va1 ® Ly = Vall + (Va2 ® Lyez — 2Vy—1 ® 1y + V| <C < oo

Then L has normal spectrum and no singularly continuous spectrum.
This result is of the same nature as those of Allard and Froese. To see this, we state a

corollary with simpler and explicit conditions on the potentialTlfs a linear operator
on a finite-dimensional Hilbert spade we denote by(T) its normalized trace:

(T) = Tr T (4.13)

dim E

Observe that(T)|<||T|.
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Corollary 4.5. Let H be finite dimensional and let V be as(#10) and such that

@) Vs — (V)| = O(1/n?),
(2) <Vn+l> - <Vn) = 0(1/”1),
(3) (Vat1) — 2(Vyy) + (V1) = O(1/n?).

Then L has normal spectrum and no singularly continuous spectituenMourre esti-
mate holds on each compact subsef of1, +1[, and estimates of the fori{8.18) are
valid.

This follows easily from Proposition 3.5 with = ZDO(Vn)l,,. In the case when
V is a function on a tree, conditions (1)—(3) of the corollary are equivalent to those of
Lemma 7 and Theorem 8 in [AIF]. Note, however, that even in the tree case we do
not assume that th&, are functions. Now we improve these results.

Let 1>, = Y ;~, L be the orthogonal projection of onto &, -, H®*.

Theorem 4.6. Let H be finite dimensional and let V be a self-adjoint operator of the
form (4.10) and such that

Z sup(lVy — (Va)ll <o and  (Vipy1) — (V) = o(1/n). (4.14)
k>0n>k
Furthermore assume that(V,) = 4, + u, where {4,}, {i,} are sequences of real

numbers which converge to zero and such :ithat

(l) }‘n+l - )vn = O(l/n) and ;Ln+1 - 2)~n + )bnfl = 0(1/712)7
(2) Zn}()supn2n |lum+l - lu'm| < oQ.

Finally, let W be a bounded self-adjoint operator satisfying, W1 ,| < co. Then
the operatorsLo = A+ V and L = Lo+ W have normal spectrum and no singu-
larly continuous spectrumand the wave operators for the pail., Lo) exist and are
complete.

Proof. Let A =Y 4,1, and M = Y u,1,. We shall apply Theoren3.11 to L with

the following identificationsVy, =V + W — (A+ M), V;, = M and V,, = A. Note that

the condition imposed ollV implies thatW is a compactN-short range operator (in
fact, the condition says th&V is N-short range). Moreover, the first condition in (4.14)
is of the same nature, so it implies thét— (A + M) is N-short range. Hencé& is
compact andN-short range. The fact thafl is N-long range is an easy consequence of
[M, N] =0 and of condition (2) (which says, in fact, thisltis N-long range). Finally,

the fact thatV,, satisfies the conditions required in Theorem 3.11 is obvious, by (1)
and by what we have seen before. The compactne$s’ o¥] and [U, VN is proved

as follows. SinceV — (A + M) is N-short range and due to Lemma 3.10, it suffices
to show the compactness of the operafa¥s A + M] and [U, A + M]N. But the first
one is zero and for the second one we use the first part of condition (1) and condition
(2). In the case oV + W one must use again Lemma 3.10]
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Under the conditions of the preceding theorem, we also have the following version
of the “limiting absorption principle”, cf. Theorer8.11. For reals let 5, be the
Hilbert space defined by the norm

112 = 11012+ > n® (1L, 112

n>1

Then, ifs > 1/2 and 2 ¢ k(L), the limit lim,_,o(L — /4 — iw~1 exists in norm in the
spaceB(H (), # (—s)), the convergence being locally uniform @\ x(L).

5. The anisotropic tree algebra
5.1. The free algebra

Our purpose now is to study more general operators of the form D + V, where
D is a function ofU and U* (in the sense that it belongs to tli&-algebra generated
by U) andV has the same structure as in Sectb8, i.e. is a direct sum of operators
V, acting in H®", but V,, does not vanish as — oo, S0V is anisotropic in a sense
which will be specified later on.

In this section we keep the assumptions and notations of Section 4ds$uine that
H is of dimensionv>2 (possibly infinite). Then both the range bf and the kernel
of U* are infinite dimensional. It follows easily that eaéh is a projection of infinite
rank.

The free algebraz is the C*-algebra of operators o’ generated by the isometry
U. SinceU*U =1 on #, the setZy of operator of the form

D= Y ouU"U™" (5.1)

n,m=0

with ¢, € C and o,,, # 0 only for a finite number of:, m, is a x-subalgebra o0z,
dense inZ. Observe that the projection8* = U¥U** and P, = P¥ — P¥+1 belong
to Zp. In the tree case the elements @fare interpreted as “differential” operators on
the tree, which justifies our notation.

We introduce now a formalism needed for the proof of LenBrg a result important
for what follows. For each operatdt € B(#) we define

o0
§°=3"1,51,. (5.2)
n=0

It is clear that the series is strongly convergent and ff#&t| <||S||. Thus S — S° is
a linear contraction of3(#) into itself such that 1 = 1. This map is also positive
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and faithful in the following sense:
S>0andS #0= S°>0 andS° # 0. (5.3)

Indeed, $° >0 is obvious and ifS° = 0 then (+/S1,)*(+/S1,) = 1,51, = 0 hence
V§1, =0 for all n, so+/S = 0 and thens = 0.
We need one more property of the map— S°:

S e K(#) = S° e K(AH). (5.4)

In fact, this follows from

$°— > 1,81, < sup|i1,S1,l|

o<m<n m>n

becaus€|1,51,| — 0 asn — oo if Sis compact.

Lemma 5.1. The restriction toZ of the mapS — S° is a map0 : ¥ — % whose
range is equal to thgabelian unital) C*-algebra# generated by the projectiong*,
k>0. Moreover 6 is a norm one projection ofZ onto its linear subspace?, i.e.
0(D) = D if and only if D € 2.

Proof. Since U"U*"H® ¢ H®*—m+m we havel,U"U*"1; # 0 only if n = m.
Thus, if D € 9p is as in 6.1), then

1. D1, = Zan,nlkUnU*nlk = Zan,nPnlk,
n n

becausq P", 1;] = 0. Thus we getD® = )" o, ,P" € #. SinceD — D° is a linear
contraction and%g is dense inZ, we get thatD° € 2 for all D € . To finish
the proof, note thatP")° = P" for all n and 2 is the closed linear subspace of
generated by the operators', henceD®° = D for all D e . O

The pairwise orthogonal projectior3, belong to# but the C*-algebra (equal to the
norm closed subspace) generated by them is strictly smaller#ha@n the other hand,
the Von Neumann algebr#,, generated by? (i.e. the strong closure of?) coincides
with that generated byP,},>0. Indeed, for eaclh >0 we haveP” = Zm% P, the
series being strongly convergent.

Lemma 5.2. For eachD € & there is a unique bounded sequereg}, >0 of complex
numbers such thab° = Zn>ooc,,P,,. If D>0thena,>0foralln. If De %, D>0
and D # 0, one hasD°>aP, for some reale > 0 and somen € N.
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Proof. SinceP, P, =0if n #m and Zk%, P, = 1, each element of the Von Neumann
algebra generated byP,}, >0 can be written ai:n}Oa” P, for some unique bounded
sequence of comples numbers If D >0, thenD°>0 and this is equivalent ta@, >0
for all n. If D>0 and D # 0, thenD° # 0 by (5.3) hencex, > 0 for somen. [

Corollary 5.3. 2N K(#) = {0}.

Proof. 2NK () is aC*-algebra, so that if the intersection is not zero, then it contains
someD with D>0 and D # 0. But thenD° is a compact operator by6.@) and we
have D° > o P, for somea > 0 andn € N.

We note that if &S<K and K ~ 0 thenS ~ 0. Indeed, for eacls > O there is a
finite range projectiorF such that| F'K F'|| <&, whereF’ = 1—F. Thus 0K F'SF'<¢
and soS = FS+F'SF+F'SF' is the sum of a finite range operator and of an operator
of norm <e¢. HenceS ~ 0.

Thus P, is compact, orP, is an infinite dimension projection.C]

Finally, we are able to prove the result we need.

Lemma 5.4. LetV € B(#) such thatV = V° and[V, U] € K(X). If there isD € &,
D # 0, such thatV D e (), then V Py € K(X).

Proof. From VD ~ 0 it follows that VDD*V* ~ 0. Then 6.4) gives
V(DD*)°V* = (VDD*V*)° ~ 0.

By Lemmab5.2, sinceDD* € & is positive and not zero, we hav® D*)°>aP, for
somen >0, with o > 0. Thus KXV P,V*<o 1V(DD*)°V*. Or V(DD*)°V* ~ 0
so VP, V¥ ~ 0 and sinceVP, = /VP,V*J for some partial isometry] we see
that VP, ~ 0. But P, = U"PoU*" and U*U = 1 so VU"Py ~ 0. If n>1 then
UVU" 1Py =[U, VIU" 1Py + VU" Py ~ 0 and sincelU*U = 1 we getVU" 1Py ~
0. Repeating, if necessary, the argument, we obtain ¥t~ 0. O

5.2. The interaction algebra

The classes of interaction operatdrse B(.#) we isolate below must be such that
V=VeandV Py~ 0= V =~ 0. We shall use the embedding % 0)

B(H®") < B(H®"*1) defined byS — S ® 1. (5.5)

Let us setdg = C and for eachn>1 let A, be aC*-algebra of operators o ®"
such that

A, ® 1y C Apyr. (5.6)
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Note that this impliesl, € A,. Convention $.5) gives us natural embeddings
AcAicAcCc---CA, C--- (5.7)

and we can defined,, as the completion of the-algebrauj® ; A, under the unique
C*-norm we have on it (note that, 1 induces onA, the initial norm of A,). Thus
As is a unital C*-algebra, eachd,, is a unital subalgebra ofl,, and we can write

Aso = A, (norm closure). (5.8)

n=0

We emphasize thatl, has nota natural realization as algebra of operators/nhOn
the other hand, the following is a unitél*-algebra of operators ow:

A =[] A=1V==wzo0l Vs € A, and | V|| := sup|V,ll <oop.  (5.9)
n=>0 nz
Indeed, if f = (fu)n=0 € # andV is as above, we se¥f = (V, fu)n>o0. In other

terms, we identify

V=Y V1, (5.10)

the right-hand side being strongly convergent.sh Observe that

o=@ Ay = {v e | lim ||V, = o}. (5.11)

n=>0
is an ideal in.e7.

Lemma 5.5. We have«/ N K(#) C .</o and the inclusion becomes an equality if H
is finite dimensional.

Proof. We havel, — 0 strongly on.# if n — oo, hence ifV is compact then
V1, — 0. In the finite-dimensional case, note thal,_, V,x1, is compact for all
n and converges in norm t4 if V € 7. [

Let 7 : .o/ — .o/ be the morphism defined by

t(Vo, Vi, Vo,..) =0, Voly, Vi® 1y, Vo ® 1y, ...),
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or t(V), = V,_1® 1y, whereV_; = 0. Clearly (V) — 0 asn — oo strongly on

A, for eachV e .o/. Observe that the map = 7 — Id coincides with that defined in
(4.6), because

oV =V—1® 1y — V.
Sinces(V'V") = 6(Vr(V") + V'6(V"”) and sinces/q is an ideal of.«Z, the space
Avo=1{V € .| V)€ Ao} (5.12)
is a C*-subalgebra ofs which contains«/. This algebra is an analog of the algebra
of bounded continuous functions with vanishing oscillation at infinitynor that of

bounded functions with vanishing at infinity derivative @nor N.

Proposition 5.6. Assume that H is finite dimensional and 1Bte .«/\,. If D € &,
D #0,and VD € K(), thenV € ().

Proof. We haved(V) ~ 0 and[U, V] ~ 0 by 4.7) and Lemma 5.5. Now according
to Lemma 5.4, it remains to prove th&t ~ 0 follows from V Py ~ 0. Sincel, — 0
strongly asn — oo and since[l,, Pp] =0 and V1, = V,1,, we get||V, Pol,|| — O
asn — oo. By using Po =1 — P we get

P01n = 111 - 111—1 Qpru=1-1® P,/u
where p/, = 1y — p, is the projection ofH onto the subspace orthogonal up hence

Ilp, Il =1 (recall that dimH = v>2). Thus we have||V, - 1,_1 ® p,|| — 0. But
o(V) € o/g means|V, — V,_1® 1ly|| — 0. So

IVaetll = Va1 ® pull IV = Va1 ® 1) - Lima @ pill + Vi - Lim1 ® i |l
converges to 0 a8 — oco. [

We are mainly interested in the particular class of algebtasonstructed as follows.
Let A be aC*-algebra of operators oH such thatly € A and let us set

Ao=A%0=C and A, =A% if n>1 (5.13)
Then Ay is just the infinite tensor productl®>. Note that the embeddingl®" c

A®>® amounts now to identifyV, € A®" with V, @ 1y @ 1y ® --- € A®>®. We
summarize the preceeding notations and introduce new ones specific to this situation:

o =] A% = {v = (Vdu0 | Va € AZ" |V = sup||Vall < oo},

n>0 n=0
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Ao= DA% = {v e | lim |V, :o},

n>=0

Ao =1{V € o | (V) € o},

A oo = {V € ./ | Voo := lim V, exists inA®°°},
n—>oo

s ={V € .o/ | AN such thatV,, = Vy if n>N}.

Note thatV,, = Viy meansV,, = Vy ® 1,_y if n > N. The space of main interest for
us is theC*-algebra.«Z. Clearly, «7¢ is a closed self-adjoint ideal in/,, and

Vede=0V)e Ao, (5.14)

in other terms.Z o C 0.

Proposition 5.7. The mapV +— V4 is a surjective morphism of th€*-algebra .«7 -
onto A®> whose kernel is«Zo. Thus we have a canonical isomorphism

A oo A~ AP®. (5.15)
Moreover «Z; is a densex-subalgebra of«/,, and we have

m:{\/e&/o@wooe UA®"]. (5.16)

n=0

Proof. That V +— V. is a morphism with kerneleZg is obvious..oZ; is clearly a
x-subalgebra. IfV € .o/, and if we setVN =V, for n<N, VN = Vy for n > N,
then VN € o/ and |V — VV|| = sup,_y Vs — Vn|| = 0 @asN — oco. Thus /s is
dense inAy.

If W e A®N and if we defineV € </ by V,, =0 forn < N, V, = W if n>N, then
V € o/ and Vo = W. Thus the range of the morphisi — V., contains the dense
subsety, > 0.A4%" of A®>. Since the range of a morphism is closed, the morphism is
surjective. [

The following remarks concerning the linear m8p.#) — B(#) defined byS —
U*SU will be needed below (see also the comments after Ler@ma If we use the
natural embeddindg3(H®") < B(#) then we clearly have

U*B(H®l’l+l)U C B(H®n)
and if S’ € B(H®") and S” € B(H) then

U*(S' ® S"U = S'(u, S"u).
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Of course,U*SU = 0 if S € B(H®9). It is clear then thatv(V) := U*VU defines a
linear positive contractiom : </ — .o/ which leaves invariant the subalgebra% and
/¢, hence.«Z, too. From 4.7) we then get for alV € .«/:

UV =[V+3WIU and U*V =[V —wo d(V)|U*. (5.17)

We make two final remarks which are not needed in what follows. First, note that the
map » could be defined with the help dffak, Corollary 4.4.25]. Then, observe that
for S € B(H®") we haveUSU* = S ® p,. Thus in general the morphist— U SU*
does not leave invariant the algebras we are interested in.

5.3. The anisotropic tree algebra

In this subsection we studg¢*-algebras of operators on the Fock spategenerated
by self-adjoint Hamiltonians of the formh = D + V, whereD is a polynomial inU
and U* andV belongs to aC*-subalgebra ofe/. We are interested in computing the
guotient of such an algebra with respect to the ideal of compact operators. The largest
algebra for which this quotient has a rather simple form is obtained starting.«jth
and the quotient becomes quite explicit if we start with,,.

More precisely, we fix a vectar € H with |u| = 1 and aC*-algebraA of operators
on H containingly. Recall thatH is a Hilbert space of dimension>2. Throughout
this subsectionwe assume that H is finite dimensionalthough part of the results hold
in general. Then we defing = p, as in Section 4 and we consider ti&-algebras
on %

Ao C Ao C ALyvo C A
associated tod as in Sectiorb.2. Then we define

%vo = norm closure of /g - Z,

%~ = norm closure of .&/, - Z,

%o = norm closure of «7g - 2.
We recall the notation: ifA, B are subspaces of an algel€athen A - B is the linear
subspace ofC generated by the productb with « € A andb € B. Observe thatZ

and.«Zy, being unital algebras, we haveU .o/, C @vo and, similarly,2U.o7 oo C €.
Clearly $o C ¥ C Gvo.

Lemma 5.8. %\, and ¥, are C*-algebras andéy is an ideal in each of them

Proof. Indeed, from 5.17) it follows easily that for eaclr € .o7, there areV’, V" ¢
o/ 5 such thatUV = V'U and U*V = V"U* and similarly in the case of#,q. This
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proves the first part of the lemma. Then note tat V" ¢ o7 if V € .«/g and use
(5.14). O

It is not difficult to prove that%,, is the C*-algebra generated by the operators
L =D+ V, whereD andV are self-adjoint elements a¥ and .\, respectively, and
similarly for ¢ (see the proof of Proposition 4.1 from [Gel]). Since only the obvious
fact that such operators belong to the indicated algebras matters here, we do not give
the details.

Lemma 5.9. If H finite dimensional then €9 = K(#) N G5 = K(A) N Gyo. If,
moreovey u is a cyclic vector forA in H, then we havety = (7).

Proof. Since H is finite dimensional, we haveZq C K(#), hence%y C K(X).
Reciprocally, letS € %y, be a compact operator. Lef, be the projection of# onto
Bo<mcn HE". Thenn, =3 5, <, 1n € o andn, — 1, strongly whem — ooc.
SinceSis compact, we get,S — S in norm, so it suffices to show that,S € %o for
eachn. We prove that this holds for any € ¥ = norm closure of</ - &: it suffices to
consider the cas® = VD with V € .« and D € &, and then the assertion is obvious.

Since H is finite dimensional,u is cyclic for A if and only if Au = H. If this
is the case, them®" is cyclic for A®" on H®" for eachn. Let n,m € N and
f € H®' g € H®", Then there areV € A®" and W € A®" such thatf =
Vu® = VU" and g = Wu®" = WU™e, wheree = 1 € C = H®, So we have
| f){(g] = VU"|e)(e|lU*W*. Clearly V, W and |e)(e| belong to.<Zg, so |f)(g| € %o.
An easy approximation argument gives thE#) C ¢o. O

We can now describe the quotiefit,,/%o of the algebra®\,, with respect to the
ideal of compact operators which belong to it.

Theorem 5.10. Assume that H is finite dimensional. Then there is a unique morphism
D : Gyo — (Avo/ o) ® Z such thatd(VD) =V ® D for all V € <7y and D € 2,
where V > V is the canonical map/yo — Zvo/-/o. This morphism is surjective
and ker® = %o, hence we get a canonical isomorphism

Cvo/C0 >~ (Avo/H0) @ . (5.18)
Proof. We shall check the hypotheses of Coroll#yl with the choices
u=U, B= v, C=%byo, Co= b= bvoNK(H).
Thus A = 2. From Corollary5.3 we getAg = {0} and then

BOZ&/vom(gOZ&/vom(gvoﬂ’C(%ﬂ)=~Q{voﬂlc(%):v‘2{0
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by Lemmab5.5. Then we use Proposition 5.6 and the fact tHatU] € K(#) if
V € /o (see (4.7) and note th&(V) € /o C K(#)). O

The quotienté~ /%o has a more explicit form. This follows immediately from The-
orem 5.10 and Proposition 5.7.

Corollary 5.11. If H is finite dimensionalthen there is a unique morphist: ¢, —
A®® @ 9 such thatd(VD) = Voo ® D for all V € .o/, and D € Z. This morphism
is surjective andker® = %o, hence we have a canonical isomorphism

Coo)Co~ A®>® @ 9. (5.19)

Example 5.12. The simplest choice isA = Cly. Then A®* = C1, and 7, is the

set of operatory/ € B(#') of the formV =3 -, V,1,, where{V,} is a convergent
sequence of complex numbers, avid = lim,_,» V,,. In this case, Theorerb.10 gives

us a canonical isomorphisféi, /%o >~ 2. On the other handg/,, corresponds to the
bounded sequencd¥,} such that limV,+1 — V,| = 0, and the quotient/\,/.o7g is

quite complicated (it can be described in terms of the Stone-Cech compactification of
N).

Example 5.13.1In order to cover the tree case considerefGnl] (see the Introduction)

it suffices to choosed an abelian algebra. Sind¢ is finite dimensional, the spectrum
of A is a finite setA and we haved ~ C(A) hence A®" ~ C(A") canonically. If

A® = AN" equipped with the product topology, then we get a natural identification
A® ~ C(A®). LetT :=J,> A", then. can be identified with the set of bounded
functionsV : I' — C and </ is the subset of functions which tend to zero at infinity.
The embedding (5.6) is obtained by extending a functonA” — C to a function

on A"*1 by settingo(ay, . .., an, aps1) = @(azi, ..., ay). ThusV € o/\, if and only if

lim sup |V(a,b) —V(a)|=0.

N—=>00 4eAn beA

Let m, : A% — A" be the projection onto the first factors. ThenV ¢ .«7, if and
only if there isVy, € C(A™) such that

lim sup |V om,(a) — Vool(a)| = 0.

n—0o0 acA>®

This means that the functioll defined on the spacﬁ =T'U A% equipped with the
natural hyperbolic topology (s€&ol]) by the conditionsV|I' = V and V|A™ = V is
continuous. And reciprocally, each continuous functionI” — C defines byV|I' =V
an element of«/,. This shows that our results cover those of [Gol].

We mention that in order to have a complete equivalence with the tree model as
considered in [Gol] the vectar must be a cyclic vector ofd, in particular.A must be
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maximal abelian. Indeed, in this casecan be identified with an orthonormal basis of
H diagonalizingA (the vectorsa are uniquely determined modulo a factor of modulus
1 and the associated character.4fis V > (a, Va)). Thenu = )" _, cqa is cyclic
for A if and only if ¢, # 0 for all a. If ¢, = |A|~Y/2 with |A| the number of elements
of A, we get the standard tree case.

Example 5.14.Another natural choice isA = B(H). Thenu is a cyclic vector forA
becausea: # 0, s0%o = K(). In this case we have

Coo ) K(H) ~ B(H)®® @ 7

and B(H)®* is a simpleC*-algebra.

We give an application to the computation of the essential spectrum. Note that if
L = Y7_1VEDy, with VF € o/yo and Dy € 2, then®(L) = > 7_; V¥ ® Dy. In
particular, we get

Proposition 5.15.Let L = D + V with D € 2 and V € .\, self-adjoint. Then
desdL) = a(D) + (V). (5.20)
If V €.o/4, then
GesdL) = a(D) + 0(Vao). (5.21)

Proof. It suffices to note tha®(L) =1Q D + V®1 and to use the general relation:
if A, B are self-adjoint thew(A® 1+ 1® B) =d(A) +a(B). O

In the abelian case the result is more general and more explicit.

Proposition 5.16. Assume that we are in the framework of Exanfl&3 and let L =
> 7_1 VKD, be a self-adjoint operator witV* e </, and Dy € Z. Then

sesdL) = | J o (Z v;;(a)Dk> : (5.22)
k

aeA>®

For the proof, observe that — ), Vé‘o(a)Dk is a norm continuous map on the
compact spacel®, which explains why the right-hand side above is a closed set. A
formula similar to 6.22) holds if.<7, is replaced by</\s, the only difference being
that A must be replaced with the spectrum of the abelian algebyg/.</o.
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Remarks. We shall make some final comments concerning various natural general-
izations of the algebras considered above. Assume thatre C*-algebras as at the
beginning of Sectiorb.2 and let</ be given by (5.9). Then

Ave ={V = V0| Vu € Ay and{V,, | n>0} is relatively compact indy}

is a C*-subalgebra ofe/ which contains.</\,. Interesting subalgebras of,. can be
defined as follows (this is the analog of a construction frigsel]): let « be a filter

on N finner than the Fréchet filter and le¥, be the set ofV = (V,,) € o/ such

that lim, V, exists in Ay, where lim, means norm limit along the filtex. Note that

oy = oA if o is an ultrafilter. Now it is natural to consider th&*-algebra®c
generated by the Hamiltonians with potentiddse .<7\c, so the C*-algebra generated

by .«7;,c U2, and the similarly defined algebras,. It would be interesting to describe

the quotient%, /%o, but neither the techniques of the Appendix nor those from [Gel]
do not seem to be of any use for this. Indeed, the main ingredients of our proof where
Proposition 5.6 and the fact that the commutator of a potential Witls compact,

or these properties will not hold in general. Moreover, the examples treated in [Gel],
more precisely the Klaus (or bumps) algebra, which has an obvious analog here, show
that we cannot expect a simple embedding of the quotient into a tensor product. Note
that “localizations at infinity” in the sense of [Gel] can be defined for the elements of
%rc by using iterations of the operatofs of left multiplication by elements € H in

the Fock space#’, a technique already used in [Gel,Gol], and this could be used in
order to define the canonical morphism which describes the quotient.
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Appendix A.

Let us consider twaC*-subalgebra®\ and B of a C*-algebraC satisfying the fol-
lowing conditions:

e A or B is nuclear,
e ab=ba if ae A andb € B.

We denote byA ® B the minimal C*-algebra tensor product of the two algebrasnd
B. Since, by the nuclearity assumptioA,® B is also the maximal tensor product of
A and B, there is a unique morphism : A ® B — C such that¢(a ® b) = ab, see
[Mur, Theorem 6.3.7].

Our purpose is to find conditions which ensure thkais injective. Then¢ is iso-
metric and so it gives a canonical identification of the tensor produg B with
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the C*-subalgebra ofC generated byA and B. The following simple observation
is useful.

Lemma A.1. The morphism¢ is injective if and only if the following condition is
satisfied if by, ..., b, is a linearly independent family of elements qftBen

a,...,a, € Aandaih1+---+ab,=0=a1=---=a, =0. (A1)

Proof. This condition is clearly necessary. Reciprocally, let® B be the algebraic
tensor product oA and B, identified with a dense subspace 4f® B. Then eachx €

A © B can be writtenx = > a; ® b; for some linearly independent famib, ..., b,

of elements ofB and theng(x) = > a;b;. It follows immediately thatc — ||¢(x)]| is

a C*-norm on A © B. But the nuclearity ofA or B ensures that there is only one such
norm, hence|¢(x)| = |lx||, SO that¢ extends to an isometry oA ® B. [

Condition A.1) is not easy to check in general, so it would be convenient to replace
it with the simpler:

acAbeB b#0andab=0=a=0. (A.2)

Exercise 2 inTak, Section 4.4] treats the case whiris abelian. The following result,
which was suggested to us by a discussion with Georges Scandalis, is more suited to
our purposes.
Let us say that a self-adjoint projectignin a C*-algebraK is minimal if p # 0
and if the only projectiong € K such thaty < p are 0 andp. We say that the algebra
is generated by minimal projectiori for each positive non zero elemeate K there
is a minimal projectiorp and a reak: > 0 such thata >ap.
We also recall that an idedl of A is called essentialif for a € A the relation
aK =0 impliesa = 0.

Proposition A.2. If (A.2) is fulfilled and if A contains an essential ideal K which is
generated by its minimal projectionthen ¢ is injective

Proof. The following proof of the proposition in the case = 2, which is the only
case of interest in this paper, is due to Georges Scandalis: Sinse@somorphic to the
Toeplitz algebra,Z contains a copyK of the algebra of compact operators 6f(N)
as an essential ideal. Then it is clear that it suffices to assumedtkak and in this
case the assertion is essentially obvious, becausgp kgn)) is an ideal of K ® B.
These ideas are certainly sufficient to convince an expe@*algebras, but since we
have in mind a rather different audience, we shall develop and give the details of the
preceding argument. We also follow a different idea in the last part of the proof.
(i) We first explain why it suffices to consider the casde= K. Note that one can
identify K ® B with the closed subspace of ® B generated by the elements of the
form a ® b with a € K, b € B (see [Mur, Theorem 6.5.1]) and 6 ® B is an ideal
in A® B. Let us show that this is an essential ideal.
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We can assume tha and B are faithfully and non-degenerately represented on
Hilbert spacess, #. SinceK is essential inA, the representation dk extends to a
faithful and non-degenerate representationAobn & (this is an easy exercise). Thus
we are in the situatiork ¢ A C B(&), B c B(¥), the action ofK on & being
non-degenerate. Lefk,} be an approximate unit oK. Then s—link, = 1 on &,
because|ky|| <1 and the linear subspace generated by the vedtgrsvith k¥ € K
ande € &, is dense in& (in fact K& = &). Similarly, if {bz} is an approximate unit
for B then s—limbg = 1 on # and then clearly s-limgk, ® by = 1 on & @ 7.
From our assumptions (the tensor products are equal to the minimal ones) we get
K®B C A®B C B ® %). Let x € A® B such thatx - K ® B = 0. Then
x - ky ® bg = 0 for all o, B, hencex = s—Ilim, gx -ky ® by = 0. ThusK ® B is an
essential ideal i ® B.

Now it is obvious that a morphismt ® B — C whose restriction toK ® B is
injective, is injective. Thus it suffices to show that the restrictiongofo K ® B is
injective, so from now on we may, and we shall, assume tat K.

(i) We make a preliminary remark: le® be the set of minimal projections iA;
then for eachp € P we havepAp = Cp. Note that this is equivalent to the fact that
for eachp € P there is a state, of A such thatpap = t,(a)p for all a € A.

Since pAp is the C*-subalgebra ofA consisting of the elementa such thatap =
pa = a, it suffices to show that each € pAp with a>0, a # 0, is of the form
Ap for some reall. Let ¢ € P such thata >eq for some reale > 0. Theneg<a =
pap < |la||p from which it is easy to deduce that< p, henceq = p (p and g being
minimal). Let 1 be the largest positive number such that/ip. If a — 1p # 0, then
there isr € P and a real > 0 such thata — Ap >vr. In particulara >vr and sor = p
by the preceding argument. Henae: (4 + v) p, which contradicts the maximality of
A. Thusa = Ap.

(i) Finally, we check A.1l). Let b1,...,b, be a linearly independent family of
elements ofB and as,...,a, € A such thatd a;b; = 0. Then for alla € A and
p € P we have

p (Z Tp(aai)bi> = paa;pb; = pa (Z“ibi) p=0.

Sincep € A, p # 0, and ) _1,(aa;)b; € B, we must haved_t,(aa;)b; = 0. But
Tp(aa;) are complex numbers, sg,(aq;) = 0 for eachi and alla € A. In particular,
we haver,(a/a;) = 0, which is equivalent tgaa;p =0 for all p € P. If afa; # 0,
then there arex > 0 andg¢ € P such thatafa; >ag. By taking p = ¢, we get

1

0= qga}aiq>0q, which is absurd. Thug/a; =0, i.e.q; =0. [

The next proposition is a simple extension of the preceding one. We recall that a
C*-algebra is callecelementaryif it is isomorphic with theC*-algebra of all compact
operators on some Hilbert space.

Proposition A.3. Let A, B be C*-subalgebras of aC*-algebra G let Co be an ideal
of C, and let Ag = AN Co and Bp = BN Cg be the corresponding ideals of A and B
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respectively. Denote b);?: A/ Ao, B= B/Bg and C = C/Co the associated quotient
algebras and assume that

e A contains an essential ideal K which is an elementary algebra and such;fthﬁt
is nuclear(e.g. abelia,

e ifac A, b e B then|a, b] € Co,

e ifac A,be B andab € Cq then eithera € Cq or b € Cy,

e C is theC*-algebra generated by U B.

Then there is a unique morphisi: C — A ® B such that®(ab) = a ® b for all
a € A, b € B. This morphism is surjective and h&% as kernel. In other termswve
have a canonical isomorphism

C/Co~ (A/Ag) ® (B/Bo). (A.3)

Proof. It is clear that an elementary algebra is generated by minimal projections and
is nuclear hence, bjMur, Theorem 6.5.3], the conditions we impose Arimply the
nuclearity of A. Note t thatA and B are C*- -subalgebras oC and that they generaté
Moreover, we haveéib = ba for all a € A, b e B and if ab=0thena=0 orb=0.

By Proposition A.2 the natural morphismi ® B — C is an isomorphism. Denotg

its inverse, letr : C — C be the canonical map, and I& = o =. This proves the
existence of a morphism with the required properties. Its uniqueness is obviaus.

Now we summarize the facts needed in this paper.

Corollary A.4. Let C be aC*-algebra Cp an ideal of G B a C*-subalgebra of C
Bo = BN Cp, andu € C a non-unitary isometry such that U {u} generates C. Let A
be the C*-subalgebra generated by u and let us assume thatCo = {0} and that
[u, b] € Cp for all b € B. Finally, assume that

ac€cA, beB and abe Co=aec Cqy or be(Cy.

Then there is a unique morphism: C — A ® (B/Bo) such that®(ab) = a ® b for
all a € A,b € B (Whereb is the image of b inB/Bp). This morphism is surjective
and hasCq as kernel. In other termsve have a canonical isomorphism

C/Co~ A® (B/Bo). (A.4)

Proof. The assumptioriu, b] € Co for all b € B clearly implies[a, b] € Co for all

a € A,b € B. Moreover, the algebral = Ais isomorphic with the Toeplitz algebra,
see[Mur, Theorem 3.5.18], and so all the conditions imposed on it in Proposition A.3
are satisfied, see [Mur, Example 6.5.1]]

We shall now study a more elementary situation which is relevant in the con-
text of Section 5. Our purpose is to treat the case when the Hilbert dpaiseof
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dimension 1 (this situation, although much simpler, is not covered by the arguments
from Sectionb).

This is in fact the case considered in Example 2.6, namely we téke- ¢2(N)
and define the isometry) by Ue, = e¢,+1. Then theC*-algebraZ(N) generated
by U is just the Toeplitz algebra [Mur, Section 3.5]. We also consider the situation
of Example 2.5, where# = ¢2(Z) and U acts in the same way, but now it is a
unitary operator and th€*-algebraZz(Z) generated by it is isomorphic to the algebra
C(T) of continuous functions on the unit circle(make a Fourier transformation). Let
A (N) := K(3(N)) and #'(Z) := K(?(Z)) be the ideals of compact operators on
¢2(N) and ¢£2(Z) respectively.

It is clear thatZz(Z) N (Z) = {0} and it is easily shown tha®"(N) ¢ 2(N). From
[Mur, Theorem 3.5.11] it follows that we have a canonical isomorphiaiy) /7 (N) ~
2 (Z). This isomorphism is uniquely defined by the fact that it sends the shift operator
U on N into the the shift operatot) on Z, cf. the Coburn theorem [Mur, Theorem
3.5.18)).

We identify ¢>°(N) with the set of bounded multiplication operators &1(N).

Proposition A.5. Let.o/ be a unitalC*-subalgebra oZ°°(N) such that for eaclV € .&/
the operator[U, V] is compact. Let¢§ be theC*-algebra generated by U {U} and
let us denoteeZg = .o/ N A (N) and €9 = ¢ N 4 (N). Then

C/Co > (A]Ao) & D(Z). (A.5)
This relation holds also if\l is replaced withZ.

Proof. Clearly [D, V] € ' (N) for all D € 2(N) and V € .«/, hence we have a
natural surjective morphisnie//.<70) ® ¥(Z) — %/%o. It remains to show that this
is an injective map. According tprak, Section 4.4, Exercice 2], it suffices to prove
the following: if D € 2(N) is not compact and ifV € ¢°°(N) has the property
VD e o (N), thenV is compact. We may assume that>0, otherwise we replace it
by DD*.

To eacha € C with |o| = 1 we associate a unitary operats; on ¢2(N) by the
rule Sye, = o'e,. We clearly haveS,US} = aU, thus A — A, := S4AS} is an
automorphism ofB(¢2(N)) which leaves invariant the algebr@(N) and the ideal
A (N) and reduces to the identity of?°(N). Thus VD, € 2 (N) for each suchu.
We shall prove the following: there arg, ..., «, such thatd " D,, = A + K, where
A is an invertible operator andl is compact. Thet/A is compact andV = VAA~!
too, which finishes the proof of the proposition.

We shall denote bﬁ the image of an operatdf e B(¢3(N)) in the Calkin algebra
B(2(N))/K(€2(N)). Thus we haveD >0, D # 0. As explained before the proof, we
have 2(N) /A4 (N) ~ 9(Z) ~ C(T). Let 0, tl? the automorphism of (T') defined by
04(p)(z) = @(za). Then we haveD, = 0,(D) (because this holds fod, hence for
all the elements of the&*-algebra generated by). But Dis a positive continuous
function onT which is strictly positive at some point, hence the sum of a finite number
of translates of the function is strictly positive, thus invertibleGidT). So there are
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,, such that the image o} D, be invertible in the Calkin algebra and this

is exactly what we need.[]

References

[Al]
[AIF]
[ABG]
[Bea]
[GGM]
[Gell
[GeM]
[Gol]
[Man]
[Mou]

[Mur]
[Tak]

C. Allard, Asymptotic completeness via Mourre theory for a Schrédinger operator on a binary
tree, Master's Thesis, UBC, 1997.

C. Allard, R. Froese, A Mourre estimate for a Schrédinger operator on a binary tree, Rev. Math.
Phys. 12 (12) (2000) 1655-1667.

W. Amrein, A. Boutet de Monvel, V. GeorgescGp-Groups, Commutator Methods and Spectral
Theory of N-body Hamiltonians, Birkhduser, Basel, Boston, Berlin, 1996.

B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, Elsevier Science,
Amsterdam, 1988.

V. Georgescu, C. Gérard, J. dler, Commutators,Cp-semigroups and resolvent estimates, J.
Funct. Anal. 216 (2004) 303-361.

V. Georgescu, A. Iftimovici, Crossed products 6f-algebras and spectral analysis of quantum
Hamiltonians, Comm. Math. Phys. 228 (3) (2002) 519-560.

V. Georgescu, M. Mhtoiu, On the spectral theory of Dirac type Hamiltonians, J. Operator Theory
46 (2001) 289-321.

S. Golénia,C*-algebra of anisotropic Schrodinger operators on trees, Annales Henry Poincaré 5
(6) (2004) 1097-1115.

M. Mantoiu, C*-algebras dynamical systems at infinity and the essential spectrum of generalized
Schrédinger operators, J. Reine Angew. Math. 550 (2002) 211-229.

E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Comm.
Math. Phys. 91 (1981) 391-408.

G. Murphy, C*-algebras and Operator Theory, Academic Press, New York, 1990.

M. Takesaki, Theory of Operator Algebras, vol. |, Springer, Berlin, 2002.



