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a b s t r a c t

Chinese hamster ovary (CHO) cells are the predominant cell factory for the production of recombinant
therapeutic proteins. Nevertheless, the lack in publicly available sequence information is severely limiting
advances in CHO cell biology, including the exploration of microRNAs (miRNA) as tools for CHO cell
characterization and engineering. In an effort to identify and annotate both conserved and novel CHO
miRNAs in the absence of a Chinese hamster genome, we deep-sequenced small RNA fractions of 6
biotechnologically relevant cell lines and mapped the resulting reads to an artificial reference sequence
consisting of all known miRNA hairpins. Read alignment patterns and read count ratios of 5′ and 3′ mature
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provided by Elsevier - Publisher C
hinese hamster ovary cells
ext-generation sequencing

miRNAs were obtained and used for an independent classification into miR/miR* and 5p/3p miRNA pairs
and discrimination of miRNAs from other non-coding RNAs, resulting in the annotation of 387 mature
CHO miRNAs. The quantitative content of next-generation sequencing data was analyzed and confirmed
using qPCR, to find that miRNAs are markers of cell status. Finally, cDNA sequencing of 26 validated
targets of miR-17-92 suggests conserved functions for miRNAs in CHO cells, which together with the
now publicly available sequence information sets the stage for developing novel RNAi tools for CHO cell

engineering.

. Introduction

The Chinese hamster, Cricetulus griseus, has come a long way
rom being an important model organism for cytogenetic research
o becoming the origin of a cell line (Tjio and Puck, 1958) that is

ow the most frequently used cell factory for the production of
ecombinant protein therapeutics with an annual market value
xceeding 70 billion dollars (Jayapal et al., 2007). The continu-
us improvement of CHO-based bioprocesses, which is essential

� All relevant sequence data was submitted to the Sequence Read Archive at
ttp://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi? and can be accessed under the
ccession SRA024456.1.
∗ Corresponding author. Tel.: +43 1 47654 6230; fax: +43 1 36 97 615.

E-mail address: johannes.grillari@boku.ac.at (J. Grillari).

168-1656 © 2011 Elsevier B.V. Open access under CC BY-NC-ND license.

oi:10.1016/j.jbiotec.2011.02.011
© 2011 Elsevier B.V. Open access under CC BY-NC-ND license.

to meet the increasing demand for complex glycosylated protein
therapeutics, is based on various strategies (Wurm, 2004), includ-
ing their targeted genetic engineering (Kramer et al., 2010). In the
striking absence of public Chinese hamster DNA sequence informa-
tion, functional genomic and proteomic tools have been developed
in several labs to identify promising cellular pathways (Kantardjieff
et al., 2009, 2010) as well as specific genes (Doolan et al., 2010) that
are significantly deregulated under conditions of high productiv-
ity or fast growth and which could therefore serve as targets for
cell engineering approaches. In this respect, the miRNA dependent
post-transcriptional regulation of gene expression in CHO cells was

only recently proposed as a potential tool to characterize and engi-
neer CHO cell lines (Barron et al., 2010; Müller et al., 2008), as they
are well recognized to regulate many physiological processes like
cell cycle (Carleton et al., 2007), metabolism (Gao et al., 2009), and
cell death (Subramanian and Steer, 2010).

https://core.ac.uk/display/82586874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.jbiotec.2011.02.011
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http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi%3F
mailto:johannes.grillari@boku.ac.at
dx.doi.org/10.1016/j.jbiotec.2011.02.011
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
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Fig. 1. Identification and annotation of conserved CHO miRNAs. (a) Small RNA reads were mapped to the entire set of known miRNA hairpin sequences, in the form of
a concatenated sequence leaving spacers of 50 bases (N50) between each hairpin sequence (1). In the second step, miRNA isoforms (isomiRs) were grouped and further
represented by the most abundant isomiR sequence (2). For annotation of miRNA reads, three scenarios were differentiated: mapping of both arms of the hairpin duplex
(A); mapping of only one arm of the hairpin duplex (B) and mapping of regions adjacent to the duplex (C). For the visualization of short read alignments to the miRNA
hairpin reference sequence, VAMP, a software developed at the Center for Biotechnology in Bielefeld, Germany was used: orange bars in the upper section represent annotated
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Being small, non-coding RNAs, miRNAs are transcribed within
he nucleus, processed by RNaseIII Drosha (Lee et al., 2003) and
xported as ∼70 nucleotide long hairpins to the cytoplasm, where
hey are enzymatically cleaved by Dicer (Hutvagner et al., 2001)
o give rise to two ∼22 nucleotide long mature miRNA sequences
n the form of a complementary duplex structure (Carthew and
ontheimer, 2009). Depending on the thermodynamic properties
f this duplex, one strand is preferably incorporated into the RNA-
nduced-silencing complex (RISC), to become the guide miRNA.
y binding partially complementary regions in the 3′ untranslated
egions (UTR) of target mRNAs, the guide miRNA enables RISC to
ither degrade or repress translation of the target mRNA (Bartel,
009). As individual miRNAs have the potential to bind numerous
ifferent mRNAs, and since the 3′UTR of a single mRNA can contain
inding sites for several different miRNAs, the resulting multiplic-

ty of potential interactions allows miRNAs to modulate complex
egulatory pathways (Baek et al., 2008; Selbach et al., 2008). Con-
equently, it has been proposed that specific miRNA transcription
ignatures might not only be linked to undifferentiated, differenti-
ted or cancerous cellular phenotypes, but could also facilitate the
mergence of entirely new cell types (Kosik, 2010). From a biopro-
essing point of view, this opens a wide area for the use of miRNAs as
ools for characterizing and engineering industrially relevant CHO
ell lines (Müller et al., 2008).

MicroRNA transcription was first described in CHO cells in 2007,
hen Gammell et al. used a cross-species microarray platform

o profile changes in miRNA expression patterns upon tempera-
ure shifts to 31 ◦C (Gammell et al., 2007), a condition commonly
bserved to increase specific protein productivity (Rössler et al.,
996; Sunley et al., 2008; Trummer et al., 2006). Results of this study

ndicated that miRNA sequences are likely to be highly conserved
etween mouse and CHO cells, but experimental verification of
his assumption could only be given for one miRNA, cgr-miR-21. In
ontrast to hybridization based strategies such as microarray tech-
ology or quantitative real-time PCR, next-generation sequencing
NGS) provides a valid alternative for miRNA expression profil-
ng, especially if no or little sequence information is available
Morozova and Marra, 2008). Using this technology the exis-
ence of several conserved mature miRNAs was recently reported
n CHO cells (Johnson et al., 2010) using BLASTn alignment of
llumina sequencing reads to known mature and star miRNA
equences taken from the miRNA sequence repository miRBase
Griffiths-Jones et al., 2008). However, no precise annotations were
ntroduced for these conserved CHO miRNAs, most likely since
LASTn alignment does not allow for an accurate mismatch con-
rol and therefore cannot reliably differentiate members of closely
elated miRNA species as they occur in many miRNA families such
s the let-7 family or miR-17 family. Besides, such an approach
lso fails to provide reliable information on the miR/miR* iden-
ity of processed miRNA transcripts, which describes whether the
′ or 3′ arm of the miRNA precursor hairpin gives rise to the
redominant mature miRNA species. Especially in the light of
bsent genomic sequence information for the Chinese hamster,

nding the best annotation for each individual conserved CHO
iRNA is, however, crucial in establishing their functionality, as

his often implies the use of “cross-species” target prediction algo-
ithms for the alleged orthologous miRNA in human, mouse or
at.

airpin sequences while the lower section shows the single-basepair coverage computed
ellow color best-match coverage (containing 1–3 mismatches), and red color represents
ifferent hairpin at lower mismatch rate). (b) The coverage pattern for hsa-miR-18b at
overage, with more reads mapping to the 5′ arm of the hairpin. (c) A locus in the hairpin
ower zoom: high perfect coverage is generally observed at the 5′ and 3′ duplex positions

hile in some cases (mir-106b) both hairpins-arms show equal coverage. In a few cases,
ownwards. (For interpretation of the references to color in text, the reader is referred to
nology 153 (2011) 62–75

In an effort to identify, annotate and profile miRNA expres-
sion in CHO cell lines for the identification of promising targets
for cell engineering (“engimiRs”), we sequenced the small RNA
transcriptome of 6 CHO cell lines, developed a novel method for
miRNA identification and annotation in the absence of genomic
sequence information and provide insights in the regulation of
miRNA transcription under biotechnologically relevant conditions.
By submitting sequence information of all conserved and novel CHO
miRNAs to the miRBase repository (www.mirbase.org) we further
provide the basis for the CHO research community to establish the
necessary tools to improve miRNA research in the Chinese hamster.

2. Materials and methods

2.1. Cell lines and culture conditions

Chinese hamster ovary cell lines were cultivated at 37 ◦C and
7% atmospheric CO2. Serum-dependent CHO-K1 cell lines (ECACC
CCL-61) were grown in 1:1 DMEM/Ham’s F12 media (Biochrom,
Germany) in the presence of 5% fetal calf serum (PAA, Austria)
and 4 mM l-Glutamine (l-Gln). Serum-dependent CHO-DUXB11
cells (ATCC CRL-9096) were cultivated in the same medium plus
1× HT (hypoxanthine/thymidine) supplement. CHO-K1 cells were
in-house adapted to serum-free growth in chemically defined CD
CHO media (Gibco, Carlsbad, CA) supplemented with 8 mM l-Gln.
Recombinant antibody producing CHO-K1 cells (ECACC 85051005)
were serum-free adapted and cultivated in 1:1 DMEM/Ham’s F12
supplemented with 2 mM methionine-sulfoximine (MSX), 0.25%
soy peptone, 0.1% Pluronic F68 (BASF, Germany), PF supplement
(Polymun Scientific, Austria) and GS supplement (SAFC, St. Louis,
MO). Serum-free adapted CHO-DUXB11 cells were cultivated in
1:1 DMEM/Ham’s F12 media supplemented with 4 mM l-Gln,
0.25% soy peptone, 0.1% Pluronic F68 and 1x PF and HT supple-
ment. The recombinant DUXB11 cells were transfected with an
Erythropoietin-Fc fusion protein (Lattenmayer et al., 2007) and
cultivated in the same medium with the addition of 0.19 �M
methotrexate (MTX).

2.2. RNA Isolation and Illumina small RNA library preparation

For RNA isolation, CHO cells were harvested during exponen-
tially growth 48 h after seeding. Additionally an RNA pool was
prepared comprising equal amounts of total RNA from the follow-
ing conditions: (I) stationary growth phase after 120 h of batch
cultivation (K1 fcs, DXB11 sf, and DXB11 rec); (II) heat shock treat-
ment at 42 ◦C for 30 min (K1 sf and DXB11 rec); III) cold shock at
33 ◦C for 48 h (DXB11 fcs and K1 rec); and IV) sodium butyrate
(NaBu, 0.3 M) treatment for 48 h at 33 ◦C (DXB11 sf and DXB11
rec). Total RNA was isolated using Trizol reagent (Invitrogen, Carls-
bad CA) according to the manufacturer’s recommendations. Quality
of total RNA was controlled using Nanodrop (Thermo Scientific)
and 21000 Bioanalyzer (Agilent Technologies, Germany) analyses,
where RNA integrity numbers were required to be >9 for subse-

quent library preparation: therefore, small RNA fragments of 18–36
nucleotides were purified from 10 �g of total RNA on a 15% TBE Urea
RNA Gel (Invitrogen, Carlsbad, CA). Apart from this intital purifi-
cation of small RNA fractions, Illumina sequencing libraries were
prepared according to the Illumina v1.5 preparation kit protocol.

from read alignments; green color indicates perfect coverage with no mismatches,
the complete coverage (reads with 1–3 mismatches that were found to align to a

single-basepair level is shown in: both hairpin arms are mapped at high perfect
genome containing 9 miRNA hairpin sequences from Rattus norvegicus is shown at
within a hairpin. In most cases a predominant hairpin-arm exists (high coverage),
antisense alignments (mir-96, mir-98) are observed, indicated by coverage facing
the web version of the article.)

http://www.mirbase.org/
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Fig. 2. Hairpin classification and Chinese hamster ovary miRNA conservation. (a) Bar
chart showing total read counts over read length for the complete read set (dark)
compared to reads that had mapped the comprehensive miRNA genome and can
therefore be considered as conserved miRNA reads (bright). (b) Of 235 canoncial
miRNA hairpins that were discovered in CHO cells, 105 miRNA had been mapped at
either the 5′ (54) or 3′ (51) position, while 130 hairpins had been mapped at both
hairpin arms. The ratio of 5′ and 3′ read abundances was calculated for these 130
hairpins, resulting in 44 instances where the 5p/3p ratio exceeded an arbitrary ratio
cut-off of 20:1, while in 24 instances it was below 1:20. (c) Out of 224 miRNAs that
showed perfect identity to miRBase miRNA sequences, 82% had a human, mouse,
M. Hackl et al. / Journal of

.3. Library quantity and quality assessment, cluster
mplification and sequencing

Quantities of all libraries were analyzed using the Quant-
T PicoGreen dsDNA kit (Invitrogen) and the Tecan Infinite 200

icroplate Reader (Tecan, Austria) according to the manufacturer’s
nstructions. The average fragment size of each library was mea-
ured by a DNA 1000 LabChip using the 2100 Bioanalyzer (Agilent
echnologies, Germany). The molar concentration of each library
as calculated from the average fragment size and the correspond-

ng quantity. Subsequently, the libraries were diluted to 1 nM stock
olutions with elution buffer EB (Qiagen GmbH, Hilden, Germany).
onsequently, 120 �l of a 6 pM dilution of each library were used

or cluster generation with the Single-Read Cluster Generation Kit
2 on the Cluster Station (Illumina Inc., San Diego, USA) accord-
ng to the manual provided by the manufacturer (Part # 1006080
ev A) applying the Single-Read Multi-Primer One-Step protocol.
hereby, each library was amplified in a separate lane of the flow
ell including the PhiX control in lane no. 5. After cluster gener-
tion, the flow cell was sequenced on the Genome Analyzer IIx
sing one SBS Sequencing Kit v3 generating 36 bp single-reads.
ll reads were submitted to the Sequence Read Archive (SRA;
ww.ncbi.nlm.nih.gov/sra) at NCBI (Shumway et al., 2009), and are

ccessible under the accession number SRA024456.1.

.4. Conserved miRNA identification

Sequencing reads together with quality scores were generated
or all 7 libraries using Illumina’s GA pipeline 1.5. Trimming of 5′

nd 3′ adaptors was performed using an in-house developed Perl
cript and low quality reads containing adenosine stretches longer
han 7 (polyAs) or other low complexity features were discarded.
nique sequence reads were derived for each library and stored in
ASTA format, where the total read count for each unique sequence
as added to the end of the respective sequence header after a hash

ymbol. The entire set of miRNA precursor sequences as available
n miRBase v14.0 was used to generate an artificial genome by con-
atenating these sequences leaving stretches of 50 Ns in between
nto a 1.6 Mb sequence (supplemental data 1). The respective posi-
ions of miRNA precursors within the artificial genome were stored
n a Genbank database (supplemental data 1). The SARUMAN soft-

are (Blom et al., 2011) was used to map all unique reads to the
rtificial reference genome by allowing up to 3 mismatches or
nsertions/deletions. In order to be annotated as conserved miRNA,

unique sequence read had to have a minimum abundance of 5
eads. Multiple unique reads mapping the same position of a hair-
in sequence (isomiRs) were further represented by the sequence
f the most abundant read. For each hairpin the total read counts
ound at the 5′ or 3′ arms were retrieved, and if both arms were

apped a ratio 5p/3p was calculated. The final denotation given to
conserved hamster sequence read consisted of “cgr” as the species
refix, “miR-xy” as the miRNA identifier and a final suffix of either
-5p”, “-3p” depending on the alignment position of the read to the
espective hairpin.

.5. Novel miRNA predictions

Novel miRNAs were predicted using the following procedure:
eads that could not be matched to known small RNAs were mapped
o the mouse genome using segemehl (Hoffmann et al., 2009) with
wo allowed mismatches or insertions/deletions in the seed region

nd a minimum accuracy of 80%. This led to a mapping of 960,000
nique reads. The matched reads were combined into 317,000
lock-clusters using Blockbuster (Langenberger et al., 2009a). By
pplying published (Langenberger et al., 2009a) and two addi-
ional descriptors defining the sharpness of blocks, a support vector
or rat ortholog. Among the remaining 18% that did not have a perfect human, or a
rodent ortholog, cow, platypus, and chicken were the most frequently found species.

machine (SVM) was trained to identify miRNA candidates among
these 317,000 clusters. The SVM classified 131,000 potential miRNA
clusters, which were filtered according to their length (with a min-
imum length of 40 and a maximum length of 170), resulting in
14,378 candidates. The mouse genomic sequences of these candi-
dates (plus 15 nt up and downstream) were retrieved from UCSC
genome browser, and the sequences were folded in silico using
RNAfold (Hofacker and Stadler, 2006). Only perfect hairpins with-
out multi-loops and stretches of unpaired bases longer than 50
were kept, resulting in 1435 candidate novel miRNAs. Of these,
122 that were located in mouse intergenic regions, were subject
to manual inspection of (1) overall secondary structure predicted

by RNAfold; (2) duplex complementarity using a support vector
machine trained to distinguish Dicer cleaved duplexes from other
duplexes; and (3) of short read alignment patterns.

http://www.ncbi.nlm.nih.gov/sra
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.6. Statistical analysis of miRNA expression data

MicroRNA read counts were normalized to the individual lane
ize by dividing each read count by the total number of reads in
illion per lane. Log10 transformation of the resulting normalized

alues was performed to approximate a Gaussian distribution of
xpression values. Statistical data analysis was generally performed
n R 2.9.1: hierarchical unsupervised clustering of cell lines was
alculated using the hclust function and complete linkage distance
alculation. For principal component analysis of the miRNA expres-
ion matrix consisting of 6 samples (cell lines) and 365 variables
miRNAs) values were centered and single value decomposition
as calculated using the prcomp function. For biplot illustration,
rincipal components were retrieved (x <-pca$x) multiplied by 10
nd rounded (round(x*10)). Differential expression analysis for the
ontrasts serum-free (n = 4) versus serum-dependent (n = 2) as well
s recombinant (n = 2) versus host (n = 2), was calculated using nor-
alized and log10 transformed read counts and one-way ANOVA

tatistics as available in Genesis (Sturn et al., 2002). Low abundant
iRNAs with read counts below 500 were not included in the anal-

sis, and the null hypotheses of no difference in mean values were
ested on a significance level of p = 0.05.

.7. Quantitative real-time PCR

Quantitative real-time PCR was performed on 200 ng of
otal RNA extracts that had been poly-adenylated and reverse-
ranscribed into cDNA using an anchored oligo(dT) primer
Invitrogen, Carlsbad CA). PCRs were run using the Platinum SYBR
reen kit system, an universal poly(A) primer and gene specific
rimers that were designed based on sequence data acquired in this
tudy (Supplementary Table 3). Chinese hamster Glycerinaldehyd-
-phosphat-Dehydrogenase (GAPDH) was used as internal control.
RT PCRs were run on the Corbett Rotorgene rotorcycler (Qiagen,
ermany) including 4 technical replicates per sample. Data was
nalyzed using the delta–delta–Ct method (Livak and Schmittgen,
001). The resulting log2 fold changes were used for correlation
f qPCR and sequencing expression data. The Pearson correlation
oefficient was calculated in R 2.9.1 using the cor(x,y) function,
here x and y are vectors of log2 fold differences of 10 miRNAs

s determined by next generation sequencing and by qRT PCR.

. Results

.1. Illumina sequencing of CHO small RNA libraries

Two different CHO cell subtypes, CHO-K1 (K1) and the dihydro-
olate reductase negative mutant CHO-DUXB11 (Urlaub and Chasin,
980) (DXB11) were used for preparation of small RNA libraries
Table 1). From both subtypes, 3 distinct cell lines were chosen,
hich represent three biotechnologically relevant stages during

ell line development: (i) adherent cells with serum containing
edia (fcs), (ii) serum-free, non-adherent host cells (sf), and (iii)

ecombinant protein producing cells under serum-free conditions
rec). In addition, RNA was isolated from CHO cells undergoing
old shock, heat shock, or sodium butyrate treatment and from
ells in stationary growth phase (Table 1) and pooled. The result-
ng seven RNA libraries were loaded into separate lanes of the flow
ell for cluster generation and subsequent sequencing on the Illu-
ina Genome Analyzer IIx in a 36 nt single-read run. By this means,

ore than 129 million clusters were sequenced corresponding to

n average of about 16 million high quality sequence reads per lane
nd sample. These reads were further filtered for polyA sequences,
s well as reads with 3′ adaptors before position 18 and reads with
′ adaptor contaminations. This approach generated about 14 mil-
nology 153 (2011) 62–75

lion reads (18–36 nt) per library, which were collapsed into sets of
about 0.6 to 1 million unique reads per library (Supp. Table 1).

3.2. Conserved CHO microRNA discovery and annotation

The common strategy for the discovery of mature miRNA
sequences within a set of small RNA reads derived from a deep
sequencing experiment, is based on read alignment to a reference
genome followed by filtering of alignments according to several
criteria (Berezikov et al., 2006; Friedlander et al., 2008). Since
in the case of the Chinese hamster no genomic sequences are
publicly available, an alternative strategy for the discovery and
correct annotation of conserved miRNAs was developed (Fig. 1a):
first, as a substitute for a hamster genome, an “artificial” refer-
ence sequence was generated by concatenating the entire set of
miRNA hairpin sequences available in miRBase (Griffiths-Jones
et al., 2008) into a 1.6 Mb sequence (termed comprehensive miRNA
hairpin reference, CMR) and creating a corresponding GenBank file
(available as supplemental data 1). The CMR then served as a ref-
erence for the alignment of unique sequencing reads using the
SARUMAN software, which was developed as a GPU-supported
short-read mapping approach that guarantees to find all possi-
ble alignments under a given error tolerance of 3 mismatches or
insertions/deletions (Blom et al., 2011). Alignments for all hairpins
were visualized using VAMP (developed at the Center for Biotech-
nology in Bielefeld, Germany), resulting in short read alignment
patterns harboring the known characteristics of mature miRNAs:
reads corresponding to the mature ∼22 nt long form of miRNAs,
align in non-overlapping blocks to either the 5′ or 3′ arm of a
hairpin reference or adjacent regions (Fig. 1b and c), for which
Langenberger et al. recently introduced the name microRNA-offset
RNAs (Langenberger et al., 2009a). Another typical feature of miR-
NAs is the occurrence of numerous miRNA isoforms, which are
characterized by uniform 5′ termini and variations at the 3′ ter-
mini. Kuchenbauer et al. have introduced the term “isomiR” for
these sequences and reasoned their existence as a consequence
of variable enzymatic cleavage sites (Kuchenbauer et al., 2008).
The presence of isomiRs, and the average miRNA read length of
∼22 nucleotides together with a characteristic distribution of read
frequency over read length (Fig. 2a), suggested a successful enrich-
ment of mature miRNAs in all libraries.

For miRNA annotation, all isomiRs mapping to the same position
within a hairpin were grouped and subsequently represented by
the most abundant sequence read (Fig. 1a), which conforms to the
current understanding that a heterogenous 3′ terminus should not
affect miRNA target recognition (Bartel, 2009). Names were then
given following the established workflow (Griffiths-Jones et al.,
2006) by using the prefix cgr for Cricetulus griseus, the species name
of the Chinese hamster, the miRNA name and suffixes of “-5p”,
“-3p” according to the exact alignment position relative to the hair-
pin (Ambros et al., 2003; Griffiths-Jones et al., 2006). In total, 235
canonical miRNA hairpin sequences were mapped by at least 5
small RNA reads with no more than 3 mismatches. Of these 235
hairpins, (i) 130 were mapped at both the 5′ and 3′ duplex position
while (ii) 105 hairpins were either mapped at the 5′ or 3′ duplex
position (Fig. 2b), thus, adding up to a total of 365 highly conserved
mature miRNA sequences (Table 2).

We refrained from introducing annotations as “mature” and
“star” miRNAs for conserved Chinese hamster miRNAs, as this
nomenclature would be arbitrary at this stage where only the
epithelial ovary cells of this organism have been sequenced. Nev-

ertheless, the ratio of miRNA read counts showed that for 68 out
of 130 hairpins with both duplex positions mapped, a strong bias
to either the 5′ mature miRNA or 3′ mature miRNA exists by using
an arbitrary ratio cut-off of 20:1 (Fig. 2b). Assuming an annotation
as miR/miR* for miRNA pairs with high ratios, and of “5p/3p” for
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Table 1
Chinese hamster ovary cell lines and culture conditions.

# Library ID Cell line ID Description Culture condition
at total RNA
harvest

Cell line collection References

1 K1 fcs CHO-K1 fcs Host/5% serum/adherent Exponential phase ECACC CCL 61 Tjio and Puck (1958)
2 K1 sf CHO-K1 sf Host/serum-free/suspension Exponential phase ECACC CCL 61 Hernandez-Bort et al. (2010)
3 K1 rec CHO-K1 (GS) Recombinant/serum-free/suspension Exponential phase ECACC 85051005 Jeffs et al. (2006)
4 DXB11 fcs DUXB11 fcs Host/5% serum/adherent Exponential phase ATCC CRL-9096 Urlaub and Chasin (1980)
5 DXB11 sf DUXB11 sf Host/serum-free/suspension Exponential phase ATCC CRL-9096 Lattenmayer et al. (2007)
6 DXB11 rec EpoFc 14F2 Recombinant/serum-free/suspension Exponential phase ATCC CRL-9096 Lattenmayer et al. (2007)
7.1 Pool CHO-K1 sf Host/serum-free/suspension heat shock (42 ◦C) ECACC CCL 61 See above
7.2 Pool DUKXB11 fcs Host/5% serum/adherent Cold shock (33 ◦C) ATCC CRL-9096 See above
7.3 Pool EpoFc 14F2 Recombinant/serum-free/suspension Heat shock (42 ◦C) ATCC CRL-9096 See above
7.4 Pool CHO-K1 (GS) Recombinant/serum-free/suspension cold shock (33 ◦C) ECACC 85051005 See above
7.5 Pool CHO-K1 fcs Host/5% serum/adherent Late stationary

phase
ECACC CCL 61 See above

7.6 Pool DUKXB11 sf Host/serum-free/suspension late stationary
phase

ATCC CRL-9096 See above

7.7 Pool EpoFc 14F2 Recombinant/serum-free/suspension Late stationary
phase

ATCC CRL-9096 See above

7.8 Pool DUKXB11 sf Host/serum-free/suspension NaBu (2 mM 48 h) ATCC CRL-9096 See above
7.9 Pool EpoFc 14F2 Recombinant/serum-free/suspension NaBu (2 mM 48 h) ATCC CRL-9096 See above

sf, serum free; fcs, fetal calf serum; rec, recombinant; NaBu, sodium butyrate; GS, glutamine synthase selection system.

Table 2
Numbers of conserved Chinese hamster ovary miRNAs.

Pool K1 fcs DXB11 fcs K1 sf DXB11 sf K1 rec DXB11 rec Total

Total number of conserved miRNA hairpins 195 197 194 195 184 208 188 235
(i) Both hairpin-arms mapped 119 123 122 119 118 121 119 130
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(ii) Single hairpin-arm mapped 76 74
Total number of conserved mature miRNAs 311 317
Conserved mature miRNAs with perfect match to miRBase 178 178
Cell line/culture condition specific microRNAs 2 5

airs with equal abundances, 16 pairs would have been annotated
ifferently than their conserved mouse orthologs in miRBase. This
hows that a mere BLAST alignment of sequence reads to mature or
tar sequences stored in miRBase for the identification of conserved
iRNAs is likely to result in imprecise annotations. In addition, the

nding that 4 hairpins were mapped at a hairpin-arm (either 5′

r 3′), where no mature miRNA had yet been observed according
o miRBase, suggests the presence of 4 so far unknown conserved

ature miRNAs in CHO cells (Table 3), and underlines the effec-
iveness of the presented strategy.

In terms of sequence identity, 224 out of the entire 365 CHO miR-
As aligned perfectly to homologous hairpin sequences in miRBase,
ith most perfect matches (82%) occurring to human, rat or mouse
iRNAs (Fig. 2c). Of the remaining 18% (41 CHO miRNAs) that did

ot match miRNAs in these three species, the majority mapped to
ow, platypus, or chicken miRNAs.

.3. Identification of non-coding RNAs and prediction of novel
HO microRNAs
The alignment patterns obtained from mapping short RNA reads
o the comprehensive miRNA hairpin reference were further used
or the discrimination between several classes of small non-coding
NAs (ncRNAs) (Langenberger et al., 2009b) by filtering for hairpins

able 3
onserved hairpins give rise to previously unknown mature miRNAs.

Hairpin ID miRBase
accession

Hairpin length Pos. of
annotated
mature miRNA

Ali
of
rea

mmu-mir-1903 MI0008317 80 11–32 51
mmu-mir-1935 MI0009924 60 8–29 34
mmu-mir-1944 MI0009933 74 40–66 5
mmu-mir-702 MI0004686 109 88–108 10
72 76 66 87 69 105
312 311 299 327 304 365
176 171 166 183 170 224

5 0 2 10 1 25

exhibiting alignment patterns clearly deviating from the typical
miRNA alignment pattern (Langenberger et al., 2009a, 2009b). This
way, 17 miRNA hairpin sequences were identified in miRBase ver-
sion 14.0 that, at least for CHO cells, are likely to be of a non-miRNA
origin (Supp. Fig. 1) and of which 7 still represent valid entries in
miRBase v16.0 (ClustalW alignments of these reads to the respec-
tive hairpin sequences are available in supplemental data 2) while
10 have been experimentally verified as ncRNAs and were conse-
quently removed in miRBase version 16 (Table 4).

For the prediction of novel miRNAs from reads not mapping to
the comprehensive hairpin genome, an initial BLAST alignment to
ncRNAs in Rfam (Gardner et al., 2009), RNAdb (Pang et al., 2007) and
rodent repetitive elements in Repbase v15 repository (Jurka et al.,
2005) was performed (Supp. Fig. 2). In the absence of a hamster
genome sequence, all unique reads that failed to map either known
miRNAs or non-coding RNAs (referred to as “unknown” reads) were
aligned to the mouse genome using segemehl (Hoffmann et al.,
2009). In order to unmask putative novel miRNAs within a total
of 1 million unique aligned reads, several important characteris-

tics of canonical miRNAs had to be fulfilled (Berezikov et al., 2006).
First, read alignments were combined into clusters of adjacent
blocks using blockbuster (Langenberger et al., 2009a). These clus-
ters were then filtered for clusters consisting of non-overlapping
blocks with a uniform 5′ terminus using a support vector machine

gnment pos.
CHO miRNA
d

CHO mature miRNA sequence CHO mature miRNA ID

–68 CUGGAAGAGGAACAAGUG cgr-miR-1903-3p
–54 UCGAGGCCAGCCUGGACUACAC cgr-miR-1935-3p
–27 CACAAAUGAUGAACCUUCUGACG cgr-miR-1944-5p
–30 GUGAGUGGGGUGGUUGGCAUG cgr-miR-702-5p
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Fig. 3. Prediction of novel miRNAs. Several criteria were defined for the identification of novel miRNA genes and are exemplarily shown for novel miRNA candidate IV:
(a) previously reported descriptors were used in blockbuster (Langenberger et al., 2009b; van der Burgt et al., 2009) to identify genomic loci with miRNA-like alignment
patterns such as “sharp” blocks with uniform 5′ termini and coverage of both hairpin-arms. (b) RNAfold was used for prediction of RNA secondary structures of these genomic
regions. Sequences that did not fold in silico into miRNA hairpin-like structures were filtered and discarded. The remaining sequences between 40 and 170 nucleotides in
length were sorted according to their genomic location (c). Short read sequences located in intergenic regions were subjected to a support vector machine that was trained
to identify Dicer cleaved duplexes at a 90% recall rate. These were manually screened to identify 11 putative novel miRNAs, which are listed in table-format (d) giving the
mouse genomic location of the cluster as well as locations of the most abundant 5′ and 3′ reads.
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Fig. 4. miRNA transcription provides information on the cellular state of CHO cell lines. (a) Cartoon depicting the biological relationship of sequenced CHO cell lines. (b)
Unsupervised hierarchical clustering of CHO cell lines according to their miRNA transcription profiles identified 3 nodes, corresponding to serum-dependent K1 and DXB11
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ell lines (1), serum-free adapted host and recombinant K1 cell lines (2), and seru
iRNA expression matrix consisting of 6 samples (CHO cell lines) and 365 variable

rincipal components were retrieved, and biplot graphs were chosen for their illust

Fig. 3a). Second, mouse genomic sequences of these clusters were
etrieved from UCSC genome browser (Rhead et al., 2010) and fil-
ered for lengths between 40 and 170 basepairs. Third, sequences
f all 14,000 clusters that fulfilled criteria (1) and (2) were folded in
ilico using RNAfold (Hofacker and Stadler, 2006), to check whether
NA transcripts from these genomic locations are likely to exhibit
airpin-like structures (Fig. 3b). This was true for 1435 clusters of
hich 1164 were located in genomic repeat regions, 149 in protein

oding regions and 122 clusters in intergenic regions that were
hosen for further analysis (Fig. 3c) to check whether the short
eads aligning to these regions resembled features characteristic to
icer cleavage. Therefore a support vector machine was trained on
nown miR/miR* pairs using published descriptors (van der Burgt
t al., 2009) to identify double strand Dicer cleavage products at a
0% recall rate. When subjected to this SVM, putative miR/miR*
eads of 11 out of 122 intergenic clusters were found to form
uplexes that had all features of known Dicer cleaved duplexes
nd are consequently proposed as novel miRNAs (Fig. 3d).
.4. Quantitative analysis of miRNA transcription in CHO cell lines

For a quantitative analysis of conserved miRNA expression in
HO cell lines, miRNA read counts that ranged from <10 to >100,000
Supp. Fig. 3a) were normalized and log10 transformed according to
e host and recombinant DUXB11 cell lines (3). Principal component analysis of a
served miRNAs) was centered and used for singular value decomposition using R.
as PC1 versus PC2 (c) and PC2 versus PC3 (d).

previous reports (Glazov et al., 2008), resulting in a uniform distri-
bution of miRNA read counts throughout all cell lines (Supporting
Fig. 3b). In order to visualize similarities in miRNA transcription lev-
els between all 6 sequenced CHO cell lines, which can be linked in
a genealogical tree (Fig. 4a), the normalized and log10-transformed
read counts were of all miRNAs were used for unsupervised hier-
archical clustering analysis. The results clearly show that CHO cells
grown in the presence of serum (node 1, Fig. 4b) cluster together,
as well as serum-free adapted cell lines of the K1 and DXB11
subtype (nodes 2 and 3, Fig. 4b) indicating pronounced changes
in miRNA transcription upon removal of serum from the culti-
vation media. The very similar transcription patterns in K1 fcs
and DXB11 fcs are remarkable, since the dihydrofolate reductase
(DHFR) negative DXB11 cells were established from K1 cells by
strong mutagenesis, suggesting that the inclusion of fetal calf serum
in the cultivation media strongly determines miRNA transcription.
To further explore the variance of miRNA transcription in CHO cell
lines, we applied principal component analysis (PCA) to the miRNA
expression matrix consisting of 6 cell lines and 365 canonical con-

served miRNAs. The uncorrelated principal components 1, 2, and
3 were sufficient to explain 84% of the observed variability, and
were visualized as 2D-biplots (Fig. 4c and d). The relative positions
of CHO cell lines in these 2D-biplots indicate again a consider-
able distance between serum-dependent and serum-free cell lines,
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Table 4
miRNA hairpins with short read alignment patterns that resemble non-coding RNAs.

Hairpin ID miRBase Accession miRBase Status

mmu-mir-685 MI0004649 removed in miRBase v15
mmu-mir-1935 MI0009924 still present*

mmu-mir-1957 MI0009954 still present*

hsa-mir-1973 MI0009983 still present*

mmu-mir-2133-1 MI0010738 removed in miRBase v16
mmu-mir-2133-2 MI0010739 removed in miRBase v16
mmu-mir-2134-1 MI0010740 removed in miRBase v16
mmu-mir-2134-2 MI0010741 removed in miRBase v16
mmu-mir-2134-3 MI0010742 removed in miRBase v16
mmu-mir-2134-4 MI0010743 removed in miRBase v16
mmu-mir-2134-5 MI0013182 removed in miRBase v16
mmu-mir-2134-6 MI0013183 removed in miRBase v16
mmu-mir-2135-1 MI0010744 removed in miRBase v16
mmu-mir-2135-4 MI0010745 removed in miRBase v16
mmu-mir-2135-5 MI0010746 removed in miRBase v16
mmu-mir-2135-2 MI0010747 removed in miRBase v16
mmu-mir-2135-3 MI0010748 removed in miRBase v16
mmu-mir-2140 MI0010753 removed in miRBase v16
mmu-mir-2141 MI0010754 removed in miRBase v16
mmu-mir-2142 MI0010755 removed in miRBase v15
mmu-mir-2143-1 MI0010756 removed in miRBase v15
mmu-mir-2143-2 MI0010757 removed in miRBase v15
mmu-mir-2143-3 MI0010758 removed in miRBase v15
mmu-mir-2144 MI0010759 removed in miRBase v15
mmu-mir-2145-1 MI0010760 still present*

mmu-mir-2145-2 MI0010761 still present*

mmu-mir-2146 MI0010762 removed in miRBase v16
mmu-mir-690 MI0004658 still present*

mmu-mir-709 MI0004693 still present*
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cate that a fast and good adaption to serum-free growth might in
mmu-mir-712 MI0004696 still present*

* In miRBase v16.

ut also significant variation between host and recombinant cell
ines.

Consequently, we first tested for differentially transcribed
iRNAs (one-way ANOVA, p < 0.05) between serum-dependent

nd serum-free adapted cells, and found that 17 miRNAs were
epressed in serum-free adapted cell lines, while only one miRNA
as found overexpressed (Fig. 5a). Among the repressed miRNAs,

gr-miR-31-5p exhibited the strongest repression with log2 fold
eduction of −2.54 (83% repression), followed by cgr-miR-149-5p
nd miR-221-3p with a −2.45 (82%) and −1.88 (73%) log2 fold
eduction, respectively (Supp. Table 2). In the case of mir-221, the
trong repression under serum-free growth was accompanied by a
witch in the preferred hairpin-arm from 3′ to 5′, which, however,
as restored in the recombinant serum-free cell lines (Fig. 5b). Sec-

ndly, miRNA transcription was compared between recombinant
nd serum-free cell lines using one-way ANOVA statistics, which
evealed that cgr-miR-21-5p is strongly repressed in recombinant
ell lines (Fig. 5c), while 7 other miRNAs are overexpressed in both
ecombinant CHO cell lines (Supp. Table 2). Quantitative PCR anal-
sis of 10 significantly regulated miRNAs taken from both contrasts
howed good correlation with sequencing data (Pearson = 0.89),
nd supports that biotechnologically relevant cell variations can be
ifferentiated by transcriptional profiling of a small set of marker
iRNAs (Fig. 5d).
The degree of conservation of miRNA target sites in CHO mes-

enger RNAs (mRNAs) was evaluated by sequencing the CHO
omologs of 26 validated targets of miR-17-92, and aligning the
esulting CHO contigs (supplied in supplemental data 3) to the
omologous mouse cDNA sequences. For 19 out of 26 mRNA tar-
ets, the TargetScan (www.targetscan.org) predicted binding sites
f miR-17-92 (Friedman et al., 2009) were identified in our CHO

DNA sequences and found to be highly conserved, with 8mer
nd 7mer-m8 seed regions being perfectly conserved throughout
Table 5).
nology 153 (2011) 62–75

4. Discussion

In order to follow up our hypothesis that miRNAs play a crucial
role in the regulation of biological processes in CHO cells (Müller
et al., 2008), we have identified 235 conserved as well as 11 novel
miRNA genes, provided proof-of-principle that CHO miRNAs are
subject to regulation in biotechnologically relevant cellular states
and provided experimental evidence that conserved miRNAs are
likely to have a conserved function, by sequencing miRNA binding
sites in CHO orthologs of 26 validated target mRNAs of miR-17-92.

The presented strategy of conserved miRNA identification can
be universally applied to any organism without published genome
sequence data. Compared to BLAST alignments to mature and
star miRNA sequences (Johnson et al., 2010), the use of hairpin
sequences as reference allows for a more precise annotation of
conserved miRNAs, since the calculation of a 5p/3p read count
ratio prevents from inheriting potentially erroneous denotations as
“mature” and “star” from homologous miRNAs in related species.
Moreover, short read alignment patterns to the hairpin references
contain information on the nature of non-coding RNAs so that
the chances of misinterpretations of non-coding RNAs as mature
miRNAs can be reduced. This, together with the newly available
option of including deep sequencing data in miRBase (Kozomara
and Griffiths-Jones, 2010) will improve the identification and anno-
tation of process of miRNAs in species with incomplete genomic
sequence information.

The question how many miRNAs remain to be identified in
epithelial derived Chinese hamster ovary cells, is difficult to answer.
In the light of the well-known tissue-specificity of miRNA expres-
sion, however, we expect the number of miRNAs in CHO cells will
be below those identified in closely related species such as mouse
or rat where a variety of tissues and cell lines have been sequenced.
Therefore, taken into account that a recent study reported 312
conserved miRNA genes in mouse (Chiang et al., 2010), the 235 con-
fidently identified conserved miRNA genes are likely to represent
the majority of functionally relevant miRNAs in CHO cells. The num-
ber of additional CHO specific miRNAs is even harder to estimate
as long as the genomic sequence is missing. Nevertheless, by using
the mouse genome assembly as reference, our presented strategy
of novel miRNA prediction resulted in 11 candidates that resem-
ble all currently expected miRNA characteristics (Ambros et al.,
2003; Berezikov et al., 2006), and might represent a fraction of novel
rodent specific miRNAs. While the functional relevance of these low
abundant, novel and species specific miRNAs remains to be eluci-
dated, we could show that the transcription of conserved miRNAs in
CHO cells is differentially regulated in biotechnologically relevant
stages of CHO cell line development. Statistical analysis identified
18 miRNAs to be consistently regulated upon adaption to serum-
free and non-adherent growth, which included several hamster
orthologs of well characterized miRNAs, such as miR-31, miR-221-
3p, or miR-92a that have been linked to the regulation of cell
proliferation (Creighton et al., 2010), to apoptosis (Dai et al., 2010),
tumor development (Ivanov et al., 2010), and to aging (Grillari et al.,
2010). The switch in the preferred hairpin-arm of mir-221, a phe-
nomenon so far only observed across different tissues (Chiang et al.,
2010), shows that miRNA expression in CHO cells is highly respon-
sive to culture conditions. From a biotechnological perspective this
is of interest, since serum-free growth was shown to result in
decreased proliferation capacities and apoptosis resistance (Zanghi
et al., 1999) and might negatively impact the production and quality
of recombinant proteins (Lefloch et al., 2006). Hence, our data indi-
part be influenced by miRNA expression, especially since the over-
expression of two prominent miRNA targets, BCL-2 and CDKN1A,
has been shown to shorten the duration of this process (Astley and
Al-Rubeai, 2008). The experimental verification, whether overex-

http://www.targetscan.org/
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Fig. 5. Analysis of differential miRNA transcription in CHO cell lines. (a) Differential expression analysis for the contrast serum-free versus serum-dependent (one-way
ANOVA, p ≤ 0.05) was performed considering only miRNAs with read counts > 500. Log2 fold changes of 18 significantly regulated miRNAs are depicted in a bubble plot,
where miRNAs are sorted according to mean expression levels, represented by the bubble size. (b) The significant reduction of miR-221-3p in serum-free adapted cells was
accompanied by an overall switch of the ratio of 5′ and 3′ mature miRNA levels originating from mir-221 from positive to negative, wich was restored again in recombinant
cell lines. (c) Differential expression analysis of miRNAs between recombinant and serum-free CHO host-cells (one-way ANOVA, p < 0.05, read count > 500) identified 8
significantly regulated miRNAs. (d) Six out of 18 miRNAs that were found regulated between serum-free and serum-dependent growth, and 4 miRNAs that were found
regulated in recombinant versus host cells were chosen for qPCR validation. Log2 transformed fold changes for both contrasts are given as bar chart, where black bars
represent log2 fold changes as determined by sequencing and grey bars as determined by quantitative PCR.
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Table 5
miR-17-92 target regions are commonly conserved in Chinese hamster ovary cells.

No. Gene symbol RefSeq accession miR-
17-92
seed
family

Seed pos. in
mouse 3’
UTR

Seed
pairing
Type

pCT score Alignment Percentage
identity

1 APP NM 007471.2 miR-17
family

726–732 7mer-
m8

0.60

mmu_APP ATCCCTGTTCATCATAAGCACTTT
||||||||||||| | ||||||||

cgr_APP ATCCCTGTTCATCGTCAGCACTTT
91.0

2 BCL2L11 (Bim) NM 207680.2 miR-17
family

2107–2113 8mer 0.93
mmu_BCL2L11 GTCTCCCCGACTGGAGCACTTTA
cgr_BCL2L11 target site not found n/a

3 CCND1 NM 007631.2 miR-17
family

925–931 7mer-
m8

0.87

mmu_CCND1 CATTCCATTTCAAAGCACTTT
|||||||||||||||||||||

cgr_CCND1 CATTCCATTTCAAAGCACTTT
100.0

4 CDKN1A (p21) NM 007669.3 miR-17
family

436–442 7mer-
m8

0.85
mmu_CDKN1A CCTCAGACCTGAATAGCACTTTG 
cgr_CDKN1A target site not found n/a

5 CTGF NM 010217.1 miR-18
family

1023–1029 7mer-
m8

0.39

mmu_CTGF AAAAGTTACATGTTTGCACCTTT
|||||||||||||||||||||||

cgr_CTGF AAAAGTTACATGTTTGCACCTTT
100.0

6 E2F1 NM 007891.2 miR-17
family

469–475 7mer-
m8

0.59

mmu_E2F1 GGGTGGGC-TCTAACTGCACTTTT
|||||||  ||||||||||||||| 

cgr_E2F1 GGGTGGGGCTCTAACTGCACTTTT

mmu_E2F1 CCCACCCTCCAGTCTGCACTTTG
cgr_E2F1 target site not found

91.7

E2F1 NM 007891.2 miR-17
family

984–990 7mer-
m8

0.77 n/a

7 GAB1 NM 021356.2 miR-17
family

263–269 7mer-
m8

0.68
mmu_GAB1 TATTACTATACTGATGCACTTTT
cgr_GAB1 target site not found n/a

8 HIF-1� NM 010431.1 miR-17
family

975–981 7mer-
m8

0.36

mmu_HIF-1α GATGTTTGGTTTTATGCACTTTG
|||||||||||| ||||||||||

cgr_HIF-1α GATGTTTGGTTT-ATGCACTTTG

mmu_HIF-1α AGTGTCATTTAAAATGCACCTTT
|||||||||||||||||||||||

cgr_HIF-1α AGTGTCATTTAAAATGCACCTTT

95.0

HIF-1� NM 010431.1 miR-18
family

304–310 7mer-
m8

0.51 100.0

9 HIPK3 NM 005734.3 miR-25
family

118–124 7mer-
m8

0.73

mmu_HIPK3 ATCATGTAGACTTGGGTGCAATT
|||||||||||||||||||||||

cgr_HIPK3 ATCATGTAGACTTGGGTGCAATT
100.0

HIPK3 NM 005734.3 miR-19
family

165–171 8mer 0.79
mmu_HIPK3 TCACTTTTAATGTGTTTTGCACA
cgr_HIPK3 miR-19 target site not found n/a

10 IRF1 NM 008390.1 miR-17
family

584–590 7mer-
m8

0.44

mmu_IRF1 CAGGAAAAAAAAATGGCACTTTC
|||||||||||||||||||||||

cgr_IRF1 CAGGAAAAAAAAATGGCACTTTC
100.0

11 ITCH NM 008395.2 miR-17
family

1102–1108 7mer-
m8

0.74
mmu_ITCH TAGTAACTGATGAATGCACTTTG
cgr_ITCH target site not found n/a

12 MAPK9 NM 016961.2 miR-17
family

361–367 7mer-
m8

< 0.1

mmu_MAPK9 GAACTTGCCCATGTAGCACTTTG
||||||  |||||||||||||||

cgr_MAPK9 GAACTTA-CCATGTAGCACTTTG
95.0

13 MAPK14 NM 011951.2 miR-19
family

1819–1825 8mer 0.39
mmu_MAPK14 TTCATTGAAGACATCTTTGCACA
cgr_MAPK14 target site not found n/a

14 MYLIP NM 153789.3 miR-25
family

1200–1206 8mer 0.96

mmu_MYLIP AGCTGACCTCATCGGGTGCAATA
|||||||||||| ||||||||||

cgr_MYLIP AGCTGACCTCATTGGGTGCAATA

mmu_MYLIP TTATGCATTTGTTTCTTTGCACA
||||||||||||||||||||||| 

cgr_MYLIP TTATGCATTTGTTTCTTTGCACA

95.0

MYLIP NM 153789.3 miR-19
family

1314–1320 8mer 0.90 100.0

15 NCOA3 NM 008679.2 miR-17
family

588–594 8mer 0.95

mmu_NCOA3 AATGTGCAGCCAAGCGCACTTTA
|||||||||||||| ||||||||

cgr_NCOA3 AATGTGCAGCCAAGTGCACTTTA
95.0
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Table 5 (Continued)

No. Gene symbol RefSeq accession miR-
17-92
seed
family

Seed pos. in
mouse 3’
UTR

Seed
pairing
Type

pCT score Alignment Percentage
identity

16 PKD1. PKD2 NM 013630.2 miR-17
family

192–198 8mer 0.90

mmu_PKD1 ACATATGGGGCTTCTGCACTTTA
| ||| ||||||| ||||||||

cgr_PKD1 GCCTAT-GGGCTTCAGCACTTTA
82.6

17 PTEN NM 008960.2 miR-19
family

1236–1242 8mer 0.58

mmu_PTEN AATGAGTTTTGCAGTTTTGCACA
|||||||||||||||||||||||

cgr_PTEN AATGAGTTTTGCAGTTTTGCACA
100.0

18 RB1 NM 009029.1 miR-17
family

844–850 7mer-
m8

0.31

mmu_RB1 CAGTACAACCCAAGTGCACTTTT
|||||||||||||||||||||| 

cgr_RB1 CAGTACAACCCAAGTGCACTTTC
95.0

19 RB2/p130 NM 011250.2 miR-17
family

598–604 8mer 0.83

mmu_RB2/p130 CCTGTGTAATTGGTGGCACTTTA
||||||||||||||||||||||| 

cgr_RB2/p130 CCTGTGTAATTGGTGGCACTTTA
100.0

20 RUNX1 NM 009821.1 miR-17
family

1748–1756 7mer-
m8

0.88
mmu_RUNX1 TTACATAGAGCAGCAGCACTTTG
cgr_RUNX1 target site not found n/a

21 SOCS-1 NM 009896.2 miR-19
family

293–299 8mer 0.9

mmu_SOCS1 CATATTCCCAGTATCTTTGCACA
||||||||||||||||||||||| 

cgr_SOCS1 CATATTCCCAGTATCTTTGCACA
100.0

22 STAT3 NM 213659.2 miR-17
family

156–162 7mer-
m8

0.56

mmu_STAT3 CTTTGGGCAATCTGGGCACTTTT
||||| ||||||||||||||||| 

cgr_STAT3 CTTTGAGCAATCTGGGCACTTTT
96.0

23 TGFBR2 NM 009371.2 miR-17
family

298–304 8mer 0.96

mmu_TGFBR2 GCCAATAACGTTTGCACTTTA
||||||||| |||||||||||

cgr_TGFBR2 GCCAATAACATTTGCACTTTA
95.0

24 THBS1 NM 011580.3 miR-19
family

1840–1846 7mer-
1A

0.36
mmu_THBS1 TCTGGTTTTTATATGTTGCACAC
cgr_THBS1 target site not found n/a

25 TSG101 NM 021884.3 miR-17
family

170–176 7mer-
m8

< 0.1

mmu_TSG101 CTGGCTTTTATTAATGCACTTTC
|||||||||||||||||||||||

cgr_TSG101 CTGGCTTTTATTAATGCACTTTC
100.0

0.87

p
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m
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n

26 VEGFA NM 001025250.2 miR-17
family

109–115 7mer-
m8

ression of miRNAs that are repressed in serum-free adapted cell
ines can restore some of the growth characteristics observed for
HO cells grown in the presence of serum is currently ongoing.
f further interest from a biotechnological perspective are miRNA

ranscription signatures that are specific to recombinant protein
roducing CHO cell lines, as these clonal cell lines are the result
f gene amplification (Lattenmayer et al., 2007) and selection of
lones with high specific recombinant protein production. Hence,
he differential regulation of cgr-miR-21 in recombinant CHO cells
s of high interest, not least, since human miR-21 is known to
lay an important role the regulation of cell growth and apoptosis
Krichevsky and Gabriely, 2009). The 4-fold (75%) repression of cgr-

iR-21 in optimized recombinant cells as identified in this study,
ogether with the upregulation observed in batch cultivations upon
emperature shift from 37 ◦C to 31–33 ◦C (Gammell et al., 2007),
hich is accompanied by growth arrest and increased specific pro-
uctivity, leads us to conclude that miR-21 could be an attractive
arget for engineering in CHO cells (“engimiR”).

The specific genes and pathways, which are controlled by these
iRNAs in CHO cells can currently only be predicted based on their

referential conservation in other mammalian species (Friedman

t al., 2009). By sequencing the cDNA of 26 validated mRNA targets
f miR-17-92 in CHO cells we were able to identify the conserved
arget sites in 19 of these cDNAs, which supports that the targets,
nd therefore also the functions, of miRNAs are conserved in Chi-
ese hamster. However, for 7 validated targets of miR-17-92 the
mmu_VEGFA GAGACTCTTCGAGGAGCACTTTG
|||||||||||||||||||||||

cgr_VEGFA GAGACTCTTCGAGGAGCACTTTG
100.0

predicted miRNA binding sites could not be detected. This absence
can be of technical (incomplete sequencing coverage) or biolog-
ical nature, since it is known that certain genes, for example in
human cancer cell lines, have evaded miRNA control by altering
their 3′UTR structures using alternative polyadenylation sites or
alternative cleavage (Mayr and Bartel, 2009).

This study has now provided the basis for establishing miRNAs
as relevant tools in CHO cell line development by identifying and
giving precise annotations to conserved and novel CHO miRNAs, so
that conservation based approaches for their target prediction can
be used reliably in the absence of genomic sequence information of
the Chinese hamster. Nevertheless, the public availability of CHO
sequence information is of utmost importance in order to improve
these tools and consequently miRNA research in Chinese hamster.
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