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Abstract

Extra dimension deconstructed on a closed chain has naturally the symmetry of a regular polygon, the dihedral symmetry
Dy . We assume that the fields are irreducible representations of the binary dihedraldgroupvhich is the covering group
of Dy. Itis found that although the orbifold boundary conditions break the dihedral invariance explicitl9pthesymmetry
appears as an intact, internal global flavor symmetry at low energies. A concrete predictive model b@ggdvath an odd
N is given.
0 2005 Elsevier B.VOpen access under CC BY license,

PACS 11.25.Mj; 11.30.Hv; 12.15.Ff; 14.60.Pq; 02.20.Df

1. Introduction the SM. One of the most well-known examples is the
case of the minimal supersymmetric model (MSSM).
The Yukawa sector of the standard model (SM) Since the SM cannot control the redundant parameters,

contains a large number of redundant parameters. Thethe size of the new FCNCs and CP violating phases
presence of the redundant parameters is not related tg"@y be unacceptably large unless there is some sym-
a symmetry in the SM. That is, they will appear in Metry, or one fine tunes thelrvalués.

higher orders in perturbation theory even if they are A natural guidance to constrain the Yukawa sec-

set equal to zero at the tree level. These redundant pa-0r and to reduce the redundancy of this sector is a
rameters may become physical parameters when gomgflavo.r symmetry. It has been receptly reallzeq that non-

beyond the SM, and, moreover, they can induce flavor Abelian dlscrgte flavor symmetries, especially dihe-

changing neutral currents (FCNCs) and CP violating dral symmetries, cannot only reduce the redundancy,
phenomena that are absent or strongly suppressed in

E-mail address: jik@hep.s.kanazawa-u.ac (. Kubo). 1 For recent reviews, see, for instanf#, and references therein.
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but also partly explain the large mixing of neutrirfos.

When supersymmetrized, it has been found that the
same flavor symmetries can suppress FCNCs that are’V =

caused by soft supersymmetry breaking tefhrs18]
(see als§19-23).

In this Letter we address the question of the ori-
gin of dihedral flavor symmetries. We will find that
dimensional deconstructid@4,25] is a possible ori-
gin of dihedral flavor symmetries.

2. Dihedral invariancein an extra dimensional
space

Consider an extra dimension which is compactified
on a closed one-dimensional lattice withsites. We
assume that the lattice has the form of a regular poly-
gon with N edges as itis illustrated iRig. 1

The regular polygon is invariant under the sym-
metry operations of the dihedral grodpy. The Dy
operations are ¥ discrete rotations, wher¥ of 2N
rotations are combined with a parity transformation.
Clearly, a discrete polygon rotation af x 6y,n €
{1,..., N} corresponds to a discrete translation of the
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Fig. 1. A regular polygon withvV = 12 edges, which are located at
Yy=Y0,Y1,---> YN-1-

2 Models based on dihedral flavor symmetries, ranging from
D3(x~ S3) to Qg and D7, have been recently discussed2r16].
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lattice sites of: x a, whereq is the lattice spacing and

1)

The coordinate of the extra dimension is denoted by
v, and theN sites are located at= yo, y1, ..., YN—1-
(yn+i is identified withy;.) Under aDy transforma-
tion, the set of coordinatdsy, y1, ..., yy—1) changes

to (¥g ¥1. ---» Yy_1)» Which we express in terms of a
N x N real matrix. The matrix for the fundamental
rotation (i.e., a rotation dfy) is given by

Oy = 21/N.

0 0 O 1
10 O 0

Rv=]|0 1 o0 0], (2
00 1 0

and that for the parity transformation is
1 0 0 O
0 0 0 1

Pp=]|0 0 1 0 3
0 1 O 0

Then the 2V group elements oDy are

Gy = {Rw, (RN)?,..., (RW)" =1, Ry Pp,
(Rv)?Pp. ..., (RN Pp = Pp}. (4)

Using the properties,Plz) 1 and PpRyPp =
(Rn)~L, one can convince oneself th@p, is indeed
a group.

There exist two-dimensional representations for
Ry and Pp [2,12]:

By cosdy  Sindy
N=\ —sinfy cosvy )’
1 O

=5 5): ©

which are useful representations in finding irreducible
representations (irreps) @y (O is given in(1)). It
follows that Dy is a subgroup 080(3), which one
sees if one embed®y and Pp, into 3 x 3 matrices

5 cosdy sindy O
RN—><—sin9N CcoYy O),

0 0 1

) 1 0 0
Pp — (o -1 0 ) 6)
0 0 -1
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Therefore,Dy has only real representations.

U (2) is the universal covering group 80(3), and
has pseudo real and real irreg8;y is a finite sub-
group of SU(2). It can be interpreted as the covering
group of Dy in the sense that the defining matrices
Ray and Py for Qo satisfy

(Rav)?=Ry,  (Pp)*=(Pp)?=1, @)
where
; _( cos?y sin%V)
2N = —sin% cos%h )’
~ i 0
Py = (O —i) . (8)

The set of & elements ofQ2y is given by
Gooy = {RZN, (Ron)?, ..., (Ran)® =1, Ray P,
(Ron)?Po, ..., (Ran)®M P = Po}.  (9)
There exist only one- and two-dimensional irreps

for Dy and Qay. For Qo , there areV — 1 different
two-dimensional irreps, which we denote by

2, ¢=1..N-1 (10)

2, with odd ¢ is a pseudo real representation, while
2, with event is a real representation, whe2g with
even{ is exactly2y,> of Dy. Under the fundamental
rotation (i.e., a rotation afy which is defined in(1)),

2, transforms with the matrix

cog¢%)  sinee%)
(11)

—sine%) coge)
It is straightforward to calculate the Clebsch—Gordan
coefficients for tensor products of irrefis2]. There
exist four different one-dimensional irreps @foy .
Because of the relatio(¥), each of them has a def-
inite Z4 charge. Further, under the fundamental ro-

Ron(2¢) = (Row)* = (

tation, they either remain unchanged or change their
sign. Therefore, one-dimensional irreps can be char-
acterized according td, x Z4 charge:

10,190,142 1 > forN=246,..., (12)
10, 1-1,21;2,1 3 forN=3,57,..., (13)
where thel, o is the true singlet ofQ2y, and only
1_, and1_3 are complex irreps. Note that all the
real representations @,y are exactly those oDy,

which is one of the reasons why we would like to call
Qo as the covering group dy.
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3. Field theory with the dihedral invariance

Let us now discuss how to construct field theory
models with a dihedral invariance. We denote the five-
dimensional coordinate by

M=(x*y) withp=0,...,3. (14)

The coordinateg; of the lattice sites transform ty‘{

with N x N matrices ofDy, which are given in(2)

and (3) Then it is natural to assurh¢hat the fields
defined on the lattice are irreps ¢f,y which is the
covering group oDy . That is?

¢ (x,y) = ¢'(x,y) = Oond(x, Dy1y),

Qv € Q2y andDy € Dy. (15)

In Table 1explicit expressions of the matrices corre-
sponding to the fundamental rotation and the parity
transformation are given, where we assume that the
gauge fields belong to the true singlet o.

Given the details of theQyy irreps, it is then
straightforward to construct an invariant actifs—
26]. Supersymmetrization can also be straightfor-
wardly don€g[26].

4. Orbifold boundary conditionsand Q. flavor
symmetry

In the case of a continuous extra dimension, orb-
ifold boundary conditions are used to suppress unnec-
essary light fields and also to obtain four-dimensional
chiral fields. We shall discuss next how an inter-
nal Q,y flavor symmetry can appear even if orb-

._ifold boundary conditions break the dihedral invari-

ance(15). Let¢ (x, y) be a generic field which satisfies
the periodic boundary conditiog,(x, y) = ¢ (x,y +
Na). Then the fieldp (x, y) can be decomposed into

3 Dy may be understood as a twisted producZgf andZ,. Wit-
ten[27] has considered thigy (the symmetry of the boundary of a
deconstructed disc) to solve the triplet—doublet splitting problem in
GUTs.

4 Non-Abelian discrete family symmetries appearing in extra di-
mension models db,28], for instance, are not directly related to a
symmetry of the extra dimension.
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Table 1
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ExpllClt expressmns of the matrices corresponding to the fundamental rotation (i.e., a rot&iogigén in(1)) and the parity transformation.
Ron, PQ and Pp are given in(8) and(5), respectively, wheré € N and< (N — 1)/2, r = real, c= complex, pr= pseudo real. All the real

irreps of Qo are those oDy . Complex one-dimensional irreps exist only fér= 3, 5, 7, .

1_oexistonly forN =2,4,6,...

., while the real one-dimensional irrefps o and

Irreps 1o 1.2 1o 11 12 1.3 2201 290
Rotation 1 1 -1 -1 -1 -1 (Roy)2-1 (Ron)?t
Parity 1 -1 1 i -1 —i Py Pp
Reality r r r c r c pr r
the cosine and sine modes which should be compared wit{iL5). The internal
b imax symmetry is nothing but a global flavor symmetry
Pl =+ Z¢+ i (x) cosk;y) based orQzy.
imax
. 5. An example
+3 g i) sintey), (16) P
i=1 In what follows, we would like to discuss a con-
where crete model. One of the successful ansatze for the
quark mass matrices is of a nearest neighbor interac-
d(x) = Z d (X, yn), (17) tion (NNI) type[29-31]
0O C O
,.:E, ieN, =(:|:C 0 B). (21)
aN 0O B A
A { imax+1=N/2-1 { evenn, (18) In [12] it has been proposed to derive the mass matrix
imax= (N —1)/2 oddN. (21) solely from a dihedral symmetry, and concluded

¢(x) is the zero mode. As in the continuous case, we that two conditions should be met: (|) There should

can drop the cosine or sine modes by imposing an ap-

propriate boundary condition: under the parity trans-
formation(3), i.e.,

Yo — Yo = Yo, y1—> Y1 = YN-1,

Yi = ¥i = YN—i, (19)

the zero modep (x) and the cosines modes are even,
while the sine modes are odd.

Since theDy transformation mixes the cosine and
sine modes, the orbifold boundary conditions break
the dihedral invariance explicitly. However, th@y
invariant construction of an action discussed in the
previous section ensures that tey invariance re-
mains intact as a global, internal symmetry. This is be-
cause there is no derivative with respecytis used in
the construction. So, the theory with orbifold bound-
ary conditions is invariant under the internal transfor-
mation
¢(x,y) = ¢ (x,y) = Qanvg(x,y), Qa2n € Qon,

(20)

be real as well as pseudo real nonsinglet representa-
tions, and (ii) there should be the up and down type
Higgs SU(2);, doublets (type Il Higgs). The small-
est finite group that allows both real and pseudo real
nonsinglet representations@ as we have seen. Fur-
ther, the Higgs sector of the MSSM fits the desired
Higgs structure. Therefore, we assume supersymme-
try in four dimensions. Thés3(S3) model of[6] with

aZ, symmetry in the leptonic sector is one of the most
predictive models for the leptonic sector. However, the
Z> symmetry in the quark sector is broken, so that the
Z> symmetry should be seen as an approximate sym-
metry in that model. It was found, however, that this
leptonic sector can be reproduced in a supersymmetric
Qs model without introducing an additional discrete
symmetry into the leptonic sect2]. In Table 2we
write the Qg assignment of the quark and lepton chiral
supermultiplets.

5 The same model exists f@o if N is odd and a multiple of 3.
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Table 2

Qg assignment of the matter supermultiplegs. O3, L, L3 and HY, Hé‘, H, Hg stand forSU(2); doublets supermultiplets for quarks,

leptons and Higgs bosons, respectively. SimileBly(2); singlet supermultiplets for quarks, charged leptons and neutrinos are dendtéd by
Ug, D¢, Dg, E€, Eg andN¢, Ng. This is an alternative assignment to the one given in the footnd2dfThe present assignment can more
suppress the proton decf82]. The assignment for the mirror supermultiplets can be simply read off Tiavte 2

0 U¢, D¢, L, E¢, N¢, H*, HY 03 U§, D, HY, HY Lg, E§ N§
06 2 2 Lo 1 1 1o 13

We impose the following orbifold boundary con- Consequently, no CP violating processes induced by
ditions: all the mirror chiral supermultiplets are odd SSB terms are possible in this model, satisfying the
under the parity transformatio(i9). Similarly, the most stringent experimental constraint coming from
N =1 chiral supermultiplets, which are thé= 2 su- the EDM of the neutron and the electr{8b]. Since
perpartners of th&U(3)¢ x V(2); x U(1)y gauge the Higgs sector is als@g invariant, it is straight-
supermultiplets, are also odd. It is then clear that the forward to derive it from dimensional deconstruction.
zero modes of the gauge, matter and Higgs supermul- Consequently, the quark sector contains only 8 real pa-

tiplets coincide with those of the supersymmettig rameters with one independent phase to describe the
model of[12], and hence it is the low energy effective quark masses and their mixing, and the leptonic sector
theory. The low energy Yukawa superpotentiéf is contains only 6 real parameters with one independent
given by phase to describe 12 independent physical parame-
ters. Predictions in thg/,,;|—sin 2p1 planes are shown
Wy =Wo + Wy, (22) in Fig. 2, while Fig. 3 shows the predictions in the
wheré sin 2p1—p3 planes.
As we can see fronfrigs. 2 and 3with accurate
Wo =Y Q3USHY + Y} QT o1 US H" measurements of the Cabibbo—Kobayashi-Maskawa
—y 03U igyH" + Y" QTUIUCHg matrix elem(_en_ts, thg predlctlons_could be tested.
The predictions in the leptonic sector are summa-
+YJ Q3DsHY + Y Q" o1 D§H? rized as follows:

— Y2 03DTio,H! + Y QT ou D°HY,  (23)
Wy =YKL ESHE 4+ v) La(HY ES + HY ES)

+ Y§(L1H{ + LoHY) E§ + Y) L3NS HY 2 JAm2.  —

Y’ fIIK L NCHY ’ @ M/ Amzs = 415y (L+12,) (L+12,—ri5y) COS ¢,
+Yof Ny Hg tar? ¢, (r = Am3,/Am3,, 112 = tand12), where
+ Yy L3(H{ N§ + Hy N5), (24) ¢y is an independent phase.
. 3) sinfy3 =~ 2m,, ~ 3.4 x 1072 and tarf,3 ~
and f122= f212= g222— _ f11—1 In[12] it has (3) sinfis me/f2 " x 10 23
. . ; 1— (me/~2m,)%?=1— 0(107).

been found that by introducing a certain set of gauge (4) The prediction ofm,,) is shown inFig. 4
singlet Higgs supermultiplets it is possible to con- P Mee 9.4
struct a Higgs sector in such a way that CP phases
can be spontaneously induced. Therefore, all the pa-

rameters appearing in the Lagrangian including the
soft supersymmetry breaking (SSB) sector are real.

(1) Inverted neutrino mass spectrum, i.e,, <

My, My, .
1> My
(L+202, 418, —rt])?

We emphasize that the smallness of &5 and
the almost maximal mixing of the atmospheric neutri-
nos are consequences of g flavor symmetry. The
value of sirg;3 in the present model may be too small
to be measured in a laboratory experimddf, but the

6 The Higgs sector of the model §f2] possesses a permutation
symmetrny(d) <~ Hé‘(d), which ensures the stability of the VEV

(Hf(d)) = (Hé’(d)). The resulting mass quark matrices are equiva- 7 Large mixing of neutrinos may be obtained in dimensional de-

lent to(21). The leptonic sector given ii6] can be obtained by the construction models in a different mechanism. See, for instance,
interchange ¥ 2. [5,33,34]
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Fig. 2. Predictions in théV,, |—sin 2p1 plane. The uncertainties result from those in the quark masses a¥igsirand|V,,|, where we have
used|V,s| = 0.2240+ 0.0036 and V,;| = (41.5+ 0.8) x 10-3 [36]. The vertical and horizontal lines correspond to the experimental values,
sin28(¢1) = 0.726+ 0.037 and| V| = (36.7 + 4.7) x 104 [37,38]
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Fig. 3. Predictions in the sinid —¢3 plane. The vertical and horizontal lines correspond to the experimental valueg; & 2= 0.726+ 0.037
andgs = (60° + 14°) [37,38]
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Fig. 4. The effective Majorana maga..) as a function of sig, with sir’ 61, = 0.3 andAm3, = 6.9 x 107> eV? [39]. The dashed, solid and
dot-dashed lines stand farm3, = 1.4, 2.3 and 30 x 103 eV2, respectively.
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