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Abstract

Extra dimension deconstructed on a closed chain has naturally the symmetry of a regular polygon, the dihedral s
DN . We assume that the fields are irreducible representations of the binary dihedral groupQ2N , which is the covering group
of DN . It is found that although the orbifold boundary conditions break the dihedral invariance explicitly, theQ2N symmetry
appears as an intact, internal global flavor symmetry at low energies. A concrete predictive model based onQ6N with an odd
N is given.
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1. Introduction

The Yukawa sector of the standard model (S
contains a large number of redundant parameters.
presence of the redundant parameters is not relate
a symmetry in the SM. That is, they will appear
higher orders in perturbation theory even if they
set equal to zero at the tree level. These redundan
rameters may become physical parameters when g
beyond the SM, and, moreover, they can induce fla
changing neutral currents (FCNCs) and CP violat
phenomena that are absent or strongly suppress
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the SM. One of the most well-known examples is
case of the minimal supersymmetric model (MSSM
Since the SM cannot control the redundant parame
the size of the new FCNCs and CP violating pha
may be unacceptably large unless there is some s
metry, or one fine tunes their values.1

A natural guidance to constrain the Yukawa s
tor and to reduce the redundancy of this sector
flavor symmetry. It has been recently realized that n
Abelian discrete flavor symmetries, especially dih
dral symmetries, cannot only reduce the redunda

1 For recent reviews, see, for instance,[1] and references therein
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but also partly explain the large mixing of neutrino2

When supersymmetrized, it has been found that
same flavor symmetries can suppress FCNCs tha
caused by soft supersymmetry breaking terms[17,18]
(see also[19–23]).

In this Letter we address the question of the o
gin of dihedral flavor symmetries. We will find tha
dimensional deconstruction[24,25] is a possible ori-
gin of dihedral flavor symmetries.

2. Dihedral invariance in an extra dimensional
space

Consider an extra dimension which is compactifi
on a closed one-dimensional lattice withN sites. We
assume that the lattice has the form of a regular p
gon withN edges as it is illustrated inFig. 1.

The regular polygon is invariant under the sy
metry operations of the dihedral groupDN . TheDN

operations are 2N discrete rotations, whereN of 2N

rotations are combined with a parity transformatio
Clearly, a discrete polygon rotation ofn × θN,n ∈
{1, . . . ,N} corresponds to a discrete translation of

Fig. 1. A regular polygon withN = 12 edges, which are located
y = y0, y1, . . . , yN−1.

2 Models based on dihedral flavor symmetries, ranging fr
D3(� S ) to Q andD , have been recently discussed in[2–16].
3 6 7
lattice sites ofn× a, wherea is the lattice spacing an

(1)θN ≡ 2π/N.

The coordinate of the extra dimension is denoted
y, and theN sites are located aty = y0, y1, . . . , yN−1.
(yN+i is identified withyi .) Under aDN transforma-
tion, the set of coordinates(y0, y1, . . . , yN−1) changes
to (y′

0, y
′
1, . . . , y

′
N−1), which we express in terms of

N × N real matrix. The matrix for the fundament
rotation (i.e., a rotation ofθN ) is given by

(2)RN =




0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0

· · ·
0 0 · · · 1 0


 ,

and that for the parity transformation is

(3)PD =




1 0 · · · 0 0
0 · · · 0 0 1
0 · · · 0 1 0

· · ·
0 1 0 · · · 0


 .

Then the 2N group elements ofDN are

GDN
= {

RN, (RN)2, . . . , (RN)N = 1,RNPD,

(4)(RN)2PD, . . . , (RN)NPD = PD

}
.

Using the properties,P 2
D = 1 and PDRNPD =

(RN)−1, one can convince oneself thatGDN
is indeed

a group.
There exist two-dimensional representations

R̃N andP̃D [2,12]:

R̃N =
(

cosθN sinθN

−sinθN cosθN

)
,

(5)P̃D =
(

1 0
0 −1

)
,

which are useful representations in finding irreduci
representations (irreps) ofDN (θN is given in(1)). It
follows that DN is a subgroup ofSO(3), which one
sees if one embeds̃RN andP̃D into 3× 3 matrices

R̃N →
( cosθN sinθN 0

−sinθN cosθN 0
0 0 1

)
,

(6)P̃D →
(1 0 0

0 −1 0

)
.

0 0 −1
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Therefore,DN has only real representations.
SU(2) is the universal covering group ofSO(3), and

has pseudo real and real irreps.Q2N is a finite sub-
group ofSU(2). It can be interpreted as the coveri
group of DN in the sense that the defining matric
R̃2N andP̃Q for Q2N satisfy

(7)(R̃2N)2 = R̃N , (P̃Q)4 = (P̃D)2 = 1,

where

R̃2N =
(

cosθN

2 sin θN

2

−sin θN

2 cosθN

2

)
,

(8)P̃Q =
(

i 0
0 −i

)
.

The set of 4N elements ofQ2N is given by

GQ2N
= {

R̃2N, (R̃2N)2, . . . , (R̃2N)2N = 1, R̃2NP̃Q,

(9)(R̃2N)2P̃Q, . . . , (R̃2N)2NP̃Q = P̃Q

}
.

There exist only one- and two-dimensional irre
for DN andQ2N . ForQ2N , there areN − 1 different
two-dimensional irreps, which we denote by

(10)2�, � = 1, . . . ,N − 1.

2� with odd � is a pseudo real representation, wh
2� with even� is a real representation, where2� with
even� is exactly2�/2 of DN . Under the fundamenta
rotation (i.e., a rotation ofθN which is defined in(1)),
2� transforms with the matrix

(11)

R̃2N(2�) = (R̃2N)� =
(

cos(� θN

2 ) sin(� θN

2 )

−sin(� θN

2 ) cos(� θN

2 )

)
.

It is straightforward to calculate the Clebsch–Gord
coefficients for tensor products of irreps[12]. There
exist four different one-dimensional irreps ofQ2N .
Because of the relation(7), each of them has a de
inite Z4 charge. Further, under the fundamental
tation, they either remain unchanged or change t
sign. Therefore, one-dimensional irreps can be c
acterized according toZ2 × Z4 charge:

(12)1+,0, 1−,0, 1+,2, 1−,2 for N = 2,4,6, . . . ,

(13)1+,0, 1−,1, 1+,2, 1−,3 for N = 3,5,7, . . . ,

where the1+,0 is the true singlet ofQ2N , and only
1−,1 and 1−,3 are complex irreps. Note that all th
real representations ofQ2N are exactly those ofDN ,
which is one of the reasons why we would like to c
Q as the covering group ofD .
2N N
3. Field theory with the dihedral invariance

Let us now discuss how to construct field theo
models with a dihedral invariance. We denote the fi
dimensional coordinate by

(14)zM = (
xµ, y

)
with µ = 0, . . . ,3.

The coordinatesyi of the lattice sites transform toy′
i

with N × N matrices ofDN , which are given in(2)
and (3). Then it is natural to assume3 that the fields
defined on the lattice are irreps ofQ2N which is the
covering group ofDN . That is,4

φ(x, y) → φ′(x, y) = Q̃2Nφ
(
x, D̃−1

N y
)
,

(15)Q̃2N ∈ Q2N andD̃N ∈ DN.

In Table 1explicit expressions of the matrices corr
sponding to the fundamental rotation and the pa
transformation are given, where we assume that
gauge fields belong to the true singlet1+,0.

Given the details of theQ2N irreps, it is then
straightforward to construct an invariant action[24–
26]. Supersymmetrization can also be straightf
wardly done[26].

4. Orbifold boundary conditions and Q2N flavor
symmetry

In the case of a continuous extra dimension, o
ifold boundary conditions are used to suppress unn
essary light fields and also to obtain four-dimensio
chiral fields. We shall discuss next how an int
nal Q2N flavor symmetry can appear even if or
ifold boundary conditions break the dihedral inva
ance(15). Letφ(x, y) be a generic field which satisfie
the periodic boundary condition,φ(x, y) = φ(x, y +
Na). Then the fieldφ(x, y) can be decomposed in

3 DN may be understood as a twisted product ofZN andZ2. Wit-
ten[27] has considered thisZN (the symmetry of the boundary of
deconstructed disc) to solve the triplet–doublet splitting problem
GUTs.

4 Non-Abelian discrete family symmetries appearing in extra
mension models of[5,28], for instance, are not directly related to
symmetry of the extra dimension.
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Table 1
Explicit expressions of the matrices corresponding to the fundamental rotation (i.e., a rotation ofθN given in(1)) and the parity transformation
R̃2N , P̃Q andP̃D are given in(8) and(5), respectively, where� ∈ N and� (N − 1)/2, r = real, c= complex, pr= pseudo real. All the rea
irreps ofQ2N are those ofDN . Complex one-dimensional irreps exist only forN = 3,5,7, . . . , while the real one-dimensional irreps1−,0 and
1−,2 exist only forN = 2,4,6, . . .

Irreps 1+,0 1+,2 1−,0 1−,1 1−,2 1−,3 22�−1 22�

Rotation 1 1 −1 −1 −1 −1 (R̃2N)2�−1 (R̃2N)2�

Parity 1 −1 1 i −1 −i P̃Q P̃D

Reality r r r c r c pr r
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the cosine and sine modes

φ(x, y) = φ(x)√
N

+
imax∑
i=1

φ+,i (x)cos(kiy)

(16)+
i′max∑
i=1

φ−,i (x)sin(kiy),

where

(17)φ(x) = 1√
N

N−1∑
n=0

φ(x, yn),

ki = 2πi

aN
, i ∈ N,

(18)imax=
{

i′max+ 1= N/2− 1

i′max= (N − 1)/2
for

{
evenN,

oddN.

φ(x) is the zero mode. As in the continuous case,
can drop the cosine or sine modes by imposing an
propriate boundary condition: under the parity tra
formation(3), i.e.,

y0 → y′
0 = y0, y1 → y′

1 = yN−1, . . . ,

(19)yi → y′
i = yN−i , . . . ,

the zero modeφ(x) and the cosines modes are ev
while the sine modes are odd.

Since theDN transformation mixes the cosine a
sine modes, the orbifold boundary conditions bre
the dihedral invariance explicitly. However, theQ2N

invariant construction of an action discussed in
previous section ensures that theQ2N invariance re-
mains intact as a global, internal symmetry. This is
cause there is no derivative with respect toy is used in
the construction. So, the theory with orbifold boun
ary conditions is invariant under the internal transf
mation

(20)
φ(x, y) → φ′(x, y) = Q̃2Nφ(x, y), Q̃2N ∈ Q2N,
which should be compared with(15). The internal
symmetry is nothing but a global flavor symme
based onQ2N .

5. An example

In what follows, we would like to discuss a co
crete model. One of the successful ansätze for
quark mass matrices is of a nearest neighbor inte
tion (NNI) type[29–31]

(21)M =
( 0 C 0

±C 0 B

0 B ′ A

)
.

In [12] it has been proposed to derive the mass ma
(21) solely from a dihedral symmetry, and conclud
that two conditions should be met: (i) There sho
be real as well as pseudo real nonsinglet represe
tions, and (ii) there should be the up and down ty
Higgs SU(2)L doublets (type II Higgs). The smal
est finite group that allows both real and pseudo
nonsinglet representations isQ6 as we have seen. Fu
ther, the Higgs sector of the MSSM fits the desir
Higgs structure. Therefore, we assume supersym
try in four dimensions. TheD3(S3) model of[6] with
aZ2 symmetry in the leptonic sector is one of the m
predictive models for the leptonic sector. However,
Z2 symmetry in the quark sector is broken, so that
Z2 symmetry should be seen as an approximate s
metry in that model. It was found, however, that th
leptonic sector can be reproduced in a supersymm
Q6 model without introducing an additional discre
symmetry into the leptonic sector[12]. In Table 2we
write theQ6 assignment of the quark and lepton chi
supermultiplets.5

5 The same model exists forQ if N is odd and a multiple of 3
2N
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Table 2
Q6 assignment of the matter supermultiplets.Q, Q3, L, L3 andHu, Hu

3 , Hd , Hd
3 stand forSU(2)L doublets supermultiplets for quark

leptons and Higgs bosons, respectively. Similarly,SU(2)L singlet supermultiplets for quarks, charged leptons and neutrinos are denotedUc ,
Uc

3, Dc , Dc
3, Ec , Ec

3 andNc , Nc
3. This is an alternative assignment to the one given in the footnote of[12]. The present assignment can mo

suppress the proton decay[32]. The assignment for the mirror supermultiplets can be simply read off fromTable 2

Q Uc, Dc, L, Ec, Nc, Hu, Hd Q3 Uc
3, Dc

3, Hu
3 , Hd

3 L3, Ec
3 Nc

3

Q6 21 22 1+,2 1−,1 1+,0 1−,3
n-
dd
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We impose the following orbifold boundary co
ditions: all the mirror chiral supermultiplets are o
under the parity transformation(19). Similarly, the
N = 1 chiral supermultiplets, which are theN = 2 su-
perpartners of theSU(3)C × SU(2)L × U(1)Y gauge
supermultiplets, are also odd. It is then clear that
zero modes of the gauge, matter and Higgs superm
tiplets coincide with those of the supersymmetricQ6
model of[12], and hence it is the low energy effecti
theory. The low energy Yukawa superpotentialWY is
given by

(22)WY = WQ + WL,

where6

WQ = Yu
a Q3U

c
3Hu

3 + Yu
b QT σ1U

c
3Hu

− Yu
b′Q3U

cT iσ2H
u + Yu

c QT σ1U
cHu

3

+ Yd
a Q3D

c
3H

d
3 + Yd

b QT σ1D
c
3H

d

(23)− Yd
b′Q3D

cT iσ2H
d + Yd

c QT σ1D
cHd

3 ,

WL = Y e
c f IJKLIE

c
J Hd

K + Y e
b′L3

(
Hd

1 Ec
1 + Hd

2 Ec
2

)
+ Y e

b

(
L1H

d
1 + L2H

d
2

)
Ec

3 + Y ν
a L3N

c
3Hu

3

+ Y ν
c f IJKLIN

c
J Hu

K

(24)+ Y ν
b′L3

(
Hu

1 Nc
1 + Hu

2 Nc
2

)
,

andf 122 = f 212 = f 222 = −f 111 = 1. In [12] it has
been found that by introducing a certain set of ga
singlet Higgs supermultiplets it is possible to co
struct a Higgs sector in such a way that CP pha
can be spontaneously induced. Therefore, all the
rameters appearing in the Lagrangian including
soft supersymmetry breaking (SSB) sector are r

6 The Higgs sector of the model of[12] possesses a permutatio

symmetryHu(d)
1 ↔ H

u(d)
2 , which ensures the stability of the VE

〈Hu(d)
1 〉 = 〈Hu(d)

2 〉. The resulting mass quark matrices are equ
lent to(21). The leptonic sector given in[6] can be obtained by th
interchange 1↔ 2.
Consequently, no CP violating processes induced
SSB terms are possible in this model, satisfying
most stringent experimental constraint coming fr
the EDM of the neutron and the electron[35]. Since
the Higgs sector is alsoQ6 invariant, it is straight-
forward to derive it from dimensional deconstructio
Consequently, the quark sector contains only 8 rea
rameters with one independent phase to describe
quark masses and their mixing, and the leptonic se
contains only 6 real parameters with one independ
phase to describe 12 independent physical para
ters. Predictions in the|Vub|– sin2φ1 planes are show
in Fig. 2, while Fig. 3 shows the predictions in th
sin2φ1–φ3 planes.

As we can see fromFigs. 2 and 3, with accurate
measurements of the Cabibbo–Kobayashi–Mask
matrix elements, the predictions could be tested.

The predictions in the leptonic sector are summ
rized as follows7:

(1) Inverted neutrino mass spectrum, i.e.,mν3 <

mν1,mν2.

(2) m2
ν2

/�m2
23 = (1+2t2

12+t4
12−rt4

12)
2

4t2
12(1+t2

12)(1+t2
12−rt2

12)cos2 φν
−

tan2 φν(r = �m2
21/�m2

23, t12 = tanθ12), where
φν is an independent phase.

(3) sinθ13 � me/
√

2mµ � 3.4 × 10−3 and tanθ23 �
1− (me/

√
2mµ)2 = 1− O(10−5).

(4) The prediction of〈mee〉 is shown inFig. 4.

We emphasize that the smallness of sinθ13 and
the almost maximal mixing of the atmospheric neu
nos are consequences of theQ6 flavor symmetry. The
value of sinθ13 in the present model may be too sm
to be measured in a laboratory experiment[41], but the

7 Large mixing of neutrinos may be obtained in dimensional
construction models in a different mechanism. See, for insta
[5,33,34].
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lues,

Fig. 2. Predictions in the|Vub|–sin 2φ1 plane. The uncertainties result from those in the quark masses and in|Vus | and|Vcb|, where we have
used|Vus | = 0.2240± 0.0036 and|Vcb| = (41.5± 0.8) × 10−3 [36]. The vertical and horizontal lines correspond to the experimental va
sin 2β(φ1) = 0.726± 0.037 and|Vub| = (36.7± 4.7) × 10−4 [37,38].

Fig. 3. Predictions in the sin 2φ1–φ3 plane. The vertical and horizontal lines correspond to the experimental values, sin 2φ1(β) = 0.726±0.037
◦ ◦
andφ3 = (60 ± 14 ) [37,38].
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d
Fig. 4. The effective Majorana mass〈mee〉 as a function of sinφν with sin2 θ12 = 0.3 and�m2
21 = 6.9× 10−5 eV2 [39]. The dashed, solid an

dot-dashed lines stand for�m2
23 = 1.4,2.3 and 3.0× 10−3 eV2, respectively.
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tiny deviation from zero (sin2 θ13 � m2
e/2m2

µ � 10−5)
are important in supernova neutrino oscillations[40].

6. Conclusion

In this Letter we have looked for a possible orig
of dihedral symmetries. It has been recently reali
that a flavor symmetry based on a dihedral group
be used to soften the flavor problem of the SM a
the MSSM. We have considered an extra dimens
compactified on a closed chain, which is assume
have the form of a regular polygon. Since the symm
try group of the regular polygon is the dihedral gro
DN , we assumed that the fields are irreps of the c
ering group ofDN , which is the binary dihedral grou
Q2N . The construction of an action with the dihed
invariance is straightforward, and moreover we fou
that theQ2N symmetry remains as an intact, intern
flavor symmetry even if the original dihedral inva
ance is broken by orbifold boundary conditions. W
hope that with our finding we can come closer to
deep understanding of the origin of a flavor symme
based on a non-Abelian finite group.
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