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h i g h l i g h t s

• We apply (q1, q2)-deformation algebra of Fibonacci oscillators to Landau diamagnetism.
• We investigate the q-deformed magnetization and magnetic susceptibility.
• The results revealed that q-deformation acts as a factor of impurity.
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a b s t r a c t

We address the issue of the Landau diamagnetism problem via q-deformed algebra
of Fibonacci oscillators through its generalized sequence of two real and independent
deformation parameters q1 and q2. We obtain q-deformed thermodynamic quantities such
as internal energy, number of particles, magnetization and magnetic susceptibility which
recover their usual form in the degenerate limit q21 + q22 = 1.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Landau diamagnetism problem continues to play a role in several issues of many physical systems and has strong
relevance today [1–5]. The diamagnetism can be used as an illustrative phenomenon that plays essential role in quantum
mechanics on the surface, the perimeter, and the dissipation of statistical mechanics of non-equilibrium.

In this paper,we are interested in investigating this phenomenon in q-deformed algebra in order to understand impurities
effects in, for example, magnetization and susceptibility. The magnetic susceptibility is an intrinsic characteristic of a
material and its identity is related to the atomic and molecular structure. In Ref. [6] it was performed the calculation of
susceptibility for electrons moving in a uniform external magnetic field, developing Landau diamagnetism, by applying the
nonextensive Tsallis statistics [7–10], which is a strong candidate for solving problemswhere the standard thermodynamics
is not applicable — see also Ref. [11] for a similar study using another method. Of course, other noncommutative
deformations can be applied, for example q-deformation via Jackson derivative (JD) [12].

The study of quantum groups and quantum algebras has attracted great interest in recent years, stimulated intense
research in various fields of physics [13,14], taking into account a range of applications, covering cosmology and condensed
matter, e.g. black holes, fractional quantum Hall effect, high-temperature (high-Tc) superconductors [15], rational field
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theories, noncommutative geometry, quantum theory of super-algebras and so on [16]. Furthermore, statistical and
thermodynamic properties by studying q-deformed physical systems have been intensively investigated in the literature
[17–31].

Another important discussion is about the main reasons to consider two deformation parameters in some different
physical applications. Starting from the generalization of the q-algebra [32], in Ref. [33] it was generalized the Fibonacci
sequence, which is a well-known linear combination where the third number is the sum of two predecessors and so on.
Here, the numbers are in that sequence of generalized Fibonacci oscillators, where new parameters (q1, q2) are introduced
[33–35]. They provide a unification of quantum oscillators with quantum groups, keeping the degeneration property of the
spectrum invariant under the symmetries of the quantum group. The quantum algebra with two deformation parameters
may have a greater flexibility when it comes to application in the concrete phenomenological physical models [36,37], and
may increase interest in physical applications.

The paper is organized as follows. In Section 2we introduce the q-deformed algebra. In Section 3we develop the (q1, q2)-
deformed Landau diamagnetism problem and in Section 4 we make our final comments.

2. Fibonacci oscillators algebra

We consider a system of generalized oscillators now entering two parameters in statistical distribution function, whose
energy spectrum may be determined by Fibonacci’s generalized sequence [33–35]. This will establish a statistical system
depending on the deformation parameters (q1, q2), allowing us to calculate the thermodynamic quantities in the limit of
high temperatures.

The q-deformed quantum oscillator is now defined by the Heisenberg algebra in terms the annihilation and creation
operators in c, cĎ, respectively, and the number operator N [19,35], as follows:

cic
Ď
i − Kq21c

Ď
i ci = q2ni2 e cic

Ď
i − Kq22c

Ď
i ci = q2ni1 , (1)

[N, cĎ] = cĎ, [N, c] = −c, (2)

where K = ±1, stands for bosons and fermions, respectively. In addition, the operators also obey the relations

cĎc = [N], ccĎ = [1 + KN], (3)

[1 + Kni,q1,q2 ] = Kq21[ni] + q2ni2 , or [1 + Kni,q1,q2 ] = Kq22[ni] + q2ni1 . (4)

The Fibonacci basic number is defined as [33]

[ni,q1,q2 ] = cĎi ci =
q2ni2 − q2ni1

q22 − q21
, (5)

The q-Fock space spanned by the orthonormalized eigenstates |n⟩ is constructed according to

|n⟩ =
(cĎ)n
√

[n]!
|0⟩, c|0⟩ = 0, (6)

The actions of c e cĎ and N on the states |n⟩ in the q-Fock space are known to be

cĎ|n⟩ = [n + 1]1/2|n + 1⟩, (7)

c|n⟩ = [n]1/2|n − 1⟩, (8)
N|n⟩ = n|n⟩. (9)

To calculate the q-deformation statistical occupation number, we begin with the Hamiltonian of q-deformed noninteracting
oscillators (bosons or fermions) [16],

Hq1,q2 =


i

(ϵi − µq1,q2)Ni, (10)

where µq1,q2 is the (q1, q2)-deformed chemical potential. It should be noted that this Hamiltonian is a two-parameter
deformed Hamiltonian and depends implicitly on the deformation parameters q1 and q2, since the number operator is
deformed via Eq. (5).

The mean value of the (q1, q2)-deformed occupation number can be calculated by

[ni] ≡ ⟨[ni]⟩ =
tr(exp(−βH)cĎi ci)

Ξ
, (11)

[ni,q1,q2 ] =
z ′


exp(βϵi) − z ′


exp(βϵi) − q22z ′

 
exp(βϵi) − q21z ′

 , (12)
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where zq1,q2 = exp(βµq1,q2) is the fugacity of the system, and we shall use the notation zq1,q2 = z ′. When q1 = q2 = 1, we
find the usual form

ni =
1

z−1 exp(βϵi) − 1
. (13)

In the present application of the Fibonacci oscillators, we are interested in obtaining new (q1, q2)-deformed thermodynamic
quantities such as internal energy, magnetization, and magnetic susceptibility for the high-temperature case, i.e. the limit
(z ≪ 1).

3. Fibonacci oscillators in the Landau diamagnetism

To explain the phenomenon of diamagnetism, we have to take into account the interaction between the external
magnetic field and the orbital motion of electrons. Disregarding the spin, the Hamiltonian of a particle of massm and charge
e in the presence of a magnetic field H is given by the expression [38]

H =
1
2m


p −

e
c
A
2

, (14)

where A is the vector potential associated with the magnetic field H and c is the speed of light in CGS units. Let us start to
formalize the statistical mechanical problem by using the grand partition function with the parameters q1 and q2 inserted
through Eq. (12), in the form

lnΞ = −K
2eHL2

hc

∞
n

L
2π


∞

−∞

dkz
1

(q21 − q22)


ln


1 − Kz ′q21 exp(−βϵ)


(q−2

1 − 1)

+ ln

1 − Kz ′q22 exp(−βϵ)


(1 − q−2

2 )


, (15)

where kz = −∞, . . . ,∞, ϵ =
h̄k2z
2m + h̄ω


n +

1
2


, ω =

eH
mc . However, our study is focused on the analysis of diamagnetism

in the limit of high temperatures (z ′
≪ 1). Thus, performing the sum and integrals, we find the partition function is written

as follows:

lnΞ =
z ′K 2HC1

sinh(γ )
+

z ′2K 3HC2Q
2 sinh(2γ )

, where C1 =
eL3

2πhcλ
, C2 =

eL3

2π
√
2hcλ

(16)

being λ =
h̄

(2πmκBT )
1
2
the thermal wavelength, γ = βµBH and Q = q21 + q22 − 1.

Wenote that Eq. (16) shows the (q1, q2)-deformation in the second term. In the first order does not appear q-deformation.
It appears after considering at least the second order. Notice, however, the case (q1 = q2 = 1), as expected, does recover the
underformed thermodynamic quantities up to a second order correction which are usually disregarded. On the other hand, taking
computation up to second order corrections is necessary to get the effects of the q-deformation and as a consequence only in the
unit circle on the (q1, q2)-space, i.e.,

q21 + q22 = 1 (17)

the deformation ceases. The case in Eq. (17) shows an interesting degeneration on the (q1, q2)-space. Deformations show up
as q21 + q22 < 1 or q21 + q22 > 1. In former case appears the possibility of finding some unexpected negative thermodynamic
quantities such as negative specific heat. In the following we shall consider the latter case to calculate the q-deformed
thermodynamic quantities of interest in the present study.

3.1. (q1, q2)-deformed thermodynamic quantities

We obtain the number of particles N by setting,

N = z ′
∂

∂z ′
lnΞ =

z ′K 2HC1

sinh(γ )
+

z ′2K 3HC2Q
2 sinh(2γ )

. (18)

We determine the internal energy, and we can write it in terms of N , in the form

U = −
∂

∂β
lnΞ =

NµBH

C1 coth(γ ) sinh(2γ ) + z ′KC2 sinh(γ ) coth(2γ )Q


C1 sinh(2γ ) + z ′KC2 sinh(γ )Q

. (19)

In Fig. 1 we have the behavior of internal energy U as a function of the magnetic field H and for some values of q1 and
q2 — see caption. We note that all the curves have different maximum peaks (depending on the values adopted for q1 and
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Fig. 1. (q1, q2)-deformed internal energy as a function of magnetic field H for several choices of q1 and q2 .

q2), for small magnetic field H. The curves exhibit the same behavior asymptotically. We also have proven the symmetry
between the oscillators, i.e. when q1 = 1 and q2 = 2 (black curve) and when q1 = 2 and q2 = 1 (red curve), they overlap.
An expected effect due to the symmetry of q1 and q2 defined in Q .

The grand potential φ is determined as

φ = −
1
β

lnΞ = −


z ′K 2HC1

β sinh(γ )
+

z ′2K 3HC2Q
2 sinh(2γ )


. (20)

To determine the magnetization, we carried out the thermodynamic derivative by using Eq. (20), that gives

M = −
∂φ

∂H
=

z ′C1K 2 (1 − γ coth(γ ))

β sinh(γ )
−

z ′C2K 3Q (1 − γ coth(2γ ))

2β sinh(2γ )
. (21)

We can also eliminate the chemical potential through the number of particles N and insert the Langevin functions

L(γ ) = coth(γ ) −
1
γ

, L(2γ ) = coth(2γ ) −
1
2γ

, (22)

to rewrite the magnetization as

M = −

NµB


C1 sinh(2γ )L(γ ) + z ′KC2γ sinh(γ )L(2γ )


C1 sinh(2γ ) + z ′KC2 sinh(γ )Q

. (23)

The results obtained for the deformedmagnetization are very interesting, because we can compare it with experimental
results obtained for superconducting materials (which are perfect diamagnetic materials) as a function of temperature
variation [39], in order to strength the understanding of the q-deformation as a factor of impurity. In Ref. [39] one was
found that the minimum of magnetization deepens as temperature or pressure decreases.

In Fig. 2 we have the magnetization curves (M) versus magnetic field (H) for some values of q1 and q2, and we note that
some observations made for internal energy such as oscillators symmetry are also valid for the magnetization, as expected.
Notice that the minimum of magnetization deepens as q-deformation increases. This means that by increasing temperature
or pressure we may diminish the effects of disorders or impurities of the system. This explains why we should reduce the
deformation parameters until they assume the underformed degenerate case q21 + q22 = 1.

Now, computing the susceptibility reads,

χ =
∂M
∂H

=
Nβµ2

B

C1 sinh(2γ ) + z ′KC2 sinh(γ )Q


C1 sinh(2γ )


2 coth(γ )L(γ ) − 1



+ 2z ′C2 sinh(γ )Q

2 coth(2γ )L(2γ ) − 1


. (24)
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Fig. 2. (q1, q2)-deformed magnetization as a function of magnetic field H for several choices of q1 and q2 .

In the limit of weak fields γ ≪ 1 we have the leading term

M = −
2NµB sinh(γ ) cosh(γ )(C1 + z ′C2KQ )

3(2C1 cosh(γ ) + z ′KC2Q )
, (25)

and thus, we have the susceptibility in zero field

χ0 = −
2µBz ′K 2(C1 + z ′C2KQ )

3(2C1 + z ′KC2Q )
. (26)

4. Conclusions

As in our previous works [12,40,41], in which we have shown that the q-parameter is associated with impurities
in a sample, in particular diamagnetic materials, as in the present study, we put forward new results to strength this
interpretation of the q-deformation.

In this work, we expand the application of q-calculation through two deformation parameters (q1, q2), known as
Fibonacci oscillators. We work in the limit of high temperatures (‘dilute gas’ z ≪ 1), and a (q1, q2)-deformed partition
function. In first order the results reported in the literature [38,42], are recovered. However, the q-deformation takes place
at second order for non-degenerate case q21 + q22 > 1.

We note that in the obtained results were found several interesting behaviors by just varying the values of q1 and
q2. Of course, we performed a theoretical application, and it allows various assumptions. By comparing these results
with similar experimental curves, one could understand how impurities could be entering into a material that affects,
e.g., superconductivity such that its critical temperature increases, whichwould be of great interest to thosewhoworkswith
high Tc superconductors — see Ref. [43] for a recent alternative theoretical investigation on these type of superconductors
whose structure can be extended via q-deformation in order to introduce impurities.
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